JPS6244713B2 - - Google Patents

Info

Publication number
JPS6244713B2
JPS6244713B2 JP13657378A JP13657378A JPS6244713B2 JP S6244713 B2 JPS6244713 B2 JP S6244713B2 JP 13657378 A JP13657378 A JP 13657378A JP 13657378 A JP13657378 A JP 13657378A JP S6244713 B2 JPS6244713 B2 JP S6244713B2
Authority
JP
Japan
Prior art keywords
light emitting
region
heterostructure
face
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13657378A
Other languages
Japanese (ja)
Other versions
JPS5563887A (en
Inventor
Hiroo Yonezu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13657378A priority Critical patent/JPS5563887A/en
Publication of JPS5563887A publication Critical patent/JPS5563887A/en
Publication of JPS6244713B2 publication Critical patent/JPS6244713B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は発光ダイオードに関し、とくに光フア
イバー通信用の端面発光型発光ダイオードに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light emitting diode, and more particularly to an edge emitting type light emitting diode for optical fiber communication.

光フアイバー通信用の高輝度発光ダイオードに
は面発光型と端面発光型がある。長距離、高速用
の光フアイバーに入る光出力は両者とも殆んど同
じであるが、端面発光型では、両方向から、光が
出るから光出力をモニターしやすい利点がある面
長期通電により反射面が変質し、光出力が低下す
る。
There are two types of high-brightness light emitting diodes for optical fiber communication: surface-emitting type and edge-emitting type. The light output entering the long-distance, high-speed optical fiber is almost the same for both types, but the edge-emitting type has the advantage of making it easier to monitor the light output because it emits light from both directions. changes in quality and reduces light output.

又、広い活性層面積に対して、通電領域を局所
化する構造をとるため、周辺部にバイアスの不充
分な領域が存在し、立上り時間の遅れを生ずる。
更に、低電流下では広い領域にわたつて発光が生
じ、電流を増すと電極近傍に発光が局所化するた
め、電流−光出力特性の直線性が悪い。特に電流
によつて発光面積が変る事は光フアイバーへの結
合状態が変る事になり、光フアイバーに入つた光
出力と電流との関係を見ると、低電流での直線性
が極めて悪い。このためアナログ変調に支障をき
たしている。
Furthermore, since the current-carrying region is localized over a wide active layer area, there are regions in the periphery where the bias is insufficient, resulting in a delay in the rise time.
Furthermore, under low current, light emission occurs over a wide area, and when the current is increased, light emission becomes localized near the electrode, so the linearity of the current-light output characteristic is poor. In particular, changing the light emitting area due to current changes the coupling state to the optical fiber, and looking at the relationship between the light output entering the optical fiber and the current, the linearity is extremely poor at low currents. This is causing problems in analog modulation.

本発明の目的は、劣化が殆んどなく、電流−光
出力特性の低電流領域での直線性が良く、且つ、
応答特性の速い端面発光型発光ダイオードを提供
することにある。
The object of the present invention is to have almost no deterioration, good linearity of current-light output characteristics in the low current region, and
An object of the present invention is to provide an edge-emitting type light emitting diode with fast response characteristics.

本発光によれば、ダブルヘテロまたはシングル
ヘテロ構造に於て、不純物濃度制御によつて発光
領域が形成され、この発光領域を形成するストラ
イプ状同一導電型領域側面は全てpn接合で囲ま
れ、且つ、発光放射端面とは、直接接する事な
く、発光領域の実効バンドギヤツプが端面近傍領
域の実効バンドギヤツプより小さい事を特徴とす
る端面発光型発光ダイオードが得られる。
According to this light emission, in a double hetero or single hetero structure, a light emitting region is formed by controlling the impurity concentration, and the side surfaces of striped regions of the same conductivity type forming this light emitting region are all surrounded by p-n junctions, and , an edge-emitting type light emitting diode is obtained in which the light-emitting end face is not in direct contact with the light-emitting end face, and the effective bandgap of the light-emitting region is smaller than the effective bandgap of the region near the end face.

本発明の原理は次の三つの効果を同時に満たす
構造を採用する事にある。第1は、発光ストライ
プ領域をpn接合に囲まれた領域にする事によつ
て電流が変化しても発光領域が不変の構造にす
る。これによつて、低電流領域での発光効率の低
下及び光フアイバーへの結合効率の低下を防ぐ。
第2は、発光領域の導電型をP形又はn型いずれ
かの内注入キヤリヤーの寿命時間が、短い方の導
電型に限定する。GaAs、(AlGa)As、(InGa)
(As・P)等の場合はP形となる。第3は、発光
領域を光が放射される端面から離して端面劣化を
防止する。端面劣化は、注入電流及び発光が端面
で生ずる事によつて端面の酸化が促進されて非発
光再結合が増加する事が原因である事が、本発明
者等によつて近年明らかにされた。従つて、発光
領域を端面から隔離する事によつて端面劣化は著
しく減少する。
The principle of the present invention is to employ a structure that simultaneously satisfies the following three effects. First, by making the light emitting stripe region surrounded by pn junctions, the light emitting region remains unchanged even when the current changes. This prevents a decrease in luminous efficiency in a low current region and a decrease in coupling efficiency to the optical fiber.
Second, the conductivity type of the light-emitting region is limited to either P type or N type, whichever type has the shorter lifetime of the injection carrier. GaAs, (AlGa)As, (InGa)
In the case of (As・P) etc., it becomes P type. Third, the light emitting region is separated from the end face from which light is emitted to prevent end face deterioration. The present inventors have recently revealed that end face deterioration is caused by injection current and light emission occurring at the end face, which promotes oxidation of the end face and increases non-radiative recombination. . Therefore, by isolating the light emitting region from the end face, end face deterioration is significantly reduced.

二元、三元、四元の―族半導体では、不純
物の種類と濃度による実効バンドギヤツプの相違
が知られている。GaAs、(Al・Ga)As、(In・
Ga)(As・P)等ではn形濃度が高い程実効バン
ドギヤツプが大きく、p形濃度が高い程実効バン
ドギヤツプは小さい。又、p−n補償したP形で
は、実効バンドギヤツプの縮少は著しくP+−n+
補償したP+形の時、特に著しい。従つて、不純
物の種類と濃度の組合せによつて発光領域を実効
バンドギヤツプの小さい状態にし、端面に隣接す
る領域(非励起領域)を実効バンドギヤツプの広
い状態にすることができる。
It is known that the effective band gap of binary, ternary, and quaternary semiconductors varies depending on the type and concentration of impurities. GaAs, (Al・Ga)As, (In・
For Ga) (As/P), etc., the higher the n-type concentration, the larger the effective band gap, and the higher the p-type concentration, the smaller the effective band gap. In addition, in the P type with p-n compensation, the effective band gap decreases significantly as P + -n +
This is especially noticeable in the compensated P + form. Therefore, depending on the combination of the type and concentration of impurities, the light emitting region can be brought into a state with a small effective bandgap, and the region adjacent to the end face (non-excited region) can be brought into a state with a wide effective bandgap.

この様にすれば、端面より内側で発光した光
は、非励起領域で、殆んど吸収されずに端面から
放射される。GaAs、(Al・Ga)As、(InGa)
(AsP)等では、発光領域がP形、又はp−n不
純物補償型のP形で、非励起領域が、n形に対応
する。尚、発光によつて端面は若干酸化されるの
で、これを防ぐ目的と端面での反射率を下げて、
より多くの光を結晶外部に取り出す目的とを併せ
てλ/2厚(λ:発光波長)にならない(λ/4
厚が最も望ましい)厚さのSiO2、Al2O3
Si3N4、C等の誘電体薄膜を端面に附着させる事
は、より望ましい。この場合主に光を取り出す側
の端面にのみ薄膜を附着させてもその効果は大き
い。また反対側の端面には反射率の高い薄膜をつ
けてもよい。
In this way, the light emitted inside the end face is hardly absorbed in the non-excited region and is emitted from the end face. GaAs, (Al・Ga)As, (InGa)
(AsP), etc., the light emitting region is P type or pn impurity compensation type P type, and the non-excitation region corresponds to n type. In addition, the end face is slightly oxidized due to light emission, so the purpose of preventing this is to lower the reflectance at the end face.
In addition to the purpose of extracting more light to the outside of the crystal, the thickness is λ/2 (λ: emission wavelength) (λ/4
SiO 2 , Al 2 O 3 ,
It is more desirable to attach a dielectric thin film such as Si 3 N 4 or C to the end face. In this case, even if the thin film is attached only to the end face from which light is extracted, the effect is great. Further, a thin film with high reflectance may be attached to the opposite end face.

次に、本発明について、図面を参照しながら説
明する。第1図は(Al・Ga)Asダブルヘテロ構
造の例である。n−GaAs基板1の上に第1層n
−Al0.3Ga0.7As層2(3μm厚キヤリヤー濃度2
×1017cm-3)、第2層n−GaAs活性層3(0.5μm
厚、キヤリヤー濃度2.5×1018cm-3)、第3層n−
Al0.3Ga0.7As層4(2μm厚、キヤリヤー濃度2
×1017cm-3)が連続液相成長法で形成されてい
る。
Next, the present invention will be explained with reference to the drawings. Figure 1 is an example of an (Al/Ga)As double heterostructure. A first layer n is formed on the n-GaAs substrate 1.
−Al 0.3 Ga 0.7 As layer 2 (3 μm thick carrier concentration 2
×10 17 cm -3 ), second layer n-GaAs active layer 3 (0.5 μm
thickness, carrier concentration 2.5×10 18 cm -3 ), third layer n-
Al 0 . 3 Ga 0 . 7 As layer 4 (2 μm thick, carrier concentration 2
×10 17 cm -3 ) is formed by continuous liquid phase growth method.

第3層4の上に設けられたSi3N4膜5に巾10μ
m長さ150μmの窓が開けられ、そこからZnが選
択拡散されている(Zn選択拡散領域10)。この
選択拡散領域10の端は第1図a,cにみるよう
に劈開によつて作られた端面6から約50μmそれ
ぞれ離れている(非励起領域7)。Zn拡散領域1
0の先端は、第1層2と活性層3との境界か活性
層3内に位置している。Zn拡散した活性層1
0′の平均ホール濃度は約5×1018cm-3である。
Au/CrのP形オーミツク電極及びAu/Au−Ge
−Niのn形オーミツク電極9が通常の方法で設
けられている。
The Si 3 N 4 film 5 provided on the third layer 4 has a width of 10 μm.
A window with a length of 150 μm is opened, and Zn is selectively diffused through the window (Zn selective diffusion region 10). As shown in FIGS. 1a and 1c, the ends of this selective diffusion region 10 are each approximately 50 μm apart from the end face 6 formed by cleavage (non-excited region 7). Zn diffusion region 1
The tip of 0 is located at the boundary between the first layer 2 and the active layer 3 or within the active layer 3. Zn diffused active layer 1
The average hole concentration at 0' is about 5×10 18 cm -3 .
Au/Cr P-type ohmic electrode and Au/Au-Ge
-Ni n-type ohmic electrode 9 is provided in the usual manner.

順方向に電流を流すと第1層2及び第2層3の
n形層からZn拡散された活性層10′に電子が注
入され発光領域となる。p+−n+補償型のp形Zn
拡散活性層10′のバンドギヤツプはn+活性層3
のバンドギヤツプより約40meV狭い。従つて発
光した光は非励起領域で殆んど吸収される事なく
劈開面である端面6から放出される。従つて端面
劣化は殆んど生じない。自然放出光の高エネルギ
ー側の光によつて酸化が若干生じても、発光領域
10′が端面6から離れているため何ら注入電流
に影響を及ぼす事はない。
When a current is passed in the forward direction, electrons are injected from the n-type layers of the first layer 2 and the second layer 3 into the Zn-diffused active layer 10', which becomes a light emitting region. p + −n + compensated p-type Zn
The band gap of the diffusion active layer 10' is n + active layer 3
It is about 40 meV narrower than the band gap of . Therefore, the emitted light is hardly absorbed in the non-excited region and is emitted from the end face 6, which is the cleavage plane. Therefore, end face deterioration hardly occurs. Even if some oxidation occurs due to the high energy side of the spontaneously emitted light, since the light emitting region 10' is far from the end face 6, it will not affect the injected current in any way.

Zn拡散領域10の先端が活性層3内に位置し
ている場合にもZn拡散された活性層領域10′の
バンドギヤツプが小さいために殆んど電子注入に
よるZn拡散活性領域10′での発光しか生じな
い。この場合、活性層3のn形濃度が低い場合に
は、ホール注入が生ずるが第1層2と活性層3と
のヘテロ接合でおしとどめられると同時に隣接す
るZn拡散活性領域10′のバンドギヤツプが小さ
いため注入ホール濃度が上つて、そこでの発光が
支配的になる事はない。従つてZn拡散活性領域
10′での注入効率の高い効率的な発光が得られ
る。
Even when the tip of the Zn-diffused region 10 is located within the active layer 3, the band gap of the Zn-diffused active layer region 10' is small, so that most of the light is emitted only from the Zn-diffused active region 10' due to electron injection. Does not occur. In this case, when the n-type concentration of the active layer 3 is low, hole injection occurs, but is suppressed by the heterojunction between the first layer 2 and the active layer 3, and at the same time the band gap of the adjacent Zn-diffused active region 10' increases. Since this is small, the concentration of injected holes will not increase and the light emission there will not become dominant. Therefore, efficient light emission with high injection efficiency in the Zn diffused active region 10' can be obtained.

又、p+領域での発光であるため50MHzを越す
遮断周波数が容易に得られる。尚、Zn拡散に関
しては、活性層3に於ける拡散速度は第3層4の
それの1/2〜1/3に減少する。従つてZn拡
散深さを制御することは容易である。
Furthermore, since the light is emitted in the p + region, a cutoff frequency exceeding 50 MHz can be easily obtained. Regarding Zn diffusion, the diffusion rate in the active layer 3 is reduced to 1/2 to 1/3 of that in the third layer 4. Therefore, it is easy to control the Zn diffusion depth.

又、発光領域の巾が注入キヤリヤーの2倍以下
の厚さ、例えば5μm以下程度であればZn拡散
領域の先端は第1層2に位置しても、側方のn+
活性層からの電子注入によつて、Zn拡散発光領
域10′は一様に注入励起されるから問題ない。
活性層3の厚さは薄い程小電流で注入キヤリヤー
密度を上げる事ができ、発光効率の改善、即ち低
電流領域での発光強度の低下を改善する事ができ
る。
Furthermore, if the width of the light-emitting region is less than twice the thickness of the injection carrier, for example, about 5 μm or less, even if the tip of the Zn diffusion region is located in the first layer 2, the side n +
There is no problem because the Zn diffused light emitting region 10' is uniformly injected and excited by electron injection from the active layer.
The thinner the active layer 3 is, the more the injection carrier density can be increased with a small current, and the luminous efficiency can be improved, that is, the decrease in luminous intensity in a low current region can be improved.

第2図は(Al・Ga)Asシングルヘテロ構造の
例であるn形GaAs基板20(キヤリヤー濃度2.5
×1018cm-3)上にn−Al0.3Ga0.7As層21(層厚2
μm、キヤリヤー濃度2×1017cm-3)が液相成長
法で設けられている。第1図と同様にしてSi3N4
膜5を介してZn拡散領域22が形成され、その
先端はヘテロ接合23から約0.6μm n−GaAs
基板20側にあつてpn接合を形成している。順
方向電流下では、電子注入がn−GaAs基板につ
き出たZn拡散領域22′に生じ、ここが発光す
る。ホール注入を全くなくす事が困難であるた
め、第1図の実施例より、若干性能はおちる。勿
論、Zn拡散領域22は端面6から離れており、
第1図と同様の結果が得られる。発光領域22′
の厚さはキヤリヤーの拡散以下であるため、光出
力の立下の時間も速い。この構造に於いて重要な
点はn−GaAs基板20のn形濃度が高く、Zn拡
散発光領域22′への電子注入が支配的になる
事、更に発光領域22′の厚さが注入電子の拡散
長より薄い事である。
Figure 2 shows an n-type GaAs substrate 20 (carrier concentration 2.5), which is an example of an (Al/Ga)As single heterostructure.
×10 18 cm -3 ), an n-Al 0.3 Ga 0.7 As layer 21 (layer thickness 2
μm, carrier concentration 2×10 17 cm −3 ) was provided by liquid phase growth method. In the same way as in Fig. 1, Si 3 N 4
A Zn diffusion region 22 is formed through the film 5, and its tip is about 0.6 μm from the heterojunction 23.
It is located on the substrate 20 side and forms a pn junction. Under forward current, electron injection occurs in the Zn diffusion region 22' protruding from the n-GaAs substrate, which emits light. Since it is difficult to completely eliminate hole injection, the performance is slightly lower than that of the embodiment shown in FIG. Of course, the Zn diffusion region 22 is away from the end face 6,
Results similar to those in FIG. 1 are obtained. Light emitting area 22'
Since the thickness of the carrier is less than the carrier diffusion, the fall time of the light output is also fast. The important point in this structure is that the n-type concentration of the n-GaAs substrate 20 is high, and electron injection into the Zn diffused light emitting region 22' becomes dominant, and the thickness of the light emitting region 22' is such that the injected electrons are It is thinner than the diffusion length.

第1図、第2図に於て、各層の層厚、Al組
成、キヤリヤ濃度、発光領域の形状については、
上記の例に限らない。両非励起領域の長さは異な
つていてもよい。但し第2図に於ては発光領域の
Zn濃度とGaAs基板のn形濃度とは電子注入が支
配する範囲の組み合せでなければならない。
In Figures 1 and 2, the thickness of each layer, Al composition, carrier concentration, and shape of the light emitting region are as follows:
It is not limited to the above example. The lengths of both non-excited regions may be different. However, in Figure 2, the light emitting area is
The Zn concentration and the n-type concentration of the GaAs substrate must be combined in a range where electron injection is dominant.

以上Zn拡散を例にしたがイオン打込みでも又
第1図の例では発光領域の外側にn形不純物拡散
をしても同様の構造を実現できる。更に端面6は
劈開の代りに化学エツチング等で形成してもよ
い。第2図に於ては、n−GaAs基板1の代りに
n−GaAs基板上に設けたn−GaAsエピ層を用い
る方が結晶の質の点から望ましい。第1図に於て
n−GaAs活性層を用いたがn−AlyGal−yAs層
を用いても良い。更に(InGa)(AsP)/Inp、
(Al・Ga)(As・Sb)/GaSb等の四元系に適用
する事ができる事も明白である。又、発光の放出
される端面に誘電体薄膜を設ければ、端面の劣化
保護と反射率の制御を同時に行う事ができ、特性
向上の点でより望ましい。
Although Zn diffusion was used as an example above, a similar structure can be realized by ion implantation or by diffusing n-type impurities outside the light emitting region in the example shown in FIG. Furthermore, the end face 6 may be formed by chemical etching or the like instead of cleavage. In FIG. 2, it is preferable to use an n-GaAs epitaxial layer provided on an n-GaAs substrate instead of the n-GaAs substrate 1 from the viewpoint of crystal quality. Although an n-GaAs active layer is used in FIG. 1, an n-AlyGal-yAs layer may also be used. Furthermore, (InGa) (AsP)/Inp,
It is also obvious that it can be applied to quaternary systems such as (Al・Ga) (As・Sb)/GaSb. Further, if a dielectric thin film is provided on the end face from which light is emitted, it is possible to protect the end face from deterioration and control the reflectance at the same time, which is more desirable in terms of improving characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダブルヘテロ構造を用いた本発明実施
例で、第1図aは上面図、第1図bはA―A′に
沿つて切断した断面図、第1図cはB―B′に沿つ
て切断した断面図である。第2図はシングルヘテ
ロ構造を用いた本発明の実施例で、第2図aは上
面図、第2図b,cは断面図でありその関係は第
1図のそれらと同じである。 1……n−GaAs基板、2……第1層n−
Al0.3Ga0.7As層、3……第2層n−GaAs活性
層、4……第3層n−Al0.3Ga0.7As層、5……
Si3N4膜、6……端面(劈開面)、7……非励起領
域、8……Au/Cr p形オーミツク電極、9……
Au/Au−Ge−Ni n形オーミツク電極、10…
…Zn拡散領域、10′……Zn拡散活性(発光)領
域、20……n−GaAs基板、21…n−
Al0.3Ga0.7As層、22……Zn拡散領域、22′…
…Zn拡散活性(発光)領域、23……ヘテロ接
合。
Fig. 1 shows an embodiment of the present invention using a double heterostructure, in which Fig. 1a is a top view, Fig. 1b is a sectional view taken along A-A', and Fig. 1c is B-B'. FIG. FIG. 2 shows an embodiment of the present invention using a single heterostructure, in which FIG. 2a is a top view and FIGS. 2b and 2c are cross-sectional views, and their relationships are the same as those in FIG. 1. 1... n-GaAs substrate, 2... first layer n-
Al 0.3 Ga 0.7 As layer, 3... Second n - GaAs active layer, 4... Third n-Al 0.3 Ga 0.7 As layer, 5...
Si 3 N 4 film, 6... end face (cleavage plane), 7... non-excited region, 8... Au/Cr p-type ohmic electrode, 9...
Au/Au-Ge-Ni n-type ohmic electrode, 10...
...Zn diffusion region, 10'...Zn diffusion active (light emitting) region, 20...n-GaAs substrate, 21...n-
Al 0 . 3 Ga 0 . 7 As layer, 22...Zn diffusion region, 22'...
...Zn diffusion active (light emitting) region, 23...heterojunction.

Claims (1)

【特許請求の範囲】 1 ヘテロ構造を有する発光ダイオードにおい
て、不純物濃度制御によつて発光領域が形成さ
れ、該発光領域を形成するストライプ状同一導電
型領域側面は全てpn接合で囲まれ、かつ発光放
射端面とは直接接することなく、該発光領域のバ
ンドギヤツプが前記端面の近傍領域のバンドギヤ
ツプより小さくなるように不純物が選択されてい
ることを特徴とする端面発光型発光ダイオード。 2 前記ヘテロ構造がダブルヘテロ構造であり、
かつ前記発光領域の先端が活性層内に位置してい
ることを特徴とする特許請求の範囲第1項記載の
端面発光型発光ダイオード。 3 前記ヘテロ構造がダブルヘテロ構造であり、
不純物濃度制御された領域の先端が活性層を突き
貫けて、該活性層下のクラツド層内に位置しかつ
該発光領域巾が注入キヤリヤーの拡散長の2倍以
下である事を特徴とする特許請求の範囲第1項記
載の端面発光型発光ダイオード。 4 前記ヘテロ構造がシングルヘテロ構造であつ
て、不純物濃度制御された発光領域の先端がヘテ
ロ接合から注入キヤリヤーの拡散長以下の位置の
狭いバンドキヤツプの領域中に位置し、且つ該発
光領域へのキヤリヤー注入が支配的となる様な濃
度に該発光領域周辺の濃度が制御されていること
を特徴とする特許請求の範囲第1項記載の端面発
光型発光ダイオード。 5 前記光放射端面に誘電体薄膜を附着させたこ
とを特徴とする特許請求の範囲第1、第2、第3
または第4項記載の端面発光型発光ダイオード。
[Claims] 1. In a light emitting diode having a heterostructure, a light emitting region is formed by controlling impurity concentration, and the side surfaces of striped regions of the same conductivity type forming the light emitting region are all surrounded by p-n junctions, and the light emitting region is formed by controlling the impurity concentration. 1. An edge-emitting type light emitting diode, characterized in that impurities are selected such that the impurity is not in direct contact with a radiation end face and the band gap of the light emitting region is smaller than the band gap of a region near the end face. 2 the heterostructure is a double heterostructure,
2. The edge-emitting light emitting diode according to claim 1, wherein a tip of said light emitting region is located within an active layer. 3 the heterostructure is a double heterostructure,
A patent characterized in that the tip of the region with controlled impurity concentration can penetrate the active layer, is located in the cladding layer below the active layer, and the width of the light emitting region is less than twice the diffusion length of the injection carrier. An edge-emitting type light emitting diode according to claim 1. 4. The heterostructure is a single heterostructure, and the tip of the light emitting region with controlled impurity concentration is located in a narrow bandcap region at a position below the diffusion length of the injection carrier from the heterojunction, and 2. The edge-emitting light emitting diode according to claim 1, wherein the concentration around the light emitting region is controlled to a concentration such that carrier injection becomes dominant. 5. Claims 1, 2, and 3, characterized in that a dielectric thin film is attached to the light emitting end surface.
Or the edge-emitting type light emitting diode according to item 4.
JP13657378A 1978-11-06 1978-11-06 Light-emitting diode Granted JPS5563887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13657378A JPS5563887A (en) 1978-11-06 1978-11-06 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13657378A JPS5563887A (en) 1978-11-06 1978-11-06 Light-emitting diode

Publications (2)

Publication Number Publication Date
JPS5563887A JPS5563887A (en) 1980-05-14
JPS6244713B2 true JPS6244713B2 (en) 1987-09-22

Family

ID=15178413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13657378A Granted JPS5563887A (en) 1978-11-06 1978-11-06 Light-emitting diode

Country Status (1)

Country Link
JP (1) JPS5563887A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183977A (en) * 1985-02-08 1986-08-16 Toshiba Corp Light emitting element and manufacture thereof
JPS6395260U (en) * 1986-12-11 1988-06-20
JPS63226977A (en) * 1987-03-16 1988-09-21 Nec Corp Edge emission type light-emitting diode
JP4023893B2 (en) * 1997-06-06 2007-12-19 沖電気工業株式会社 Light emitting element array and light emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994291A (en) * 1973-01-10 1974-09-06
JPS5329666A (en) * 1976-08-30 1978-03-20 Philips Nv Method of making semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994291A (en) * 1973-01-10 1974-09-06
JPS5329666A (en) * 1976-08-30 1978-03-20 Philips Nv Method of making semiconductor device

Also Published As

Publication number Publication date
JPS5563887A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
US5321712A (en) Semiconductor light-emitting device having a cladding layer composed of an InGaAlp-based compound
KR100648392B1 (en) Al spikes in InP-based layer as a barrier for blocking Zinc diffusion in InP-based structures
JPH10126010A (en) Manufacturing method of semiconductor laser device
US4525841A (en) Double channel planar buried heterostructure laser
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
JP2980435B2 (en) Semiconductor device
US6287884B1 (en) Buried hetero-structure InP-based opto-electronic device with native oxidized current blocking layer
EP0536757B1 (en) Semiconductor laser
US4514896A (en) Method of forming current confinement channels in semiconductor devices
US5173913A (en) Semiconductor laser
GB1502953A (en) Semiconductor device and a method of fabricating the same
JPS6244713B2 (en)
US4447905A (en) Current confinement in semiconductor light emitting devices
US4989050A (en) Self aligned, substrate emitting LED
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
US6350629B1 (en) Optical semiconductor device having active layer and carrier recombination layer different from each other
JP2759275B2 (en) Light emitting diode and method of manufacturing the same
JPS6218782A (en) Semiconductor laser of buried structure
JP3505780B2 (en) Semiconductor light emitting device
JPH0734496B2 (en) Semiconductor laser
JPS6261383A (en) Semiconductor laser and manufacture thereof
EP0526220A1 (en) Light emitting diode having small emission-spot
JPH04199587A (en) Optical semiconductor device