JPS6261383A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPS6261383A
JPS6261383A JP20095785A JP20095785A JPS6261383A JP S6261383 A JPS6261383 A JP S6261383A JP 20095785 A JP20095785 A JP 20095785A JP 20095785 A JP20095785 A JP 20095785A JP S6261383 A JPS6261383 A JP S6261383A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
grooves
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20095785A
Other languages
Japanese (ja)
Inventor
Akio Yamaguchi
昭夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20095785A priority Critical patent/JPS6261383A/en
Publication of JPS6261383A publication Critical patent/JPS6261383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the threshold value and to respond at a high speed by forming a semiconductor layer such as a high resistance layer or a P-N superlattice layer on a flat portion out of a groove in a double channel type light emitting element to block a leakage current flowing to portions except the light emitting region. CONSTITUTION:An N-type InP substrate 1 of a substrate and clad layer, an InGaAsP layer 2 of active layer, and a P-type InP layer 3 of clad layer are formed as the first semiconductor multiple layer to form a light emitting region, and grooves 4, 5 are formed on both sides. A P-type InP layer 6, an N-type InP layer 7, a P-type InP layer 8 of buried layers, and a P<+> type InGaAsP layer 9 of contacting layer are formed over the grooves 4, 5. An AlInAs layer 12 is formed as a current limiting semiconductor layer on the flat portion outside the grooves 4, 5 to suppress a leakage current flowing through P-N junction at both sides except the light emitting region.

Description

【発明の詳細な説明】 〔概要〕 ダブルチャネル埋込型レーザの漏れ電流を抑制する電流
制限層を設けた構造のレーザと、その製造方法を提起す
る。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A laser having a structure in which a current limiting layer is provided to suppress leakage current of a double channel buried laser and a method for manufacturing the same are proposed.

〔産業上の利用分野〕[Industrial application field]

本発明はダブルヘテロ(DH)接合を有する多層半導体
結晶に溝を2本形成して、その上に埋込成長を行って形
成される埋め込み型へテロ構造(BH)のレーザに係り
、漏れ電流の少ない、高速応答が可能な構造の半導体レ
ーザおよびその製造方法に関する。
The present invention relates to a buried heterostructure (BH) laser that is formed by forming two grooves in a multilayer semiconductor crystal having a double heterojunction (DH) and performing buried growth on the grooves, and the leakage current The present invention relates to a semiconductor laser having a structure capable of high-speed response with little noise, and a method for manufacturing the same.

この種のレーザは光通信用に使用され、現状では400
Mbi t/ sec程度の変調をかけているが、技術
の進展にともない、さらに高速応答の可能なレーザが要
望されるようになった。
This type of laser is used for optical communications, and currently there are 400
Modulation on the order of Mbit/sec is applied, but as technology advances, there is a demand for lasers capable of even faster response.

〔従来の技術〕[Conventional technology]

第3図は従来例によるダブルチャネル埋込型レーザの構
造を示した断面図である。
FIG. 3 is a sectional view showing the structure of a conventional double channel buried laser.

図はDC−PBH(Double Channeled
−Planar BuriedHeterostruc
ture)と呼ばれる構造である。
The figure shows DC-PBH (Double Channeled
-Planar BuriedHeterostruc
This structure is called ``true''.

図において、1はn型インジウムy4 (n −1nP
)基板、2は活性層でインジウムガリウム砒素燐(In
GaAsP)層、3はクラッド層でp−1nP層である
In the figure, 1 is n-type indium y4 (n -1nP
) substrate, 2 is an active layer made of indium gallium arsenide phosphorus (In
3 is a cladding layer and is a p-1nP layer.

上記多層構造の発光領域・の両側に2個の溝(Chan
nel)  4.5を形成し、溝を覆って埋込層のp−
InP層6、n−1nP層7、p−InP層8を埋め込
む。
There are two grooves on both sides of the light emitting region of the multilayer structure.
nel) 4.5, and cover the trench with p-
The InP layer 6, the n-1nP layer 7, and the p-InP layer 8 are buried.

これらの埋込層の上に、コンタクト層のp”−InGa
AsP FJ 4を堆積する。
A contact layer of p”-InGa is formed on these buried layers.
Deposit AsP FJ 4.

この構造においては、点線の矢印で示される電流径路が
存在するため、室温近傍でのしきい値電流が増大すると
ともに、下記の理由により、発光領域以外のInGaA
sP N 2にキャリアの蓄積が起こり、かつ、このI
nGaAsP層2は溝の両側に大きな面積を占めるため
キャリアの蓄積量は大きくなり、高速応答はできなくな
る。
In this structure, since there is a current path indicated by the dotted arrow, the threshold current near room temperature increases, and for the following reasons, the InGaA
Accumulation of carriers occurs in sP N 2, and this I
Since the nGaAsP layer 2 occupies a large area on both sides of the groove, the amount of accumulated carriers becomes large, making it impossible to achieve high-speed response.

すなわち、InGaAsPはInPより禁制帯幅が小さ
いため、発光領域以外のInGaAs1’層2にもキャ
リアの閉じ込めが起こる。しかしここではレーザ発光を
しないためキャリアはライフタイムが長くなり蓄積され
る。
That is, since InGaAsP has a smaller forbidden band width than InP, carrier confinement also occurs in the InGaAs 1' layer 2 outside the light emitting region. However, since no laser light is emitted here, carriers have a long lifetime and are accumulated.

このような状態で高速変調をかけると、発光領域以外の
InGaAsP Pi 2に流れる電流と、発光領域に
流れる電流の応答特性に違いを生じ、結果として高速変
調に追随できなくなる。
If high-speed modulation is applied in such a state, there will be a difference in response characteristics between the current flowing in the InGaAsP Pi 2 other than the light-emitting region and the current flowing in the light-emitting region, and as a result, it will not be possible to follow the high-speed modulation.

一方この構造においては、リーク電流は発光領域以外の
、両側のp−nへテロ接合を通じて流れる。かつヘテロ
接合の立ち上がり電圧はホモ接合より低いため、リーク
電流は大きくなる。
On the other hand, in this structure, leakage current flows through the pn heterojunction on both sides of the region other than the light emitting region. In addition, since the rise voltage of a heterojunction is lower than that of a homojunction, the leakage current becomes large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の埋込型レーザにおいては、発光領域以外の活性層
を通じてリーク電流を生じ、低しきい値化、高速応答が
阻害されていた。
In conventional buried lasers, leakage current occurs through the active layer outside the light-emitting region, which hinders low threshold voltage and high-speed response.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、ダブルヘテロ接合を有する第1の
半導体多重層に、該接合を貫いて2個の溝(4)、(5
)を形成し、液溝を覆って成長した第2の半導体多重層
よりなる構造において、液溝(4)、(5)で分割され
た内側の領域を発光領域とし、液溝(4)、(5)の外
側の領域に、組成、導電性、キャリア濃度の1つ以上が
該第1、および第2の半導体多重層とは異なる半導体層
(12)を有する本発明による半導体レーザ、および 第1の半導体層(1)上の少なくとも発光領域以外の領
域に組成、導電性、キャリア濃度の1つ以上が該第1の
半扉体N (1)と異なる第4の半導体層(12)を形
成する工程と、該第4の半導体層(12)を覆って該第
1の半導体層(1)上全面に、該第1の半導体層(1)
より禁制帯幅の小さい第2の半4体層(2)、該第2の
半導体層(2)より禁制帯幅が大きい第3の半導体層(
3)を成長する工程と、発光領域の両側に、該第3の半
導体層(3)、該第2の半導体層(2)、該第4の半導
体]’! (12)を貫いて該第1の半導体層(1)に
届くように2個の溝(4)、(5)を形成し、液溝(4
)、(5)を覆って半導体多重層を成長する工程とを含
む本発明による半導体レーザの製造方法により達成され
る。
A solution to the above problem is to provide a first semiconductor multilayer having a double heterojunction with two grooves (4) and (5) extending through the junction.
) and grown to cover the liquid grooves, the inner region divided by the liquid grooves (4) and (5) is the light emitting region, and the liquid grooves (4), (5) a semiconductor laser according to the present invention, comprising a semiconductor layer (12) in an outer region of the semiconductor layer (12) that differs in one or more of composition, conductivity, and carrier concentration from the first and second semiconductor multilayers; A fourth semiconductor layer (12) having one or more of composition, conductivity, and carrier concentration different from that of the first half-gate body N (1) is provided on at least a region other than the light emitting region on the first semiconductor layer (1). forming the first semiconductor layer (1) on the entire surface of the first semiconductor layer (1), covering the fourth semiconductor layer (12);
a second semi-quaternary layer (2) with a smaller forbidden band width; a third semiconductor layer (2) with a larger forbidden band width than the second semiconductor layer (2);
3), and the step of growing the third semiconductor layer (3), the second semiconductor layer (2), and the fourth semiconductor on both sides of the light emitting region]'! Two grooves (4) and (5) are formed so as to penetrate through the liquid groove (12) and reach the first semiconductor layer (1).
) and (5) growing a semiconductor multilayer over the semiconductor laser according to the present invention.

〔作用〕[Effect]

本発明は、2個の溝の外側のフラットな面に電流制限用
の高抵抗半導体層を設け、発光に寄与しない漏れ電流を
制御するものである。
The present invention provides a high-resistance semiconductor layer for current limiting on the flat surface outside the two grooves to control leakage current that does not contribute to light emission.

溝を埋め込んで行う成長は液相成長(LPE)法が有利
であるが、高抵抗層の成長は離しい。
Although the liquid phase epitaxy (LPE) method is advantageous for growth performed by burying trenches, it is difficult to grow a high-resistance layer.

しかし、上記のフラットな面上の成長はLPE法でな(
でよい。
However, the above growth on a flat surface cannot be achieved using the LPE method (
That's fine.

気相成長(VPE)法、を板金属化学気相成長(MO−
CVD)法、もしくは分子線エピタキシー (MBB)
法による平面上の堆積では高抵抗層が容易に得られるこ
とに着目し、ダブルチャネル型発光素子中の溝外の平坦
部に、これらの成長法による高抵抗層、もしくはpn超
格子層等の半導体層を挿入することにより、漏れ電流を
抑制するようにしたものである。
Vapor phase epitaxy (VPE) method, sheet metal chemical vapor deposition (MO-
CVD) method or molecular beam epitaxy (MBB)
Focusing on the fact that a high-resistance layer can be easily obtained by depositing on a flat surface using these methods, we deposited a high-resistance layer, such as a pn superlattice layer, on a flat area outside the groove in a double-channel light emitting device using these methods. Leakage current is suppressed by inserting a semiconductor layer.

〔実施例〕〔Example〕

第1図は第1の発明によるダブルチャネル埋込型レーザ
の構造を説明する断面図である。
FIG. 1 is a sectional view illustrating the structure of a double channel buried laser according to the first invention.

図において、第1の半導体多重層として、lは基板兼ク
ラッド層のn−InP基板1、活性層のInGaAsP
層2、クラッド層のp−1nP層3が形成され、 上記多層構造の発光領域の両側に2個の溝4.5が形成
され、 第2の半導体多重層として、溝を覆って埋込層のp−1
nPl’56、n−1nP層7、p−1nP層8と、コ
ンタクト層のp“−InGaAsP層4が形成されてい
る。
In the figure, as the first semiconductor multilayer, l is an n-InP substrate 1 serving as a substrate and cladding layer, and InGaAsP is an active layer.
Layer 2, a cladding p-1nP layer 3 is formed, two grooves 4.5 are formed on both sides of the light emitting region of the multilayer structure, and a buried layer is formed as a second semiconductor multilayer over the grooves. p-1 of
An nPl' 56, an n-1nP layer 7, a p-1nP layer 8, and a p''-InGaAsP layer 4 as a contact layer are formed.

以上までは従来例の第3図と全く同様であるが、本発明
の特徴は、溝4.5の外側の平坦部に電流制限用の半導
体層層として、例えばAlInAs層12が形成されて
いる点である。
The above is exactly the same as the conventional example shown in FIG. 3, but the feature of the present invention is that, for example, an AlInAs layer 12 is formed as a semiconductor layer for current limiting on the flat part outside the groove 4.5. It is a point.

高抵抗AlInAs層12により、第3図の点線の矢印
で示される漏れ電流を抑制することができる。
The high resistance AlInAs layer 12 can suppress the leakage current shown by the dotted arrow in FIG.

第2図(1)〜(5)は第2の発明によるダブルチャネ
ル埋込型レーザの構造を製造工程順に示した断面図であ
る。
FIGS. 2(1) to 2(5) are cross-sectional views showing the structure of a double channel buried laser according to the second invention in the order of manufacturing steps.

第2図(1)において、基板、兼クラッド層として面指
数(100)の厚さ500μm、大きさ20 X 20
mm”のn−1nP基板(第1の半導体層)1上に、ト
リメチルアルミニウム(TM^l)を用いたMO−CV
D法により、InPと格子整合する2、抵抗率103Ω
cm以上、厚さ1.5μmのアルミニウムインジウム砒
素(A1)nAs)層(第4の半導体層> 12を成長
する。
In Fig. 2 (1), the substrate and cladding layer has a surface index (100), a thickness of 500 μm, and a size of 20 × 20
MO-CV using trimethylaluminum (TM^l) on n-1nP substrate (first semiconductor layer) 1 of
By D method, lattice matching with InP2, resistivity 103Ω
An aluminum indium arsenide (A1) nAs) layer (fourth semiconductor layer > 12 cm) with a thickness of 1.5 μm is grown.

第2図(2)において、通常のフォトプロセスを用い、
3000人の厚さにスパッタにより被着した二酸化珪素
(SiO□)膜をマスクとし、エッチャントとして、 Brz:HBr:HzO=i:17:34゜の混合液を
用い、(100)へき開面に直交する方向に幅4μmの
ストライプ状に、AlInAs層12を選択的に除去し
、発光領域を含んだ部分のn−1nP層1を露出させる
In FIG. 2 (2), using a normal photo process,
A silicon dioxide (SiO□) film deposited by sputtering to a thickness of 3,000 mm was used as a mask, and a mixture of Brz:HBr:HzO=i:17:34° was used as an etchant, and the cleavage plane was etched perpendicularly to the (100) cleavage plane. The AlInAs layer 12 is selectively removed in a stripe shape with a width of 4 .mu.m in the direction shown in FIG.

第2図(3)において、LPE法により、活性層として
、そのフォトルミネッセンス(PL)のピーク波長λP
L = 1.285 /J mでInPと格子整合する
厚さ0.15μmのアンドープInGaAsP Ft 
(第2の半導体層)2、クラッド層として厚さ0.5μ
m、カドミウム(Cd)ドープ、キャリア濃度5X10
1?cm−3のp −In9層(第3の半導体層)3を
連続成長する。
In FIG. 2 (3), the peak wavelength λP of the photoluminescence (PL) of the active layer is determined by the LPE method.
0.15 μm thick undoped InGaAsP Ft lattice matched to InP at L = 1.285/J m
(Second semiconductor layer) 2, 0.5μ thick as cladding layer
m, cadmium (Cd) doped, carrier concentration 5X10
1? A p-In9 layer (third semiconductor layer) 3 of cm-3 is continuously grown.

第2図(4)ニオイ”i’、フォトレジスト(AZ−1
350J)をマスクとし、エッチャントとして臭素(u
rz)系のBrz(1容量%)−メタノール液を用い、
AlInAs層1)の開口部中央部に幅1.5μmのメ
サをストライプ状に残して、両側に幅約8μm、深さ約
2.5μmの溝4.5を形成する。
Figure 2 (4) Odor "i', photoresist (AZ-1)
350J) as a mask, and bromine (U) as an etchant.
rz) system using Brz (1% by volume)-methanol solution,
A mesa with a width of 1.5 .mu.m is left in a stripe shape at the center of the opening of the AlInAs layer 1), and grooves 4.5 with a width of about 8 .mu.m and a depth of about 2.5 .mu.m are formed on both sides.

第2図(5)において、通常のダブルチャネル型レーザ
と同様にLPE法により溝を覆って、埋込層として亜鉛
(Zn)ドープ、キャリア濃度3×lO1″c1)−3
のp−1nP層6、テルル(Te)ドープ、キャリア濃
度I X 10”cm−’のn −InP @ 7 、
Znドープ、キャリア濃度3 X 10 ” cm−’
のp −1nP 層8の3層、 コンタクト層としてλPL=1.29μm、Znドープ
、キャリア濃度lXl0”cm−’のp ” −jnG
aAsP層9の計4層を溝外の平坦部での厚さがそれぞ
れ0.5μmずつ連続成長して埋込構造を形成する。
In Fig. 2 (5), the trench is covered by the LPE method as in a normal double channel laser, and the buried layer is doped with zinc (Zn) and the carrier concentration is 3×lO1″c1)−3.
p-1nP layer 6, tellurium (Te) doped, n-InP@7 with carrier concentration I x 10"cm-',
Zn-doped, carrier concentration 3 x 10"cm-'
Three layers of p -1nP layer 8, λPL = 1.29 μm as a contact layer, Zn doping, p ” -jnG with carrier concentration lXl0"cm-'
A total of four aAsP layers 9 are successively grown to a thickness of 0.5 μm at the flat portion outside the trench to form a buried structure.

以上のように形成された基板に、p型側にチタン/白金
/金(Ti/Pt/Au)の3層膜でp側電極10、n
型側に金−ゲルマニウム(Au−Ge)合金でn側電極
1)を形成し、共振器長300μmで紙面に直角にへき
関して作成されたレーザダイオードの特性を調べた。
On the substrate formed as described above, a p-side electrode 10, a three-layer film of titanium/platinum/gold (Ti/Pt/Au) on the p-type side,
An n-side electrode 1) was formed on the mold side using a gold-germanium (Au-Ge) alloy, and the characteristics of a laser diode fabricated with a cavity length of 300 μm and perpendicular to the plane of the paper were investigated.

しきい値電流をItい駆動電流を14とし、1 a  
/ I th〜=1.05゜のときの、光強度が3dB
落ちる周波数を遮断周波数としてfであられすと、 I  th=16mA  、      f  =2.
0Gllz。
The threshold current is It, the drive current is 14, and 1 a
/ I th ~ = 1.05°, the light intensity is 3 dB
If the falling frequency is f as the cutoff frequency, I th = 16 mA, f = 2.
0Gllz.

であった。Met.

同一寸法で、同時にプロセスした本発明によらないレー
ザは、 I th=18mA 、   f =1.3Gl(z。
Lasers not according to the invention of the same dimensions and processed at the same time had I th = 18 mA, f = 1.3 Gl (z.

であった。Met.

以上のように特性が改善された。As described above, the characteristics were improved.

実施例においては、電流制限層の第4の半導体層として
AllnAs層を用いたが、これの代わりに高抵抗1n
P N、InGaAsP Pi、もし7くはpn多層超
格子石を用いてもよい。
In the example, an AllnAs layer was used as the fourth semiconductor layer of the current limiting layer, but instead of this, a high resistance 1nAs layer was used.
PN, InGaAsP Pi, or PN multilayer superlattice stones may also be used.

又実施例ではInP/′NnGaAsP系レーザダイオ
ードに適用したが、他の半導体材料、例えばガリウム砒
素/ガリウムアルミニウム砒素(GaAs/GaAIA
s)系のレーザダイオードにも本発明は適用可能である
In the embodiment, the application was made to an InP/'NnGaAsP laser diode, but other semiconductor materials such as gallium arsenide/gallium aluminum arsenide (GaAs/GaAIA
The present invention is also applicable to s) type laser diodes.

また、基板にコルゲーシヲン回折格子付のものを用い、
基板と活性層の間に光ガイド層を設けた分布帰還型レー
ザダイオードにも本発明は適用可能である。
In addition, we used a substrate with a corrugation grating,
The present invention is also applicable to a distributed feedback laser diode in which a light guide layer is provided between the substrate and the active layer.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、埋込型レー
ザにおいて発光領域以外に流れるリーク電流を阻止し、
低しきい値化、高速応答が可能となる。
As explained in detail above, according to the present invention, leakage current flowing to areas other than the light emitting region in an embedded laser is blocked,
Low threshold and high-speed response are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の本発明によるダブルチャネル埋込型レー
ザの構造を説明する断面図、 第2図fl)〜(5)は第2の発明によるダブルチャネ
ル埋込型レーザの構造を製造工程順に示した断面図、 第3図は従来例によるダブルチャネル埋込型レーザの構
造を示した断面図である。 図において、 lは基板、兼クラッド層でn−InP層、2は活性層で
InGaAsP層、 3はクラッド層でp−1nP層である。 4.5は溝、 6は埋込層でp−InP層、 7は埋込層でn−InP層、 8は埋込層でp−InP層、 9はコンタクト層でp” −InGaAsP層、10は
p側電機、 1)はnjJA電掻、 12は電流制限用半導体層 叙明/)I/−ブ′功叫面図 第1 図 第3図
FIG. 1 is a sectional view illustrating the structure of a double channel buried laser according to the first invention, and FIGS. FIG. 3 is a cross-sectional view showing the structure of a conventional double channel buried laser. In the figure, 1 is a substrate and a cladding layer, which is an n-InP layer, 2 is an active layer, which is an InGaAsP layer, and 3 is a cladding layer, which is a p-1nP layer. 4.5 is a groove, 6 is a buried layer and p-InP layer, 7 is a buried layer and is an n-InP layer, 8 is a buried layer and is a p-InP layer, 9 is a contact layer and is a p''-InGaAsP layer, 10 is the p-side electric machine, 1) is the njJA electric wire, 12 is the description of the semiconductor layer for current limiting /)

Claims (2)

【特許請求の範囲】[Claims] (1)ダブルヘテロ接合を有する第1の半導体多重層に
、該接合を貫いて2個の溝(4)、(5)を形成し、該
溝を覆って成長した第2の半導体多重層よりなる構造に
おいて、 該溝(4)、(5)で分割された内側の領域を発光領域
とし、該溝(4)、(5)の外側の領域に、組成、導電
性、キャリア濃度の1つ以上が該第1、および第2の半
導体多重層とは異なる半導体層(12)を有することを
特徴とする半導体レーザ。
(1) In a first semiconductor multilayer having a double heterojunction, two grooves (4) and (5) are formed through the junction, and from a second semiconductor multilayer grown covering the grooves. In the structure, the inner region divided by the grooves (4) and (5) is the light emitting region, and the outer region of the grooves (4) and (5) has one of composition, conductivity, and carrier concentration. A semiconductor laser characterized in that the above has a semiconductor layer (12) different from the first and second semiconductor multilayers.
(2)第1の半導体層(1)上の少なくとも発光領域以
外の領域に組成、導電性、キャリア濃度の1つ以上が該
第1の半導体層(1)と異なる第4の半導体層(12)
を形成する工程と、 該第4の半導体層(12)を覆って該第1の半導体層(
1)上全面に、該第1の半導体層(1)より禁制帯幅の
小さい第2の半導体層(2)、該第2の半導体層(2)
より禁制帯幅が大きい第3の半導体層(3)を成長する
工程と、 発光領域の両側に、該第3の半導体層(3)、該第2の
半導体層(2)、該第4の半導体層(12)を貫いて該
第1の半導体層(1)に届くように2個の溝(4)、(
5)を形成し、該溝(4)、(5)を覆って半導体多重
層を成長する工程とを含むことを特徴とする半導体レー
ザの製造方法。
(2) A fourth semiconductor layer (12) having one or more of composition, conductivity, and carrier concentration different from that of the first semiconductor layer (1) at least in a region other than the light emitting region on the first semiconductor layer (1). )
forming the first semiconductor layer (12) over the fourth semiconductor layer (12);
1) Over the entire upper surface, a second semiconductor layer (2) having a smaller forbidden band width than the first semiconductor layer (1);
A step of growing a third semiconductor layer (3) having a larger forbidden band width, and growing the third semiconductor layer (3), the second semiconductor layer (2) and the fourth semiconductor layer on both sides of the light emitting region. Two grooves (4), (
5) and growing a semiconductor multilayer covering the grooves (4) and (5).
JP20095785A 1985-09-11 1985-09-11 Semiconductor laser and manufacture thereof Pending JPS6261383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20095785A JPS6261383A (en) 1985-09-11 1985-09-11 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20095785A JPS6261383A (en) 1985-09-11 1985-09-11 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6261383A true JPS6261383A (en) 1987-03-18

Family

ID=16433117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20095785A Pending JPS6261383A (en) 1985-09-11 1985-09-11 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6261383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482585A (en) * 1987-09-25 1989-03-28 Toshiba Corp Manufacture of buried semiconductor laser
JPH06204598A (en) * 1992-09-14 1994-07-22 Nec Corp Semiconductor laser
US7779891B2 (en) 2001-04-09 2010-08-24 Sumitomo Electric Industries, Ltd. Method of manufacturing magnesium alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482585A (en) * 1987-09-25 1989-03-28 Toshiba Corp Manufacture of buried semiconductor laser
JPH06204598A (en) * 1992-09-14 1994-07-22 Nec Corp Semiconductor laser
US7779891B2 (en) 2001-04-09 2010-08-24 Sumitomo Electric Industries, Ltd. Method of manufacturing magnesium alloy material

Similar Documents

Publication Publication Date Title
US6317444B1 (en) Optical device including carbon-doped contact layers
EP1750336B1 (en) Semiconductor optical device and a method of fabricating the same
KR100648392B1 (en) Al spikes in InP-based layer as a barrier for blocking Zinc diffusion in InP-based structures
JP3484394B2 (en) Optical semiconductor device and method of manufacturing the same
JP4861112B2 (en) Optical semiconductor device and manufacturing method thereof
EP0083697B1 (en) Double channel planar buried heterostructure laser
JPH0685405A (en) Embedded heterostructure laser
JP2980435B2 (en) Semiconductor device
US5847415A (en) Light emitting device having current blocking structure
JPH0918079A (en) Semiconductor device and manufacture thereof
JP2019192879A (en) Optical semiconductor element, manufacturing method thereof, photonic integrated semiconductor element, and manufacturing method thereof
JP3488137B2 (en) Optical semiconductor device and method of manufacturing the same
JPS6261383A (en) Semiconductor laser and manufacture thereof
JP2550714B2 (en) High-resistance semiconductor layer embedded semiconductor laser
JPH04350988A (en) Light-emitting element of quantum well structure
JPH07115251A (en) Semiconductor laser
JP2780337B2 (en) High-resistance semiconductor layer embedded semiconductor laser
JP3403915B2 (en) Semiconductor laser
JP3285079B2 (en) Semiconductor laser
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH01184972A (en) Semiconductor laser device
JPH1140897A (en) Semiconductor laser element and its manufacture
US6618419B1 (en) Semiconductor laser
JPS6244713B2 (en)
US20050141578A1 (en) Laser diode structure with blocking layer