JPS6356977A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6356977A
JPS6356977A JP20046186A JP20046186A JPS6356977A JP S6356977 A JPS6356977 A JP S6356977A JP 20046186 A JP20046186 A JP 20046186A JP 20046186 A JP20046186 A JP 20046186A JP S6356977 A JPS6356977 A JP S6356977A
Authority
JP
Japan
Prior art keywords
layer
thickness
quantum well
layers
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20046186A
Other languages
Japanese (ja)
Inventor
Akira Furuya
章 古谷
Masao Makiuchi
正男 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20046186A priority Critical patent/JPS6356977A/en
Publication of JPS6356977A publication Critical patent/JPS6356977A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize low threshold voltage, by providing a quantum well structure with a first semiconductor layer whose thickness is smaller than the de Broglie wavelength of electron or positive hole, and a second semiconductor layer between which the first layer is put, its forbidden bandwidth being larger than that of the first layer, its thickness being larger than the de Broglie wavelength. CONSTITUTION:The MQW put between HR-AlxGa1-xAs(x=0.7) layers of 1mum thick clad layer is formed by laminating alternately four GaAs layers as a well layer and three AlxGa1-xAs(x=0.7) layers as a barrier layer. The 0.5mum thick GaAs layer being the highest layer is a contact layer for ohmic contact. For the MQW layer, the barrier height is made so high as x=0.7 by transversal injection. The thickness of the barrier layer is made thick so as to be larger than 300Angstrom being the de Broglie wavelength of GaAs by transversal implantation. In accordance with the increase of the x-value of an active layer, the difference of refractive index between the active layer and the clad layer is set sufficiently large, in order to confine the light effectively. Therefor, x=0.7 is applied also to the HR-AlxGa1-x of the clad layer. Thereby, a quantum well laser having a low threshold value and a short wavelength can be obtained.

Description

【発明の詳細な説明】 〔概要〕 量子井戸構造を活性層とする横方向注入レーザにおいて
、量子井戸を構成する第2の半4体層(バリア層)の厚
さをド・ブロイ波長以上に十分大きくして、第1の半導
体層(ウェルN)に十分の数のキャリア(電子と正孔)
が局在できるようにし、ウェル層にキャリアを横方向に
注入することにより、各ウェル層間にキャリア注入の不
均一を生じさせないようにして、レーザの低しきい値化
をはかる。
[Detailed Description of the Invention] [Summary] In a lateral injection laser having a quantum well structure as an active layer, the thickness of the second semi-quaternary layer (barrier layer) constituting the quantum well is made to be at least the de Broglie wavelength. Make it sufficiently large to have a sufficient number of carriers (electrons and holes) in the first semiconductor layer (well N).
By horizontally injecting carriers into the well layer, non-uniformity in carrier injection between the well layers is prevented, and the threshold value of the laser can be lowered.

〔産業上の利用分野〕[Industrial application field]

本発明は量子井戸構造を活性層とする横方向注入レーザ
の量子井戸構造に関する。
The present invention relates to a quantum well structure of a lateral injection laser having a quantum well structure as an active layer.

半導体レーザは光通信用の電源として多用されるように
なり、その性能改善のための技術開発が活発に行われて
いる。
Semiconductor lasers have come to be widely used as power sources for optical communications, and technological developments are being actively conducted to improve their performance.

本出願人はさきに、光の横方向の閉じ込め効果を向上し
、しきい値電流を低減し、かつ集積化に通した量子井戸
構造を活性層とする横方向注入レーザを特願昭60−2
7059号明細書に開示したが、本発明はこのレーザを
さらに低しきい値化、短波長化するための量子井戸構造
を提起する。
The present applicant previously filed a patent application in 1983 for a lateral injection laser with a quantum well structure as an active layer, which improved the lateral confinement effect of light, reduced the threshold current, and was integrated. 2
Although disclosed in the specification of No. 7059, the present invention proposes a quantum well structure for further lowering the threshold value and shortening the wavelength of this laser.

〔従来の技術〕[Conventional technology]

量子井戸構造を活性層とする従来例のレーザとして、量
子井戸層に対して垂直に電流を流す型のものについて、
低しきい値の発振が報告されている。
Regarding conventional lasers with a quantum well structure as the active layer, in which current flows perpendicular to the quantum well layer,
Low threshold oscillations have been reported.

量子井戸レーザが低しきい値で発振するのはウェル層の
長さをド・ブロイ(de Broglie)波長以下に
して、量子サイズ効果によりウェル層内の電子、または
正孔が2次元電子ガス化することにより、伝翼おび、価
電子帯の最低量子準位の状態密度が高いことに起因して
いる。
The reason why a quantum well laser oscillates at a low threshold is because the length of the well layer is set below the de Broglie wavelength, and the electrons or holes in the well layer are converted into two-dimensional electron gas due to the quantum size effect. This is due to the high density of states of the lowest quantum level in the propagation plane and valence band.

従って、ウェル層に注入された電流密度と光学利得の関
係は通常のダブルヘテロ(DH)構造のレーザに比べて
、小さい電流で大きい利得を得ることができるが、単一
量子井戸(SQW) レーザにおいては、光学利得は5
00cm−’を越すと飽和する傾向を示す+(第3図参
照)。
Therefore, the relationship between the current density injected into the well layer and the optical gain is such that a large gain can be obtained with a small current compared to a normal double hetero (DH) structure laser, but a single quantum well (SQW) laser , the optical gain is 5
When it exceeds 00 cm-', it shows a tendency to saturate (see Fig. 3).

1)   Dutta  et  al、、J、八pp
1.Phys、  53(1982)?221゜そこで
、多数の量子井戸を垂直方向に近接して並べ、光の閉じ
込めをよくするとともに、1つの量子井戸に課する光学
利得を小さいレベルに抑えて低しきい値で発振する多重
量子井戸(MQW)  レーザが開発された。
1) Dutta et al., J., 8pp.
1. Phys, 53 (1982)? 221゜Therefore, we developed a multi-quantum well system in which a large number of quantum wells are arranged close to each other in the vertical direction to improve light confinement and to suppress the optical gain imposed on each quantum well to a small level to oscillate at a low threshold. (MQW) laser was developed.

しかしながら、従来のMQWレーザでは、MQWを構成
する半導体層に対して垂直にキャリア(電子と正孔)の
注入を行っているので、十分な量子効果を得ることがで
きる程度にバリア高さが大きく、かつ厚いバリア層を用
いた場合は、キャリアは各バリア層をトンネルして各ウ
ェル層に注入されるため、注入キャリア数に不均一を生
じる(第4図参照)。従って、並べる量子井戸数を多く
できなかった。
However, in conventional MQW lasers, carriers (electrons and holes) are injected perpendicularly to the semiconductor layer that makes up the MQW, so the barrier height is large enough to obtain sufficient quantum effects. , and when a thick barrier layer is used, carriers tunnel through each barrier layer and are injected into each well layer, resulting in non-uniformity in the number of injected carriers (see FIG. 4). Therefore, it was not possible to increase the number of quantum wells to be arranged.

^lXGa、、As (バリア層) /GaAs (ウ
ェル層)のMQWではバリア高さは最低でx−0,2を
必要とし、バリア層数は高々、4〜6が最適値である。
^lXGa,, As (barrier layer)/GaAs (well layer) MQW requires a minimum barrier height of x-0.2, and the optimum number of barrier layers is 4 to 6 at most.

注入キャリアの不均一性を改善するために、さらにバリ
ア高さの低いバリア層を用いると、各々の量子井戸に局
在する波動関数が拡がってしまい、十分な量子サイズ効
果が得られなくなる(第5図参照)。
If a barrier layer with a lower barrier height is used to improve the non-uniformity of the injected carriers, the wave function localized in each quantum well will spread, making it impossible to obtain a sufficient quantum size effect ( (See Figure 5).

これに対して、本発明者等が提起した横方向注入j1Ω
讐レーザについてつぎに説明する。
On the other hand, the lateral injection j1Ω proposed by the present inventors
Next, the laser will be explained.

第6図は量子井戸構造を活性層とする横方向注入レーザ
の構造を説明する断面図である。
FIG. 6 is a cross-sectional view illustrating the structure of a lateral injection laser having a quantum well structure as an active layer.

図において、 1 は5r−GaAs  基牟反、 2.4はクラッド層で厚さ1μmの 高抵抗(HR)−A1xGa+−xA4(x=0.45
 )、 3は多重量子井戸(M叶)構造の活性層、3Aは横方向
注入レーザの′活性層(発光領域)で、幅0.5〜1.
5μm 5はp型不純物(Zn)の拡散により形成したp型領域
(p型電極領域)、 5Aはp型拡散による無秩序化領域、 6はn型不純物(St)の拡散により形成したn型領域
(n型電極領域)、 6Aはn型拡散による無秩序化領域、 である。
In the figure, 1 is a 5r-GaAs substrate, 2.4 is a cladding layer with a thickness of 1 μm, and is a high resistance (HR) -A1xGa+-xA4 (x = 0.45
), 3 is an active layer with a multiple quantum well (M leaf) structure, and 3A is an active layer (emitting region) of a lateral injection laser, with a width of 0.5 to 1.
5μm 5 is a p-type region (p-type electrode region) formed by diffusion of p-type impurity (Zn), 5A is a disordered region by p-type diffusion, 6 is an n-type region formed by diffusion of n-type impurity (St) (n-type electrode region), 6A is a disordered region due to n-type diffusion.

無秩序化領域5A、 6Aは、GaAsとAlGaAs
が相互拡散して無秩序化し、平均組成の混晶が形成され
た領域で、これにより活性層が横方向にダブルヘテロ構
造を形成し、横方向の光の閉じ込めを向上するものであ
る。
The disordered regions 5A and 6A are made of GaAs and AlGaAs.
In this region, the active layer forms a double heterostructure in the lateral direction, which improves the lateral confinement of light.

つぎに、これレーザの製造工程の概略を説明する。Next, an outline of the manufacturing process of this laser will be explained.

まず、分子線エピタキシャル成長(MBE)法、有機金
属化学気相成長(MOCVD)法、液相エピタキシャル
成長(LPE)法等により、5r−GaAs基板1上に
11R’−AIGaAsクラッド層2、M[lW構造の
活性層3、HR−AIGaAsクラッド層4を順次成長
する。
First, a 11R'-AIGaAs cladding layer 2 with a M[lW structure An active layer 3 and an HR-AIGaAs cladding layer 4 are sequentially grown.

つぎに、600℃でZnを拡散してn型領域5を形成し
、850°CでSiを拡散してn型領域6を形成する。
Next, Zn is diffused at 600° C. to form n-type region 5, and Si is diffused at 850° C. to form n-type region 6.

これらの領域形成は上記の気相拡散に代わってイオン注
入を用いてもよい。
For forming these regions, ion implantation may be used instead of the above-mentioned vapor phase diffusion.

以上の工程により基板に横方向注入MQWレーザが形成
される。
Through the above steps, a lateral injection MQW laser is formed on the substrate.

第7図は従来例のMQW構造(GaAs/AlGaAs
の周期構造)を説明するA1.Ga、、Asの混晶比X
の厚さ方向の分布図である。
Figure 7 shows a conventional MQW structure (GaAs/AlGaAs
A1. Mixed crystal ratio of Ga, As
FIG.

図において、1叶は厚さ80人でGaAs層が5層、厚
さ120人のAlxGa+−Js(x=0.3)atが
4層交互に積層して形成する。
In the figure, one leaf is formed by alternately stacking 5 GaAs layers with a thickness of 80 layers and 4 layers of AlxGa+-Js (x=0.3)at with a thickness of 120 layers.

以上説明した横方向注入MQWレーザでは、キャリアは
電極より直接各ウェル層に横方向(ウェル層に平行)に
注入されるため、各ウェル層の注入キャリア数は均一で
あり、従ってMQHの層数を増やすことができる。
In the lateral injection MQW laser described above, carriers are directly injected from the electrode into each well layer in the lateral direction (parallel to the well layer), so the number of injected carriers in each well layer is uniform, and therefore the number of MQH layers is can be increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、横方向注入MQW レーザにおいても従
来例のMOW構造を活性層に用いると、バリア層はウェ
ル層よりは厚いが、それでもド・ブロイ波長以下である
ため、各ウェルの波動関数の裾野が重なり合い、完全な
量子サイズ効果が得られないという欠点があった。
However, even in a lateral injection MQW laser, if the conventional MOW structure is used as the active layer, the barrier layer is thicker than the well layer, but it is still less than the de Broglie wavelength, so the bases of the wave functions of each well overlap. However, the drawback was that a complete quantum size effect could not be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、量子井戸構造の活性層と、該活性
層を挟む絶縁性または半絶縁性半導体層のクラッド層と
、該クラッド層を通して該活性層にたがいに間隔を隔て
て導電性不純物を導入して形成されたp型およびn型領
域を有し、該p型およびn型領域内の量子井戸構造は無
秩序化され、該活性層は横方向にダブルヘテロ構造をも
つ組子井戸横方向注入レーザにおいて、 量子井戸構造は少なくとも、 電子、または正孔のド・ブロイ波長より小さい厚さの第
1の半導体層と、 該第1の半導体層を挟む、禁制帯幅が該第1の半導体層
より大きく、かつ該ド・ブロイ波長以上の厚さの第2の
半導体層 とを有することにより達成される。
The solution to the above problem is to have an active layer with a quantum well structure, a cladding layer of insulating or semi-insulating semiconductor layers sandwiching the active layer, and a conductive impurity that is inserted into the active layer at intervals through the cladding layer. The quantum well structure in the p-type and n-type regions is disordered, and the active layer has a muntin well lateral structure having a double heterostructure in the lateral direction. In the directional injection laser, the quantum well structure includes at least a first semiconductor layer having a thickness smaller than the de Broglie wavelength of electrons or holes, and a semiconductor layer sandwiching the first semiconductor layer and having a forbidden band width of the first semiconductor layer. This is achieved by including a second semiconductor layer that is larger than the semiconductor layer and has a thickness equal to or greater than the de Broglie wavelength.

量子井戸構造は5(IW 、またはMQW構造のいずれ
でもよい。
The quantum well structure may be either a 5 (IW) or an MQW structure.

〔作用〕[Effect]

本発明はレーザの素子厚を薄くでき、集積化が容易で、
低しきい値で、かつ寄生型容量の小さい横方向注入量子
井戸レーザにおいては、横方向より各ウェル層に均一に
キャリアを注入できるため、バリア層の厚さと高さの制
約を受けることはなく、従って、量子井戸構造のバリア
層の厚さをド、ブロイ波長以上にし、さらにバリア高さ
を十分に大きくとって、注入キャリアを各ウェル内に十
分の密度に局在させることにより、さらに低しきい値化
を行ったものである。
The present invention can reduce the thickness of the laser element, facilitate integration,
In a lateral injection quantum well laser with a low threshold and small parasitic capacitance, carriers can be uniformly injected into each well layer from the lateral direction, so there are no restrictions on the thickness and height of the barrier layer. Therefore, by making the thickness of the barrier layer of the quantum well structure at least equal to the de Broglie wavelength, and by making the barrier height sufficiently large and localizing the injected carriers at a sufficient density within each well, it is possible to achieve even lower This is the result of thresholding.

〔実施例〕〔Example〕

第1図は本発明の横方向!IQ−レーザの一実施例を説
明する説明14AIXGa、−,Asの混晶比Xの厚さ
方向の分布図である。
Figure 1 shows the horizontal direction of the present invention! 14 is a distribution diagram of the mixed crystal ratio X of Ga, -, As in the thickness direction.

図において、厚さ1μmのクラッド層のHR−AIXG
a+−xAs(x=0.7ン層間に挟まれた4Q諌はウ
ェル層として、厚さ60人のGaAs層を4層、バリア
層として、厚さ300人のAlxGa+−xAs(x=
0.7)層を3層 交互に積層して形成する。
In the figure, HR-AIXG with a 1 μm thick cladding layer
The 4Q insulator sandwiched between the layers is a well layer with a thickness of 60 μm, and a barrier layer of 300 μm thick AlxGa+−xAs (x =
0.7) Formed by laminating three layers alternately.

最上層の厚さ0.5層1mのGaAs層はオーミックコ
ンタクトをとるためのコンタクト層である。
The uppermost GaAs layer with a thickness of 0.5 and 1 m is a contact layer for establishing ohmic contact.

MQW層に垂直方向にキャリアを注入する場合には、バ
リア高さはx=0.3と低かったが、本発明では横方向
注入により、X=0.7と高(することができる。
When carriers are injected vertically into the MQW layer, the barrier height is as low as x=0.3, but in the present invention, it can be made as high as x=0.7 by lateral injection.

また、バリア層の厚さは本発明では横方向注入により、
、 GaAsのド・ブロイ波長300 Å以上と厚(す
ることができる。
In addition, the thickness of the barrier layer is determined by lateral injection in the present invention.
, the de Broglie wavelength of GaAs can be 300 Å or thicker.

また、活性層のX値の上昇にともない、活性層とクラッ
ド層との屈折率差を十分とって垂直方向の光の閉じ込め
をよくするためにクラッド層のII!?−へ1.Ga1
−.45層もX−0,7と従来例より大きくする。
In addition, as the X value of the active layer increases, II! ? -to 1. Ga1
−. The 45th layer is also made larger than the conventional example at X-0.7.

第2図は本発明の横方向!’lQWレーザの他の実施例
を説明するXMf〆A]甚a、−、Asの混晶比Xの厚
さ方向の分布図である。
Figure 2 shows the horizontal direction of the present invention! FIG. 2 is a distribution diagram of the mixed crystal ratio X of As in the thickness direction, illustrating another example of the QW laser.

図において、厚さ1μmのクラッド層の)IR−A1.
Ga+−、As(x=0.7)N間に挟まれたMQWは
ウェル層として、厚さ60人AIXGap−Js(x 
=0.2)層を5層、 バリア層として、厚さ300人のAlAs層を6層交互
に積層して形成する。
In the figure, a 1 μm thick cladding layer) IR-A1.
The MQW sandwiched between Ga+- and As(x=0.7)N is used as a well layer with a thickness of 60 people AIXGap-Js(x
= 0.2) layers, and six AlAs layers with a thickness of 300 layers are alternately laminated to form a barrier layer.

発振波長はウェル層がGaAs (第1図の例)のとき
8300〜8500人であるが、この場合は約6500
人となり、可視光用の短波長レーザが得られる。
The oscillation wavelength is 8,300 to 8,500 when the well layer is made of GaAs (example in Figure 1), but in this case it is approximately 6,500.
A short wavelength laser for visible light can be obtained.

レーザを計測に用いる場合その精度は波長で決まるため
、短波長レーザは計測用に用いられる場合が多い。しか
しながら、現在の短波長レーザはガスレーザが主流をし
め、装置が大型であるため、半4体レーザの出現が期待
されていた。
When a laser is used for measurement, its accuracy is determined by the wavelength, so short wavelength lasers are often used for measurement. However, gas lasers are the mainstream of current short-wavelength lasers, and the equipment is large, so the emergence of half-four-body lasers has been expected.

一般に可視光用の半導体レーザの低しきい値化は難しい
が、本発明によりウェル層にもAIを含む組成のエビ層
を用いて注入キャリアの不均一性のない、低しきい値の
短波長半導体レーザが得られるようになった。
In general, it is difficult to lower the threshold voltage of a semiconductor laser for visible light, but by using a shrimp layer with a composition containing AI in the well layer as well, the present invention eliminates non-uniformity of injected carriers and achieves a short wavelength with a low threshold value. Semiconductor lasers are now available.

実施例においては、GaAs/AlGaAs系のレーザ
にについて説明したが、無秩序化が可能なその他の組成
(GaP/GaAsP、 InGaAs/GaAs超格
子等)のレーザについても全く同様の効果が得られる。
In the embodiment, a GaAs/AlGaAs-based laser has been described, but exactly the same effect can be obtained with lasers with other compositions that can be disordered (GaP/GaAsP, InGaAs/GaAs superlattice, etc.).

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、低しきい値
、短波長の横方向注入量子井戸レーザが得られる。
As described above in detail, according to the present invention, a lateral injection quantum well laser with a low threshold value and a short wavelength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の横方向MQWレーザの一実施例を説明
する1[J’!AtXca、−、Asの混晶比χの厚さ
方向の分布図、 第2図は本発明の横方向MQWレーザの他の実施例を説
明する説緋ずり^1.Ga、−,Asの混晶比Xの厚さ
方向の分布図、 第3図は電流密度に対する光学利得の関係図、第4図は
?11層に垂直注入の場合の各ウェル層のキャリア分布
を示す図、 第5図は各バリア層を低くしたときの波動関数の拡がり
を示す図、 第6図は量子井戸構造を活性層とする横方向注入レーザ
の構造を説明する断面図、 第7図は従来例のMQW構造(GaAs/AlGaAs
の周期構造)を説明するAlxGa+−xAsの混晶比
×の厚さ方向の分布図である。 図において、 1は5I−GaAs基板、 2.4はクラッド層でHR−AIGaAs層、3はMQ
W構造の活性層、 3Aは横方向注入レーザの活性層(発光領域)、5はp
型領域(p型電極領域)、 5^はp型拡散による無秩序化領域、 6はn型領域(n型電極領域)、 6Aはn型拡散による無秩序化領域、 である。 セtf)夫臘イ列e1発帝図 第2 図 亭3 @ 第4圀       亭5因 オ!行?761丁う主、き\L−丈゛0 前1f口 四
?1第6圀 /’7QW/:χ介争図 阜7 図
FIG. 1 illustrates an embodiment of the lateral MQW laser according to the present invention. A distribution diagram of the mixed crystal ratio χ of AtXca, -, As in the thickness direction. FIG. 2 is a diagram explaining another embodiment of the lateral MQW laser of the present invention. A distribution diagram of the mixed crystal ratio X of Ga, -, As in the thickness direction. Figure 3 is a diagram of the relationship between optical gain and current density. Figure 4 is a diagram of the relationship between optical gain and current density. Figure 5 shows the spread of the wave function when each barrier layer is lowered. Figure 6 shows the carrier distribution in each well layer when vertical injection is performed in layer 11. Figure 6 shows the spread of the wave function when each barrier layer is lowered. Figure 6 shows the quantum well structure as the active layer. A cross-sectional view explaining the structure of a lateral injection laser, FIG. 7 shows a conventional MQW structure (GaAs/AlGaAs
FIG. 3 is a distribution diagram of the mixed crystal ratio x of AlxGa+-xAs in the thickness direction, illustrating the periodic structure of FIG. In the figure, 1 is a 5I-GaAs substrate, 2.4 is a cladding layer and HR-AIGaAs layer, and 3 is an MQ
Active layer of W structure, 3A is active layer (light emitting region) of lateral injection laser, 5 is p
5^ is a disordered region due to p-type diffusion, 6 is an n-type region (n-type electrode region), and 6A is a disordered region due to n-type diffusion. Settf) ふ臘い行e1对园2 园亭3@ 4圀亭5因Oh! line? 761th house owner, Ki\L-length゛0 Front 1F Exit 4? 1 6th area/'7QW/: χ intervention map 7

Claims (1)

【特許請求の範囲】 量子井戸構造の活性層と、該活性層を挟む絶縁性または
半絶縁性半導体層のクラッド層と、該クラッド層を通し
て該活性層にたがいに間隔を隔てて導電性不純物を導入
して形成されたp型およびn型領域を有し、該p型およ
びn型領域内の量子井戸構造は無秩序化され、該活性層
は横方向にダブルヘテロ構造をもち、 該量子井戸構造は少なくとも、 電子、または正孔のド・ブロイ波長より小さい厚さの第
1の半導体層と、 該第1の半導体層を挟む、禁制帯幅が該第1の半導体層
より大きくかつ該ド・ブロイ波長以上の厚さの第2の半
導体層 とを有することを特徴とする半導体レーザ。
[Claims] An active layer having a quantum well structure, a cladding layer of insulating or semi-insulating semiconductor layers sandwiching the active layer, and conductive impurities being applied to the active layer at intervals through the cladding layer. the active layer has a double heterostructure in the lateral direction, and the quantum well structure in the p-type and n-type regions is disordered; at least a first semiconductor layer with a thickness smaller than the de Broglie wavelength of electrons or holes, and a semiconductor layer sandwiching the first semiconductor layer with a forbidden band width larger than that of the first semiconductor layer and with a thickness smaller than the de Broglie wavelength of electrons or holes; A semiconductor laser comprising a second semiconductor layer having a thickness equal to or greater than the Broglie wavelength.
JP20046186A 1986-08-27 1986-08-27 Semiconductor laser Pending JPS6356977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20046186A JPS6356977A (en) 1986-08-27 1986-08-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20046186A JPS6356977A (en) 1986-08-27 1986-08-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6356977A true JPS6356977A (en) 1988-03-11

Family

ID=16424690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20046186A Pending JPS6356977A (en) 1986-08-27 1986-08-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6356977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027363A (en) * 1988-12-09 1991-06-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
JPH0823136A (en) * 1994-07-07 1996-01-23 Nec Corp Multiple quantum well semiconductor laser
WO1996020522A1 (en) * 1994-12-28 1996-07-04 Mitsui Petrochemical Industries, Ltd. Semiconductor laser element
JP2004179428A (en) * 2002-11-27 2004-06-24 Rohm Co Ltd Semiconductor light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027363A (en) * 1988-12-09 1991-06-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser
US5108949A (en) * 1988-12-09 1992-04-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and laser fabrication method
JPH0823136A (en) * 1994-07-07 1996-01-23 Nec Corp Multiple quantum well semiconductor laser
WO1996020522A1 (en) * 1994-12-28 1996-07-04 Mitsui Petrochemical Industries, Ltd. Semiconductor laser element
JP2004179428A (en) * 2002-11-27 2004-06-24 Rohm Co Ltd Semiconductor light emitting element

Similar Documents

Publication Publication Date Title
JPH0143472B2 (en)
JPH0243351B2 (en)
EP0293000B1 (en) Light emitting device
JPS6356977A (en) Semiconductor laser
JPS61168981A (en) Semiconductor laser device
JP2669139B2 (en) Semiconductor laser
JP2679974B2 (en) Semiconductor laser device
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JPH09129969A (en) Semiconductor laser
JPS6214488A (en) Semiconductor laser and manufacture thereof
JPH0945986A (en) Semiconductor laser element
JPS6118192A (en) Semiconductor structure
JPH0945989A (en) Semiconductor laser element
JPS6237557B2 (en)
JPS62173788A (en) Semiconductor laser
JPH03104292A (en) Semiconductor laser
JP2869875B2 (en) Manufacturing method of optical integrated circuit
JPH0576794B2 (en)
JPS6355878B2 (en)
JPH0728093B2 (en) Semiconductor laser device
JP3206573B2 (en) Semiconductor laser and manufacturing method thereof
JPS62296582A (en) Semiconductor laser device
JPH01282883A (en) Semiconductor laser device
KR20010085186A (en) Semiconductor laser device and method for manufacturing thereof
JPH054833B2 (en)