JPH0693531B2 - Semiconductor superlattice - Google Patents

Semiconductor superlattice

Info

Publication number
JPH0693531B2
JPH0693531B2 JP62066177A JP6617787A JPH0693531B2 JP H0693531 B2 JPH0693531 B2 JP H0693531B2 JP 62066177 A JP62066177 A JP 62066177A JP 6617787 A JP6617787 A JP 6617787A JP H0693531 B2 JPH0693531 B2 JP H0693531B2
Authority
JP
Japan
Prior art keywords
quantum well
semiconductor
superlattice
wire
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62066177A
Other languages
Japanese (ja)
Other versions
JPS63232479A (en
Inventor
普 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62066177A priority Critical patent/JPH0693531B2/en
Publication of JPS63232479A publication Critical patent/JPS63232479A/en
Publication of JPH0693531B2 publication Critical patent/JPH0693531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体超格子に関するものである。The present invention relates to a semiconductor superlattice.

〔従来の技術〕[Conventional technology]

従来、提案された半導体超格子として第3図に示すよう
に量子井戸細線構造が広く知られている。すなわち、線
状の量子井戸細線31とこれをとり囲む量子障壁領域32と
から成り、量子井戸細線31に閉じ込められた電子、また
は正孔は擬1次元状態となり、高性能な半導体レーザな
どの応用が考えられる(アプライド・フィジィックス・
レターズ〔Appl、Phys、Lett〕Vol.(1982)pp635)。
Conventionally, as a proposed semiconductor superlattice, a quantum well thin wire structure is widely known as shown in FIG. That is, it is composed of a linear quantum well thin wire 31 and a quantum barrier region 32 surrounding the linear quantum well thin wire 31, and electrons or holes confined in the quantum well thin wire 31 become a quasi-one-dimensional state, and are applied to high-performance semiconductor lasers and the like. Can be considered (Applied Physics
Letters [Appl, Phys, Lett] Vol. (1982) pp635).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、おのような従来の量子井戸細線構造で
は、量子井戸細線31に電子及び正孔を効率的に注入する
ことがむずかしく、また、複数の量子井戸細線31を一様
なキャリア密度にすることもむずかしいため、半導体レ
ーザに用いた場合、発振閾値電流を十分小さくできない
という欠点を有していた。
However, in a conventional quantum well wire structure such as the one described above, it is difficult to efficiently inject electrons and holes into the quantum well wire 31, and it is also necessary to make the plurality of quantum well wires 31 have a uniform carrier density. Since it is difficult, when it is used for a semiconductor laser, it has a drawback that the oscillation threshold current cannot be made sufficiently small.

本発明の目的は、このような問題点を解決し半導体レー
ザ等に適用可能な半導体超格子を提供することにある。
An object of the present invention is to solve the above problems and provide a semiconductor superlattice applicable to a semiconductor laser or the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体超格子は、太さが電子のトブロイ波長程
度(数10nm)の半導体からなる量子井戸細線を複数有
し、複数の量子井戸細線が格子状に交差し、前記量子井
戸細線のまわりに前記量子井戸細線を構成する半導体よ
りポテンシャルエネルギーの高い半導体からなる量子障
壁領域を有することを特徴とする。
The semiconductor superlattice of the present invention has a plurality of quantum well thin wires made of a semiconductor whose thickness is about the Tobroy wavelength of an electron (several tens nm), and the plurality of quantum well thin wires intersect in a lattice shape, and the quantum well thin wires are surrounded by And a quantum barrier region made of a semiconductor having a higher potential energy than that of the semiconductor forming the quantum well wire.

〔作用〕[Action]

上述の構造の半導体超格子では、各量子井戸細線が格子
状に交差しているため、量子井戸細線内に注入されたキ
ャリアは、この交差点を介して速やかに超格子全体に広
がる。このため量子井戸細線内のキャリア密度は場所に
よらずほぼ一定となる。格子状につながった量子井戸細
線内でのキャリアの状態は一次元に近い状態であり、キ
ャリアの低次元化による発光スペクトルの狭帯域化等の
効果は保存されている。このため、半導体レーザの活性
層として上述の半導体超格子を用いると、発振閾値電流
を少なくすることができる。
In the semiconductor superlattice having the above-mentioned structure, since the quantum well thin wires intersect each other in a lattice shape, carriers injected into the quantum well thin wires spread quickly throughout the superlattice through the intersections. Therefore, the carrier density in the quantum well wire is almost constant regardless of the location. The state of carriers in the quantum well wires connected in a lattice shape is almost one-dimensional, and the effect of narrowing the emission spectrum due to the reduction of the dimensions of carriers is preserved. Therefore, when the above semiconductor superlattice is used as the active layer of the semiconductor laser, the oscillation threshold current can be reduced.

〔実施例〕〔Example〕

次に図面を参照して本発明の実施例について説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す斜視図である。本実施
例からなる半導体基板10上にGaAsからなる格子状の量子
井戸細線(太さ20nm×20nm)11と、これをとり囲むAl
0.5Ga0.5Asからなる量子障壁領域12とを形成した構造を
有している。結晶成長は分子線エピタキシー法によって
行なった。半導体基板10上に厚さ50nmのAl0.5Ga0.5As及
び厚さ50nmのGaAs結晶を形成したのち、イオンビームエ
ッチング法により、GaAsをエッチングし、量子井戸細線
11を形成した。この状態を第2図に示す。さらにAl0.5G
a0.5Asを結晶成長して量子障壁領域12を作成し、これを
くり返すことにより、超格子構造を形成した。
FIG. 1 is a perspective view showing an embodiment of the present invention. On the semiconductor substrate 10 according to the present embodiment, a lattice-shaped quantum well thin wire (thickness 20 nm × 20 nm) 11 made of GaAs and Al surrounding it.
It has a structure in which the quantum barrier region 12 made of 0.5 Ga 0.5 As is formed. Crystal growth was performed by the molecular beam epitaxy method. After forming a 50-nm-thick Al 0.5 Ga 0.5 As and a 50-nm-thick GaAs crystal on the semiconductor substrate 10, GaAs is etched by the ion beam etching method to form a quantum well thin line.
Formed 11. This state is shown in FIG. Furthermore, Al 0.5 G
A quantum barrier region 12 was formed by crystal growth of a 0.5 As, and this was repeated to form a superlattice structure.

GaAsのポテンシャルエネルギーはAl0.5Ga0.5Asのポテン
シャルエネルギーより低いため、電子と正孔はGaAsから
なる量子井戸細線11に閉じ込められる。量子井戸細線11
は20nm×20nmの太さであるため量子力学的効果により、
擬1次元的なバンド状態となる。また、量子井戸細線11
は全体につながっているため、キャリアは全体に一様に
分布しようとする。このため、この超格子構造に外部か
ら電子及び正孔を注入すると、それぞれ、量子井戸細線
11全体を速やかに広がり、電子と正孔が再結合する時発
光スペクトルは非常に狭いものとなる。このような超格
子を半導体レーザの活性層として用いると発振閾値電流
の小さな半導体レーザを得ることができる。
Since the potential energy of GaAs is lower than that of Al 0.5 Ga 0.5 As, electrons and holes are confined in the quantum well wire 11 made of GaAs. Quantum well wire 11
Has a thickness of 20 nm × 20 nm, so due to the quantum mechanical effect,
It becomes a quasi-one-dimensional band state. In addition, the quantum well wire 11
, Are connected to the whole, carriers try to be distributed uniformly throughout. Therefore, when electrons and holes are injected into the superlattice structure from the outside, the quantum well wire
11 The entire spectrum spreads rapidly, and the emission spectrum becomes very narrow when electrons and holes recombine. When such a superlattice is used as an active layer of a semiconductor laser, a semiconductor laser having a small oscillation threshold current can be obtained.

本実施例ではAlGaAs系混晶を用いたがこれに限らず他の
半導体混晶を用いてもよい。
In this embodiment, the AlGaAs-based mixed crystal is used, but the present invention is not limited to this, and another semiconductor mixed crystal may be used.

また上述の実施例では量子井戸細線が3次元的な格子を
形成していたがこれに限らず、平面内の格子構造でもよ
い。
In addition, although the quantum well thin wires form a three-dimensional lattice in the above-described embodiment, the present invention is not limited to this, and a plane lattice structure may be used.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、有効なキャリア注
入が可能な半導体超格子が得られる。
As described above, according to the present invention, a semiconductor superlattice capable of effective carrier injection can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す斜視図、第2図はこの
実施例の製作方法を示す斜視図、第3図は従来の量子井
戸細線構造を示す斜視図である。 10…半導体基板、11,31…量子井戸細線、12,32…量子障
壁領域。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing a manufacturing method of this embodiment, and FIG. 3 is a perspective view showing a conventional quantum well thin wire structure. 10 ... Semiconductor substrate, 11, 31 ... Quantum well wire, 12, 32 ... Quantum barrier region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】太さが電子のトブロイ波長程度(数10nm)
の半導体からなる量子井戸細線を複数有し、前記量子井
戸細線が格子状に交差し、前記量子井戸細線のまわりに
前記量子井戸細線を構成する半導体よりポテンシャルエ
ネルギーの高い半導体からなる量子障壁領域を有するこ
とを特徴とする半導体超格子。
1. The thickness is about the wavelength of an electron's tobroy (several 10 nm).
A plurality of quantum well wires made of semiconductor, the quantum well wires intersect in a lattice pattern, and a quantum barrier region made of a semiconductor having a higher potential energy than the semiconductor forming the quantum well wires is formed around the quantum well wires. A semiconductor superlattice having.
JP62066177A 1987-03-20 1987-03-20 Semiconductor superlattice Expired - Lifetime JPH0693531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62066177A JPH0693531B2 (en) 1987-03-20 1987-03-20 Semiconductor superlattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62066177A JPH0693531B2 (en) 1987-03-20 1987-03-20 Semiconductor superlattice

Publications (2)

Publication Number Publication Date
JPS63232479A JPS63232479A (en) 1988-09-28
JPH0693531B2 true JPH0693531B2 (en) 1994-11-16

Family

ID=13308300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62066177A Expired - Lifetime JPH0693531B2 (en) 1987-03-20 1987-03-20 Semiconductor superlattice

Country Status (1)

Country Link
JP (1) JPH0693531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033517B2 (en) * 1997-04-17 2000-04-17 日本電気株式会社 Semiconductor tunable laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60728A (en) * 1983-06-16 1985-01-05 Sanyo Electric Co Ltd Method of molecular beam epitaxial growth
JPS607190A (en) * 1983-06-24 1985-01-14 Nippon Telegr & Teleph Corp <Ntt> Multidimensional super lattice and manufacture thereof

Also Published As

Publication number Publication date
JPS63232479A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
US4748132A (en) Micro fabrication process for semiconductor structure using coherent electron beams
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
US6751243B2 (en) Semiconductor device with quantum dots having high carrier injection efficiency, its manufacture method, and semiconductor laser device
EP0215298B1 (en) Semiconductor laser
JP2531655B2 (en) Semiconductor device
JPS6310517A (en) Manufacture of semiconductor construction
JP4151042B2 (en) Semiconductor laser
US4802181A (en) Semiconductor superlattice light emitting sevice
JPH0693531B2 (en) Semiconductor superlattice
JP2947199B2 (en) Semiconductor quantum dot device and method of manufacturing the semiconductor quantum dot device
JPH0680865B2 (en) Semiconductor superlattice
JP3146710B2 (en) Light emitting element
JPS60101989A (en) Semiconductor laser and manufacture thereof
JPH0632343B2 (en) Semiconductor laser
GB2137812A (en) Semiconductor Device for Producing Electromagnetic Radiation
JPS6242481A (en) Manufacture of semiconductor element
JP2757258B2 (en) Superlattice element manufacturing method
JPS63136590A (en) Semiconductor superlattice
JP2876642B2 (en) Quantum well laser
JP2754671B2 (en) Semiconductor quantum wire structure and manufacturing method thereof
JPH0233972A (en) Semiconductor quantum wire structure
JPH0693528B2 (en) Semiconductor superlattice
KR100261248B1 (en) Laser diode and its manufacturing method
JPH0430758B2 (en)
JPH03173187A (en) Manufacture of two-dimensional or three-dimensional quantum well structure