JPS63136590A - Semiconductor superlattice - Google Patents

Semiconductor superlattice

Info

Publication number
JPS63136590A
JPS63136590A JP61283284A JP28328486A JPS63136590A JP S63136590 A JPS63136590 A JP S63136590A JP 61283284 A JP61283284 A JP 61283284A JP 28328486 A JP28328486 A JP 28328486A JP S63136590 A JPS63136590 A JP S63136590A
Authority
JP
Japan
Prior art keywords
quantum well
plane
semiconductor
lines
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61283284A
Other languages
Japanese (ja)
Other versions
JPH0752782B2 (en
Inventor
Hiroshi Iwata
岩田 普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61283284A priority Critical patent/JPH0752782B2/en
Priority to US07/127,015 priority patent/US4802181A/en
Publication of JPS63136590A publication Critical patent/JPS63136590A/en
Publication of JPH0752782B2 publication Critical patent/JPH0752782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To inject carriers effectively into a quantum well fine line, and to obtain a semiconductor laser and an electronic device having high performance by forming one or more of quantum well structure constituted of a quantum well plane composed of a semiconductor on a plane and the quantum well line made up of a linear semiconductor and making the potential energy of the quantum well line lower than the quantum well plane. CONSTITUTION:The greater part of holes and electrons each injected from a P electrode 18 and an N electrode 19 are injected to a quantum well plane 14, but they flow into quantum well lines 15 because the potential energy of adjacent quantum well lines 15 is low. Since both holes and electrons arc confined in two dimensions and brought to a false one-dimensional state in the quantum well lines 15, each density of the states is concentrated into narrow energy regions, and the recombination spectra are narrowed extremely. Accordingly, all carriers effectively contribute to laser oscillation, thus acquiring a semiconductor laser having extremely small oscillation threshold currents.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体レーザ等に用いられる半導体超格子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor superlattice used in semiconductor lasers and the like.

(従来の技術) 従来提案きれた半導体超格子として第2図に示すような
量子井戸細線構造が広く知られている。
(Prior Art) A quantum well thin wire structure as shown in FIG. 2 is widely known as a conventionally proposed semiconductor superlattice.

線状の量子井戸領域21と、これをとり囲む量子障壁領
域22とから構成されており、量子井戸領域21に閉じ
込められた電子、または正孔は擬1次元状態となり、高
性能な半導体レーザなどへの応用が考えられる(アプラ
イド・フィジックス・レターズ[Appl、 Phys
、 Lett、 ] 41 、 (1982) 635
 )。
It is composed of a linear quantum well region 21 and a quantum barrier region 22 surrounding it, and the electrons or holes confined in the quantum well region 21 enter a quasi-one-dimensional state, which can be used in high-performance semiconductor lasers, etc. (Applied Physics Letters [Appl, Phys
, Lett, ] 41, (1982) 635
).

(発明が解決しようとする問題点) しかしながら、このような量子井戸細線構造では、量子
井戸領域21に電子及び正孔を効率的に注入することが
できず、電流注入による半導体レーザ発振を行なうこと
ができないという欠点を有していた。
(Problems to be Solved by the Invention) However, in such a quantum well thin wire structure, electrons and holes cannot be efficiently injected into the quantum well region 21, and semiconductor laser oscillation cannot be performed by current injection. It had the disadvantage that it was not possible.

本発明の目的は、この問題点を解決した半導体レーザ等
に応用可能な半導体超格子を提供することにある。
An object of the present invention is to provide a semiconductor superlattice that can be applied to semiconductor lasers and the like that solves this problem.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、層厚が電子のドブロイ波長(数10nm)程度である
平面状の半導体からなる量子井戸平面と、前記量子井戸
平面上に隣接する太さが電子のドブロイ波長程度の線状
の半導体からなる少なくとも1つ以上の量子井戸線とか
ら構成される量子井戸構造を少なくとも1つ以上有し、
前記量子井戸線のポテンシャルエネルギーが前記量子井
戸平面のポテンシャルエネルギーよりも低いことを特徴
とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a quantum well plane made of a planar semiconductor whose layer thickness is approximately the de Broglie wavelength of electrons (several tens of nanometers). and at least one or more quantum well lines made of a linear semiconductor and having a thickness of about the de Broglie wavelength of an electron adjacent to the quantum well plane;
It is characterized in that the potential energy of the quantum well line is lower than the potential energy of the quantum well plane.

(作用) 上述の構造の超格子では、量子井戸平面に垂直な方向か
ら注入きれたキャリアは必ず、量子井戸平面か、量子井
戸線のいずれかに到達する。量子井戸線のポテンシャル
エネルギーは、量子井戸平面のポテンシャルエネルギー
より低いために、量子井戸平面に注入されたキャリアは
バンド内緩和によりエネルギーを失い、量子井戸線内の
準位に落ちていく、このため、超格子外部から注入きれ
たキャリアは有効に量子井戸線に注入されていく。
(Function) In the superlattice having the above structure, carriers injected from a direction perpendicular to the quantum well plane always reach either the quantum well plane or the quantum well line. Since the potential energy of the quantum well line is lower than the potential energy of the quantum well plane, carriers injected into the quantum well plane lose energy due to intraband relaxation and fall to the level within the quantum well line. , carriers completely injected from outside the superlattice are effectively injected into the quantum well lines.

(実施例) 次に図面を参照して本発明の実施例について説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を活性層として用いた半導体
レーザを示す断面図である。この半導体レーザは、n形
GaAsからなる半導体基板10上にn形GaAsから
なるバッファ一層11.n形An o 、 yGae 
、 sAsからなるn形りラッド着(厚さ17s)12
.A11m 、 aGJi@ 、 sAsからなる光ガ
イド層(厚さo、1p)13a 、 13b 、 AQ
o、*5Gae、sASからなる量子井戸平面(厚さ1
0am ) 14 、 GaAsからなる量子井戸線(
厚さ10am 、幅30nm) 15 、 p形An 
o 、 yGao ’、 3A9からなるp形りラッド
層(厚さ1sn)16.p形GaAsからなるキャップ
層17.及びp電極18.n電極19を形成した構造と
なっている。
FIG. 1 is a sectional view showing a semiconductor laser using an embodiment of the present invention as an active layer. This semiconductor laser has a buffer layer 11 made of n-type GaAs on a semiconductor substrate 10 made of n-type GaAs. n-type An o, yGae
, n-shaped rad bond made of sAs (thickness 17s) 12
.. A11m, aGJi@, light guide layer (thickness o, 1p) made of sAs 13a, 13b, AQ
Quantum well plane (thickness 1
0am) 14, quantum well line made of GaAs (
(thickness: 10 am, width: 30 nm) 15, p-type An
o, yGao', p-shaped rad layer (thickness 1sn) consisting of 3A9 16. Cap layer 17 made of p-type GaAs. and p-electrode 18. It has a structure in which an n-electrode 19 is formed.

半導体結晶成長は、分子線結晶成長法により行なった。Semiconductor crystal growth was performed by molecular beam crystal growth.

半導体基板10上に、バッファ一層11.n形クラッド
層12.光ガイド層13a、量子井戸平面14及び厚さ
10amのGaAs層を結晶成長し、次に電子ビームろ
先決及びイオンビームエツチング法により、GaAs層
をストライブ状にエツチングし、量子井戸線15を形成
した。再び分子線結晶成長法により、光ガイドJ!13
b 、 p形りラッド層16.キャップ層17を結晶成
長し、最後にp電極18及びn電極19を形成した。
On the semiconductor substrate 10, a buffer layer 11. n-type cladding layer 12. A light guide layer 13a, a quantum well plane 14, and a GaAs layer with a thickness of 10 am are crystal-grown, and then the GaAs layer is etched into stripes by electron beam etching and ion beam etching to form quantum well lines 15. did. Using the molecular beam crystal growth method again, the light guide J! 13
b, p-shaped rad layer 16. A cap layer 17 was grown by crystal growth, and finally a p-electrode 18 and an n-electrode 19 were formed.

p電極18.n電極19からそれぞれ注入された正孔及
び電子の多くは、量子井戸平面14に注入されるが、隣
接する量子井戸線15のポテンシャルエネルギーが低い
から、量子井戸線15に流れ込む。量子井戸線15では
正孔及び電子とも2次元的に閉じ込められ、擬1次元状
態となっているため、それぞれの状態密度は、狭いエネ
ルギー領域に集中しており、その再結合スペクトルは非
常に狭い、このため全てのキャリアがレーザ発振に有効
に寄与し、発振閾値電流の非常にノ」−さな半導体レー
ザが得られる。
p-electrode 18. Most of the holes and electrons injected from the n-electrode 19 are injected into the quantum well plane 14, but since the potential energy of the adjacent quantum well line 15 is low, they flow into the quantum well line 15. In the quantum well line 15, both holes and electrons are confined two-dimensionally and are in a quasi-one-dimensional state, so the density of each state is concentrated in a narrow energy region, and the recombination spectrum is extremely narrow. Therefore, all the carriers effectively contribute to laser oscillation, and a semiconductor laser with a very small oscillation threshold current can be obtained.

なお、本実施例ではAflGaAs系混晶を用いたが、
これに限らず他の半導体混晶を用いてもよい。
Although AflGaAs mixed crystal was used in this example,
The present invention is not limited to this, and other semiconductor mixed crystals may be used.

また上述の実施例では単層の量子井戸平面を用いたがこ
れに限らず多層構造の量子井戸構造としてもよい。
Further, in the above-described embodiments, a single-layer quantum well plane is used, but the present invention is not limited to this, and a multi-layer quantum well structure may be used.

また上述の実施例では半導体レーザの活性層として本発
明の超格子を用いたが、これに限らず、共鳴トンネルト
ランジスタ等他のデバイスに用いてもよい。
Further, in the above embodiments, the superlattice of the present invention is used as the active layer of a semiconductor laser, but the superlattice is not limited to this, and may be used in other devices such as a resonant tunnel transistor.

(発明の効果) このように本発明によれば、量子井戸細線にキャリアを
有効に注入でき、高性能な半導体レーザや電子デバイス
を得ることができる。
(Effects of the Invention) As described above, according to the present invention, carriers can be effectively injected into quantum well thin wires, and high-performance semiconductor lasers and electronic devices can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を活性層として用いた半導体
レーザを示す断面図、第2図は従来の量子井戸細線を示
す断面図である。 10・・・半導体基板、11・・・バッファ一層、12
・・・n形りラッド層、13a 、 13b・・・光ガ
イド層、14・・・量子井戸平面、15・・・量子井戸
線、16・・・p形りラッド層、17・・・キャップ層
、18・・・p電極、19・・・n電極、21・・・量
子井戸領域。
FIG. 1 is a sectional view showing a semiconductor laser using an embodiment of the present invention as an active layer, and FIG. 2 is a sectional view showing a conventional quantum well thin wire. 10... Semiconductor substrate, 11... Buffer single layer, 12
...N-shaped Rad layer, 13a, 13b... Light guide layer, 14... Quantum well plane, 15... Quantum well line, 16... P-shaped Rad layer, 17... Cap layer, 18...p electrode, 19...n electrode, 21...quantum well region.

Claims (1)

【特許請求の範囲】[Claims] 層厚が電子のドブロイ波長程度である平面状の半導体か
らなる量子井戸平面と、前記量子井戸平面上に隣接する
太さが電子のドブロイ波長程度の線状の半導体からなる
少なくとも1つ以上の量子井戸線とから構成される量子
井戸構造を少なくとも1つ以上有し、前記量子井戸線の
ポテンシャルエネルギーが前記量子井戸平面のポテンシ
ャルエネルギーよりも低いことを特徴とする半導体超格
子。
A quantum well plane made of a planar semiconductor whose layer thickness is about the de Broglie wavelength of an electron, and at least one quantum well made of a linear semiconductor whose thickness is about the de Broglie wavelength of an electron adjacent to the quantum well plane. 1. A semiconductor superlattice comprising at least one quantum well structure composed of well lines, wherein the potential energy of the quantum well lines is lower than the potential energy of the quantum well plane.
JP61283284A 1986-11-27 1986-11-27 Semiconductor superlattice Expired - Lifetime JPH0752782B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61283284A JPH0752782B2 (en) 1986-11-27 1986-11-27 Semiconductor superlattice
US07/127,015 US4802181A (en) 1986-11-27 1987-11-27 Semiconductor superlattice light emitting sevice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283284A JPH0752782B2 (en) 1986-11-27 1986-11-27 Semiconductor superlattice

Publications (2)

Publication Number Publication Date
JPS63136590A true JPS63136590A (en) 1988-06-08
JPH0752782B2 JPH0752782B2 (en) 1995-06-05

Family

ID=17663450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283284A Expired - Lifetime JPH0752782B2 (en) 1986-11-27 1986-11-27 Semiconductor superlattice

Country Status (1)

Country Link
JP (1) JPH0752782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215250B2 (en) 2009-01-09 2012-07-10 Brother Kogyo Kabushiki Kaisha Needle plate and sewing machine provided therewith
US8485114B2 (en) 2010-06-04 2013-07-16 Brother Kogyo Kabushiki Kaisha Needle plate and sewing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250684A (en) * 1984-05-25 1985-12-11 Nec Corp Manufacture of 3-dimensional quantum well semiconductor laser
JPS61222190A (en) * 1985-03-28 1986-10-02 Nec Corp Two-element quantum well structure semiconductor laser and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250684A (en) * 1984-05-25 1985-12-11 Nec Corp Manufacture of 3-dimensional quantum well semiconductor laser
JPS61222190A (en) * 1985-03-28 1986-10-02 Nec Corp Two-element quantum well structure semiconductor laser and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215250B2 (en) 2009-01-09 2012-07-10 Brother Kogyo Kabushiki Kaisha Needle plate and sewing machine provided therewith
US8485114B2 (en) 2010-06-04 2013-07-16 Brother Kogyo Kabushiki Kaisha Needle plate and sewing machine

Also Published As

Publication number Publication date
JPH0752782B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US20050098793A1 (en) Nitride based semiconductor photo-luminescent device
US6751243B2 (en) Semiconductor device with quantum dots having high carrier injection efficiency, its manufacture method, and semiconductor laser device
JP2531655B2 (en) Semiconductor device
EP0215298A2 (en) Semiconductor laser
JPH09129974A (en) Semiconductor laser device
US4802181A (en) Semiconductor superlattice light emitting sevice
JP3304903B2 (en) Semiconductor quantum dot device and manufacturing method thereof
JPS63136590A (en) Semiconductor superlattice
JP2947199B2 (en) Semiconductor quantum dot device and method of manufacturing the semiconductor quantum dot device
JPS63136591A (en) Seniconductor laser
US5022037A (en) Semiconductor laser device
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0680865B2 (en) Semiconductor superlattice
JPH0665237B2 (en) Method for manufacturing two-dimensional quantization element
JPS63196084A (en) Pnpn photo thyristor
JPH0693531B2 (en) Semiconductor superlattice
JPS6356977A (en) Semiconductor laser
JP2876642B2 (en) Quantum well laser
JPH02155263A (en) Semiconductor optical memory
KR100261248B1 (en) Laser diode and its manufacturing method
JPH0233972A (en) Semiconductor quantum wire structure
JPH0693529B2 (en) Semiconductor superlattice
JPS62279688A (en) Manufacture of semiconductor laser element
JPS61164286A (en) Quantum well structure semiconductor laser
JP2964161B2 (en) Semiconductor device with quantum well structure