JPS60101989A - Semiconductor laser and manufacture thereof - Google Patents
Semiconductor laser and manufacture thereofInfo
- Publication number
- JPS60101989A JPS60101989A JP21036283A JP21036283A JPS60101989A JP S60101989 A JPS60101989 A JP S60101989A JP 21036283 A JP21036283 A JP 21036283A JP 21036283 A JP21036283 A JP 21036283A JP S60101989 A JPS60101989 A JP S60101989A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- superlattice
- quantum well
- crystal
- uniform mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/16—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
- H01S5/162—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
- H01S5/3432—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は透明窓の共振器鏡を持つ半導体レーザ及びその
製造方法に関する。TECHNICAL FIELD The present invention relates to a semiconductor laser having a transparent window cavity mirror and a method of manufacturing the same.
従来技術
従来の二重へテロ接合構造(DH構造)の活性層を超格
子構造で置き換えたいわゆる多重量子井戸レーザでは、
従来のDHレーザに比べてしきい値が著しく低いこと、
周囲温度の変化に対して特性が安定していること、等が
報告されている(W、 T、Tzarbl C,Wgi
sbwch RoC,Miller andR,Dir
bgle 、 Appl、Phyy、Lttt、65
(1979) 673)。Prior Art In a so-called multiple quantum well laser in which the active layer of the conventional double heterojunction structure (DH structure) is replaced with a superlattice structure,
The threshold value is significantly lower than that of conventional DH lasers;
It has been reported that the characteristics are stable against changes in ambient temperature (W, T, Tzarbl C, Wgi
sbwch RoC, Miller and R, Dir
bgle, Appl, Phyy, Lttt, 65
(1979) 673).
第1図は多重量子井戸レーザの構造とバンドダイヤグラ
ムを示したもので、1はGαAs基板、2はAt、 G
a1−、As閉込め層、6は超格子層、4はAl z
Ga 1−3 As閉込め層、5はGaAs層、101
);を超格子構造6の中に含まれるAlyGa1− y
Asバリヤ層、102は上記バリヤ層で囲まれた量子
井戸層、103は伝導帯、104は価電子帯である。こ
のような構造の伝導帯と価電子帯(=注入された電子と
正孔は量子井戸層102内に形成された量子準位(二分
布し、再結合発光に寄与するが、この量子準位の状態密
度がバンド端できわめて高いため、低しきい値レーデの
可能性が理論的に予想され、また上記のように実証され
ている。Figure 1 shows the structure and band diagram of a multiple quantum well laser, where 1 is a GαAs substrate, 2 is an At, G
a1-, As confinement layer, 6 is superlattice layer, 4 is Al z
Ga 1-3 As confinement layer, 5 is GaAs layer, 101
); is included in the superlattice structure 6.
An As barrier layer, 102 is a quantum well layer surrounded by the barrier layer, 103 is a conduction band, and 104 is a valence band. The conduction band and valence band of such a structure (=the injected electrons and holes are distributed in two quantum levels formed in the quantum well layer 102, and contribute to recombination light emission; Since the density of states in is extremely high at the band edges, the possibility of low-threshold Lede is theoretically predicted and demonstrated as above.
以上のように多重量子井戸構造レーザは低しきい値とい
う点で従来のDHレーザに比べて優れているが、光出力
に関しては両者の間にはほとんど差異はない。この理由
は高い光出力のために共振器鏡が破壊されるためである
。また低出力動作においても動作が長時間にわたると共
振器鏡が劣化しこの問題がレーザダイオードの信頼性を
著しく低下させている。半導体レーザの共振器構造とし
ては襞間面をもつものが一般的であるが、この襞間面に
は活性領域がむき出しになっている。これがレーザ共振
器の高出力時における破壊の1つの原因であり、またレ
ーザの長期的な信頼性を著しく低下せしめている。これ
を改善する方法として活性領域をキャビティ共振器の方
向で埋込んでしまう構造が提案され、実施された。しか
しながら、この場合、二段階のエピタキシャル成長を不
可欠とし、歩留りの低下と高コストの問題が生ずる。As described above, multi-quantum well structure lasers are superior to conventional DH lasers in terms of low threshold values, but there is almost no difference between the two in terms of optical output. The reason for this is that the resonator mirror is destroyed due to the high optical power. Furthermore, even in low-power operation, if the operation lasts for a long time, the resonator mirror deteriorates, and this problem significantly reduces the reliability of the laser diode. The resonator structure of a semiconductor laser generally has interfold surfaces, and the active region is exposed on the interfold surfaces. This is one of the causes of destruction of the laser resonator at high output, and also significantly reduces the long-term reliability of the laser. As a method to improve this, a structure in which the active region is buried in the direction of the cavity resonator has been proposed and implemented. However, in this case, two-step epitaxial growth is essential, resulting in problems of low yield and high cost.
発明の目的
本発明は、晶出力で寿命の長い多重量子井戸レーザ及び
上記二段階のエピタキシャル成長を要せず歩留りが高く
コストの低い製造方法を提供することをその目的とする
ものである。OBJECTS OF THE INVENTION It is an object of the present invention to provide a multi-quantum well laser with a long crystal output and a long lifetime, and a manufacturing method that does not require the two-step epitaxial growth, has a high yield, and is low in cost.
発明の構成及び作用
以下、本発明の構成及び作用について実施例(二より詳
細に説明する。Structure and operation of the present invention The structure and operation of the present invention will be explained in more detail in the following embodiments.
AIGaAε−GαA5超格子に亜鉛などの不純物を熱
拡散またはイオン注入すると超格子が破壊されて一様な
混晶に変化することが知られている(W、D。It is known that when impurities such as zinc are thermally diffused or ion-implanted into the AIGaAε-GαA5 superlattice, the superlattice is destroyed and changes to a uniform mixed crystal (W, D).
I、ad、ig他、Appl、 Phys、 Lett
、 38 (1981) 776)本発明はこの現象に
着目し、一段階(一連の処理)のエピタキシャル成長で
製作されたクエハより透明窓をもつ共振器鏡によって構
成される多重量子井戸レーザを得るもので、詳細を第2
図によって説明する。説明上ここては超格子を破壊する
ために亜鉛の熱拡散を用いて説明する。I, ad, ig, etc., Appl, Phys, Lett
, 38 (1981) 776) The present invention focuses on this phenomenon and obtains a multiple quantum well laser composed of a resonator mirror with a transparent window from a wafer fabricated by one-step (series of treatments) epitaxial growth. , details in second
This will be explained using figures. For purposes of explanation, thermal diffusion of zinc will be used to destroy the superlattice.
第2図(α)に示すのは、ル型GaAs基板結晶1上に
ル型AtxGα1−3; Ax層2が形成され、その上
にN+i個(r) GaAz量子井戸層、N個のAly
Ga1yAsバリヤ層から成る超格子層6(但し0<y
<r<1 、#≧1)、P型At3:Ga1−2As層
4、及びP型GaAs J窪5 ノ各rfjAが順に形
成された成長終了直後のウェハ形状である。次に第2図
(A)において、全表面に窒化膜5tsN+6又は酸化
膜5in2を形成してこれをパターニングしてストライ
プ状の窓7をつくり、Znを選択的に拡散する。このZ
n拡散はZn蒸気を含むガス中で500℃〜700℃の
温度で行なう。Zn拡散領域8内の超格子層は破壊され
てAlyGa1 A、?の一様な混晶(9の部分)とな
る。次に第2図(C)に示すようにストライプ7に沿っ
てその中央付近11で結晶を襞間してこの襞間面12(
二より共振器鏡を形成する。16はZn拡散により均一
な混晶となった共振器鏡近傍を示す。このようなプロセ
スで製造される半導体レーザは、共振器鏡を形成する襞
間面12で従来のように活性領域が露出しておらず、亜
鉛拡散によって形成された一様なAt、′Gα+ −y
’ As (13の部分)によって保護されていること
になり、きわめて安定で高出力のレーザを実現すること
ができる。またこの混晶層のAlyGa1−y′A、9
層のバンドギャップは量子井戸の最低準位間の遷移エネ
ルギ桿より大きくすることが可能であるから、この層に
おける吸収損失はほとんど無視することが可能であり、
高効率のレーザが実現できる。第2図(d)が電極形成
後の本発明の半導体レーザな示す図であり、14 、1
5はそれぞれ金属電極、10.10’はリード線である
。図のlは亜鉛拡散領域の幅であり、この幅は十分小さ
く(例えば数ミクロン程度で′可)にできる。12 、
12が前記襞間面であって共振器鏡を形成しており、光
は亜鉛拡散領域の一様!E Al y’ Ga 1−y
’As (13の部分)を介して出力(紙面に平行な方
向)される。In FIG. 2 (α), a Le-type AtxGα1-3;
Superlattice layer 6 consisting of Ga1yAs barrier layer (however, 0<y
<r<1, #≧1), a P-type At3:Ga1-2As layer 4, and a P-type GaAs J depression 5 rfjA are formed in this order in the wafer shape immediately after the growth is completed. Next, in FIG. 2A, a nitride film 5tsN+6 or an oxide film 5in2 is formed on the entire surface and patterned to form striped windows 7, and Zn is selectively diffused. This Z
The n-diffusion is carried out in a gas containing Zn vapor at a temperature of 500°C to 700°C. The superlattice layer in the Zn diffusion region 8 is destroyed and AlyGa1A,? It becomes a uniform mixed crystal (part 9). Next, as shown in FIG. 2(C), the crystal is folded along the stripe 7 near its center 11, and the interfold plane 12 (
A resonator mirror is formed from two pieces. 16 shows the vicinity of the resonator mirror, which has become a uniform mixed crystal due to Zn diffusion. In a semiconductor laser manufactured by such a process, the active region is not exposed at the interfold plane 12 forming the cavity mirror, as in the conventional case, and the active region is uniformly At, 'Gα+ − formed by zinc diffusion. y
'As (part 13) protects the laser, making it possible to realize an extremely stable and high-output laser. Also, this mixed crystal layer AlyGa1-y'A, 9
Since the bandgap of the layer can be made larger than the transition energy rod between the lowest levels of the quantum well, absorption losses in this layer can be almost ignored;
A highly efficient laser can be realized. FIG. 2(d) is a diagram showing the semiconductor laser of the present invention after electrode formation, 14,1
5 is a metal electrode, and 10.10' is a lead wire. In the figure, l is the width of the zinc diffusion region, and this width can be made sufficiently small (for example, about several microns). 12,
12 is the interfold surface, which forms a resonator mirror, and the light is uniformly distributed in the zinc diffusion region! E Al y' Ga 1-y
'As (part 13) is output (in a direction parallel to the page).
ここで、本発明においてAl、′Gα+ −y’ As
層における吸収損失がほとんど無視できる程小さくでき
ることについて説明すると、簡単のために、超格子層の
GaA、P層102が5OA 、 AlyGa1− y
As層101が5OA 、 y=0.3とすると、こ
れらから得られる一様な混晶”’/’ ” 1− y’
AsはN=4の場合、y′は約0.16と計算できる
。AlyGa1−y’ As (y’−0,13)のバ
ンドギャップは量子井戸の最低準位間の遷移エネルギよ
り大きいためこの層(160部分)における吸収損失感
光さくでき、該層の薄さとあいまって吸収損失はほとん
ど無視することが可能となるのである。Here, in the present invention, Al, 'Gα+ -y' As
To explain that the absorption loss in the layer can be made almost negligible, for the sake of simplicity, the GaA, P layer 102 of the superlattice layer is made of 5OA, AlyGa1-y
Assuming that the As layer 101 has a thickness of 5OA and y=0.3, a uniform mixed crystal "'/'"1-y' obtained from these
When As is N=4, y' can be calculated to be about 0.16. Since the bandgap of AlyGa1-y' As (y'-0,13) is larger than the transition energy between the lowest levels of the quantum well, absorption loss in this layer (160 part) can be reduced, and combined with the thinness of this layer, Absorption loss can be almost ignored.
以上、特(二本発明について亜鉛の熱拡散を用いた場合
について説明したが、本発明はこれ(=限ることなく、
超格子構造の原子配列の規則性を破壊してそれを混晶化
することができるすべての方法が適用可能であり、例え
ば亜鉛以外の不純物(カドミウム、マグネシウム、Si
、Snなどドナーまたはアクセプタとなる不純物または
Fe、Cγ、0などの深いレベルを形成する不純物)の
熱拡散法または不純物のイオン注入法が適用できる、さ
らにプロトン照射法を適用しても良い。Above, the case in which thermal diffusion of zinc is used has been described in particular (2) of the present invention, but the present invention is not limited to this (= without limitation)
All methods that can break the regularity of the atomic arrangement of the superlattice structure and make it a mixed crystal are applicable, such as the addition of impurities other than zinc (cadmium, magnesium, Si
, an impurity that becomes a donor or acceptor such as Sn, or an impurity that forms a deep level such as Fe, Cγ, or 0) or an impurity ion implantation method can be applied. Furthermore, a proton irradiation method may be applied.
さらに、本発明はGaAl−A I G a A sか
らなる超格子構造に限らず池の半導体材料からなるレー
ザダイオード例えばGa5h−AIGaSbからなる超
格子構造など他の半導体材料に広く適用できるものであ
る。Furthermore, the present invention is not limited to the superlattice structure made of GaAl-AIGaAs, but can be widely applied to other semiconductor materials such as laser diodes made of other semiconductor materials, such as superlattice structures made of Ga5h-AIGaSb. .
発明の効果
以上の説明かられかるようにAlyGa1−yAε−G
aA3等、半導体制料を交互に重ねた多重量子井戸構造
部分に亜鉛やその池の不純物を拡散またはイオン注入す
ることにより一様な混晶Aly′Gα1−y′AI等に
変化することを利用して1回(一連の処理)のエピタキ
シャル成長だけで透明窓をもつ共振器鏡の形成が可能と
なり、これを利用することにより光のパワーは従来の2
倍以上に改善された。また、エツチングしたり再成長し
たりする工程を含まないため、クエへ表面の平坦性が保
存され、従って製作工程が簡単になり、また他の光素子
または電子素子を同一ウェハ上に構成することも容易と
なる。As can be seen from the above explanation of the effects of the invention, AlyGa1-yAε-G
Utilizes the fact that by diffusing or ion-implanting impurities such as zinc or impurities into a multi-quantum well structure in which semiconductor materials such as aA3 are alternately stacked, the material transforms into a uniform mixed crystal Aly'Gα1-y'AI, etc. It is now possible to form a resonator mirror with a transparent window with just one epitaxial growth process (a series of processes), and by using this, the optical power can be reduced to 2
improved more than double. Additionally, since no etching or regrowth steps are involved, the surface flatness of the wafer is preserved, thus simplifying the fabrication process and making it easier to configure other optical or electronic devices on the same wafer. It also becomes easier.
第1図(至)及び向は多重量子井戸レーザのそれぞれ断
面構造による説明図及びバンド図、第2図(a)〜(d
)は本発明の半導体レーザの製造工程図。
1−、 QaAs基板、2・・・ル型A1.Gα1−x
AI、3・・・AlyGa1−yAs−GaAz量子井
戸構造(超格子層)、4、−p型At工Gα1−よA3
.14および15・・・准属1L10および10′・・
・リード線、12・・・襞間面特許出願人 日本電信電
話公社
代理人 弁理士 玉蟲久五部(外2名)第1図
第2図Figure 1 (to) and direction are explanatory diagrams and band diagrams of the cross-sectional structure of a multi-quantum well laser, respectively, and Figures 2 (a) to (d)
) is a manufacturing process diagram of the semiconductor laser of the present invention. 1-, QaAs substrate, 2... Le type A1. Gα1-x
AI, 3...AlyGa1-yAs-GaAz quantum well structure (superlattice layer), 4, -p-type At engineering Gα1-yoA3
.. 14 and 15...associate genus 1L10 and 10'...
・Lead wire, 12...Inter-fold surface Patent applicant Nippon Telegraph and Telephone Public Corporation agent Patent attorney Gobe Tamamushi (2 others) Figure 1 Figure 2
Claims (1)
置されたN+1個の量子井戸とN個(N22)のバリヤ
層から成り、前記積層構造の側部には超格子層が破壊さ
れて形成された均一な混晶領域が備えられ、該混晶領域
(=は共振器鏡を構成する襞間面が形成されていること
を特徴とする半導体レーデ。 (2)前記基板結晶がル型GaAzであり、@記各閉込
め層がAt5cGα1−、As層であり、前記超格子層
がN+1個ノGaAz量子井戸とN個(Q Al yG
a 1−yAsのバリヤ層からなり、但しo<y<z<
1.であることを特徴とする特許請求の範囲第1項記載
の半導体レーデ。 (5)基板結晶上(二重なくとも閉込め層と、交互に配
置されたN+1個の量子井戸とN個(N22)のバリヤ
層からなる超格子層と、他の閉込め層を順に形成し、そ
の表面を窒化シリコンまたは酸化シリコン薄膜で被覆し
て1部をストライブ状に除去して多数のストライブ状の
窓をつくり、つぎに該窓よりプロトン照射で、または熱
拡散もしくはイオン注入で不純物を導入することにより
、前記窓の下方の超格子層を破壊して一様な混晶領域を
形成し、その後前記ストライブに沿ってその中央付近で
結晶を襞間してこの襞間面により共振器鏡を形成するこ
とを特徴とする半導体レーザの製造方法。[Claims] (1) Consisting of at least a confinement layer, N+1 quantum wells arranged in a superlattice, and N (N22) barrier layers on the substrate crystal, and a superstructure on the side of the laminated structure. A semiconductor radar comprising a uniform mixed crystal region formed by destroying a lattice layer, and characterized in that the mixed crystal region (= is formed with interfold planes constituting a resonator mirror. (2) The substrate crystal is a type GaAz, each confinement layer is an At5cGα1-, As layer, and the superlattice layer is composed of N+1 GaAz quantum wells and N(Q Al yG
a consists of a barrier layer of 1-yAs, where o<y<z<
1. A semiconductor radar according to claim 1, characterized in that: (5) On the substrate crystal (sequential formation of at least two confinement layers, a superlattice layer consisting of N+1 quantum wells and N (N22) barrier layers arranged alternately, and another confinement layer) Then, the surface is coated with a thin film of silicon nitride or silicon oxide, a portion of which is removed in stripes to create many stripe-shaped windows, and then proton irradiation, thermal diffusion, or ion implantation is performed through the windows. The superlattice layer below the window is broken by introducing impurities to form a uniform mixed crystal region, and then the crystal is folded along the stripe near its center to form a layer between the folds. A method of manufacturing a semiconductor laser, characterized in that a resonator mirror is formed by a surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21036283A JPS60101989A (en) | 1983-11-08 | 1983-11-08 | Semiconductor laser and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21036283A JPS60101989A (en) | 1983-11-08 | 1983-11-08 | Semiconductor laser and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60101989A true JPS60101989A (en) | 1985-06-06 |
Family
ID=16588111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21036283A Pending JPS60101989A (en) | 1983-11-08 | 1983-11-08 | Semiconductor laser and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60101989A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61171184A (en) * | 1985-01-25 | 1986-08-01 | Hitachi Ltd | Semiconductor light emitting device |
US5018158A (en) * | 1989-02-01 | 1991-05-21 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US5020067A (en) * | 1989-02-01 | 1991-05-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US5020068A (en) * | 1988-11-09 | 1991-05-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
EP0475618A2 (en) * | 1990-09-13 | 1992-03-18 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating semiconductor laser device |
WO2012004112A1 (en) * | 2010-07-08 | 2012-01-12 | Osram Opto Semiconductors Gmbh | Light-emitting diode chip and method for producing a light-emitting diode chip |
CN109155345A (en) * | 2016-06-30 | 2019-01-04 | 苹果公司 | The LED structure compound for the non-radiative side wall of reduction |
-
1983
- 1983-11-08 JP JP21036283A patent/JPS60101989A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61171184A (en) * | 1985-01-25 | 1986-08-01 | Hitachi Ltd | Semiconductor light emitting device |
US5020068A (en) * | 1988-11-09 | 1991-05-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US5018158A (en) * | 1989-02-01 | 1991-05-21 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US5020067A (en) * | 1989-02-01 | 1991-05-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
EP0475618A2 (en) * | 1990-09-13 | 1992-03-18 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating semiconductor laser device |
US5171707A (en) * | 1990-09-13 | 1992-12-15 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating semiconductor laser device using the light generated by the laser to disorder its active layer at the end surfaces thereby forming window regions |
WO2012004112A1 (en) * | 2010-07-08 | 2012-01-12 | Osram Opto Semiconductors Gmbh | Light-emitting diode chip and method for producing a light-emitting diode chip |
CN102986043A (en) * | 2010-07-08 | 2013-03-20 | 欧司朗光电半导体有限公司 | Light-emitting diode chip and method for producing a light-emitting diode chip |
US9048383B2 (en) | 2010-07-08 | 2015-06-02 | Osram Opto Semiconductors Gmbh | Light-emitting diode chip and method for producing a light-emitting diode chip |
CN109155345A (en) * | 2016-06-30 | 2019-01-04 | 苹果公司 | The LED structure compound for the non-radiative side wall of reduction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3911140B2 (en) | Manufacturing method of semiconductor laser | |
US7791081B2 (en) | Radiation-emitting semiconductor chip | |
KR20080074870A (en) | Light-emitting device and method for manufacturing same | |
JPH10200190A (en) | Semiconductor laser and fabrication thereof | |
US4365260A (en) | Semiconductor light emitting device with quantum well active region of indirect bandgap semiconductor material | |
JP2000299492A (en) | Quantum well type light emitting diode | |
US5204870A (en) | Method of implementation of surface-emission semiconductor lasers, and lasers obtained by the method | |
JPS60101989A (en) | Semiconductor laser and manufacture thereof | |
JPH08250807A (en) | Semiconductor laser device | |
US4759025A (en) | Window structure semiconductor laser | |
JPH10284800A (en) | Semiconductor light-emitting element and manufacture therefor | |
JP6347573B2 (en) | Semiconductor laser element | |
JPS6258557B2 (en) | ||
US5022037A (en) | Semiconductor laser device | |
JPH11340570A (en) | Photoelectric conversion element and its manufacture | |
JP3801410B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JPH11340568A (en) | Semiconductor device and its manufacture | |
JPH0648742B2 (en) | Method for manufacturing semiconductor laser | |
JP2624881B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0665237B2 (en) | Method for manufacturing two-dimensional quantization element | |
JPH11145553A (en) | Semiconductor laser device and manufacture thereof | |
JP2000058969A (en) | Semiconductor laser device | |
JPH11168256A (en) | Light-emitting element and its manufacturing method | |
JPH08307005A (en) | Semiconductor laser element | |
JPS63116483A (en) | Semiconductor laser |