JPS63153883A - Quantum well type semiconductor light-emitting element - Google Patents

Quantum well type semiconductor light-emitting element

Info

Publication number
JPS63153883A
JPS63153883A JP61302239A JP30223986A JPS63153883A JP S63153883 A JPS63153883 A JP S63153883A JP 61302239 A JP61302239 A JP 61302239A JP 30223986 A JP30223986 A JP 30223986A JP S63153883 A JPS63153883 A JP S63153883A
Authority
JP
Japan
Prior art keywords
layer
active layer
laser
mqw
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61302239A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61302239A priority Critical patent/JPS63153883A/en
Publication of JPS63153883A publication Critical patent/JPS63153883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To inject carriers efficiently without harming the quantum effect by a method wherein the thickness of a harrier layer and well layer is so designed as to be largest at the middle of an active layer in a multiple quantum well (MQW). CONSTITUTION:On an InP substrate 1, an n-InP buffer layer 2, MQW active layer 3, and p-InP clad layer 6 are formed in that order. In the MQW active layer 3 on the n-InP buffer layer 2, an InGaAs well layer 4 is 70Angstrom thick and an InP barrier layer 5 is 40Angstrom thick. The InGaAs well layer 4 is allowed to grow thicker at an increment of 6-8Angstrom toward the middle while the InP barrier layer 5 is allowed to grow thicker at an increment of approximately 10Angstrom toward the middle so that they may be as thick as 100Angstrom and 80Angstrom at the middle, respectively. The MQW active layer 3 itself is approximately 0.15mum thick. An MQW laser to this design is of a surface electrode structure in which the average oscillation threshold current density is near 800A/cm<2>, which is only 50-60% of the 1.2-1.5KA/cm<2> in a conventional DH laser.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は量子井戸型半導体発光素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a quantum well type semiconductor light emitting device.

(従来の技術) 半導体多層薄膜を活性層として有する量子井戸型半導体
レーザは、通常のDH構造半導体レーザと比べて低しき
い値電流、高い特性温度T0.変調時のスペクトル拡が
りが小さい等の優れた特性を有している。そのひとつと
してAT&T  Be11研究所のDuttaらはアプ
ライド・フイジクス・レターズ誌(Ap61. Phy
s、 Lett、、 vol、46゜p1036−10
38.1985 )において発光波長1.31m組成の
InGaAsPウェル層、 1.03μm組成のInG
aAsPバリアM(いずれも厚さ約300人)を数層ず
つ積層した多重量子井戸(MQW)レーザを報告してい
る。このレーザは低しきい値電流、高効率等優れた特性
を有し、Duttaらはしきい値におけるキャリアライ
フタイムの温度依存性を評価し、通常のDHレーザと比
べてMQWレーザの温度特性が優れていることを実証し
た。
(Prior Art) A quantum well type semiconductor laser having a semiconductor multilayer thin film as an active layer has a lower threshold current and a higher characteristic temperature T0. It has excellent characteristics such as small spectrum spread during modulation. As one example, Dutta et al. of AT&T Be11 Laboratory published Applied Physics Letters (Ap61.
s, Lett,, vol, 46゜p1036-10
38.1985), an InGaAsP well layer with an emission wavelength of 1.31 m and an InG well layer with a composition of 1.03 μm.
We have reported a multiple quantum well (MQW) laser in which several layers of aAsP barrier M (all approximately 300 layers thick) are laminated. This laser has excellent characteristics such as low threshold current and high efficiency.Dutta et al. evaluated the temperature dependence of the carrier lifetime at the threshold, and found that the temperature characteristics of the MQW laser compared to a normal DH laser. proved to be superior.

(発明が解決しようとする問題点) ところでMQWレーザにおいては、その量子効果をより
顕著にし、レーザ特性をさらに向上しようとする場合ウ
ェル層とバリア層との間のエネルギー差を大きくとるこ
とが有効である0例えば波長1.55−帯のM Q W
レーザを考えた場合I n O,!!30a6.47A
B層をウェル層、InP層をバリア層とする組み合わせ
が最もエネルギー差が大きく、より顕著な量子効果を期
待できる。具体的なM構造としては前者を 100人、
後者を80人の厚さとして各10層ずつ交互に積層する
ことによりほぼ1.55μmで発振するMQWレーザを
得ることができる。第3図(a)にはそのようなレーザ
の断面構造を、第3図(b)にはその構成での伝導帯の
エネルギーバンド図を示す。
(Problems to be Solved by the Invention) In the case of MQW lasers, in order to make the quantum effect more pronounced and further improve the laser characteristics, it is effective to increase the energy difference between the well layer and the barrier layer. For example, M Q W in the wavelength 1.55-band
When considering a laser, I n O,! ! 30a6.47A
A combination in which the B layer is used as a well layer and the InP layer is used as a barrier layer has the largest energy difference, and a more significant quantum effect can be expected. As for the concrete M structure, the former is 100 people,
By making the latter 80 layers thick and alternately stacking 10 layers each, an MQW laser that oscillates at approximately 1.55 μm can be obtained. FIG. 3(a) shows the cross-sectional structure of such a laser, and FIG. 3(b) shows the energy band diagram of the conduction band in that structure.

しかしながらレーザとして動作させようとする場合、注
入キャリアを効率的に活性領域に注入する必要があり、
このような構成ではそれが効率的になされがたい、すな
わち例えばn型クラッド層より注入された電子は活性領
域に達し、InPnツバ9フ なるが、上述の程度の厚さの場合電子波束の透過の割合
いは十分に大きくはなく、その結果電子波動関数が十分
にMQW活性層3全体にわたって均一に分布せず、n型
1nP層2側にかたよって分布することが考えられる.
ホールについても同様なことが生じ、結果としてレーザ
の低しきい値特性等の量子井戸レーザの特徴が十分にひ
き出せなくなることがある。
However, when attempting to operate as a laser, it is necessary to efficiently inject carriers into the active region.
In such a structure, it is difficult to do this efficiently; for example, electrons injected from the n-type cladding layer reach the active region and become an InPn layer, but with the thickness as described above, the transmission of electron wave packets is difficult. It is conceivable that the ratio of is not sufficiently large, and as a result, the electron wave function is not sufficiently uniformly distributed over the entire MQW active layer 3, but is distributed biased towards the n-type 1nP layer 2 side.
A similar problem occurs with holes, and as a result, the characteristics of the quantum well laser, such as the low threshold characteristics of the laser, may not be fully exploited.

本発明の目的は量子効果が顕著に現われ、特性の向上し
た量子井戸型半導体発光素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a quantum well type semiconductor light emitting device in which a quantum effect appears significantly and characteristics are improved.

(問題点を解決するための手Vi) 本発明では、半導体多層薄膜を活性層として有する量子
井戸型半導体発光素子であって,前記活性層を構成する
半導体薄膜のM厚が、前記活性層をはさむクラッド層近
傍よりも前記活性層の中央部において大きいことを特徴
とする量子井戸型半導体発光素子によって上述の問題点
を解決する。
(Measures for Solving Problems Vi) The present invention provides a quantum well type semiconductor light emitting device having a semiconductor multilayer thin film as an active layer, wherein the thickness M of the semiconductor thin film constituting the active layer is larger than the active layer. The above-mentioned problems are solved by a quantum well type semiconductor light emitting device characterized in that the active layer is larger in the center than in the vicinity of the sandwiching cladding layers.

(作用) 先述の問題点を解決するためには、ひとつにはバリア層
5をより薄く形成すれば、電子波束は活性層3中により
均一に分布することができる.しかし活性層3全体のI
nPnツバ9フ とやはり量子効果は小さくなる.そこで活性層5の中央
部では前記の例と同等にウェル7114を100人,バ
リア層5を80人とし、クラッド層近傍の部分でバリア
層5を薄くし、かつウェル層4も薄くして、基底量子化
レベルをほぼ1.551mとなるようにしておけば量子
サイズ効果を損なうことなく、効率的に活性層3にキャ
リアを注入することが可能となり、特性の優れた量子井
戸型半導体レーザを得ることができる。
(Function) In order to solve the above-mentioned problem, one way is to make the barrier layer 5 thinner, so that the electron wave packet can be distributed more uniformly in the active layer 3. However, the I of the entire active layer 3
As expected, the quantum effect becomes smaller when the nPn width is 9. Therefore, in the central part of the active layer 5, the well 7114 is made to have 100 people and the barrier layer 5 is made to have 80 people, and the barrier layer 5 is made thinner in the vicinity of the cladding layer, and the well layer 4 is also made thinner. By setting the base quantization level to approximately 1.551 m, carriers can be efficiently injected into the active layer 3 without impairing the quantum size effect, and a quantum well semiconductor laser with excellent characteristics can be obtained. Obtainable.

第2図には本発明の作用,原理を説明するための電子分
布およびエネルギーバンド図を示す.第2図(a)では
従来例の場合に相当し、活性層全体にわたってウェル層
は全て同じ厚さ、バリア層は全て同じ厚さとなっており
、注入された電子は厚めのバリア層によってその波束が
減衰され、かたよった分布を示す.第2図(b)では同
図(a>に対し、バリア層のみ周辺部での厚さを小さく
した.この場合には電子は比較的均一に分布するが、基
底量子レベルは各ウェルにおいて異なるから、発光スペ
クトル幅が拡がってしまう.第2図(c)は本発明に相
当するもので、基底量子レベルがいずれのウェル層中で
もほぼ同一となるようにウェル層幅も変えることによっ
て、電子分布が比較的均一で,なおかつ発光スペクトル
幅の狭い、特性の優れたMQWレーザを得ることができ
る。
Figure 2 shows the electron distribution and energy band diagram to explain the operation and principle of the present invention. Figure 2 (a) corresponds to the case of the conventional example, where all the well layers have the same thickness and the barrier layers have the same thickness over the entire active layer, and the injected electrons are wave bundled by the thicker barrier layer. is attenuated and shows a skewed distribution. In Figure 2(b), compared to the same figure (a), only the barrier layer has a smaller thickness at the periphery.In this case, the electrons are distributed relatively uniformly, but the fundamental quantum level differs in each well. Figure 2 (c) corresponds to the present invention, in which the electron distribution is changed by changing the well layer width so that the fundamental quantum level is almost the same in all well layers. It is possible to obtain an MQW laser with excellent characteristics, which is relatively uniform and has a narrow emission spectrum width.

(実施例) 以下に実施例を示す図面を参照して本発明をより詳細に
説明する0本発明による一実施例を第1図に示す.第1
図(a)は断面構造,第1図(b)は活性層周辺のエネ
ルギーバンド図(伝導帯のみ)を示す。
(Example) The present invention will be explained in more detail with reference to the drawings showing examples below. An example according to the present invention is shown in FIG. 1. 1st
Figure 1(a) shows the cross-sectional structure, and Figure 1(b) shows the energy band diagram (conduction band only) around the active layer.

この実施例の作製においては、InPi板1上にn−I
nPバッファ層2を厚さ0.5n 、 M Q W活性
層3、p−InPn型クラッド層6次8f層した,MQ
W活性層3はn−InPn二層からInGaAsウェル
層4を70人、InPnツバ9フ8人ずつ,バリア層を
約10人ずつ増していき、中央部においてそれぞれ10
0人,80人となるようにした.活性層3の全体の厚さ
は0.15層m程度とした。
In the production of this example, n-I
The nP buffer layer 2 has a thickness of 0.5n, the MQW active layer 3, and the p-InPn type cladding layer 6th order 8f layer.
In the W active layer 3, from the n-InPn double layer, the InGaAs well layer 4 is increased by 70 layers, the InPn rim 9 is increased by 8 layers, and the barrier layer is increased by about 10 layers, and in the central part, each layer is increased by 10 layers.
It was set to 0 and 80 people. The total thickness of the active layer 3 was approximately 0.15 m.

このようにして作製しなMQWレーザを全面電極型の構
成とし、平均発振しきい値電流密度800A/−と通常
のDHレーザの1,2〜1.5にA/−と比べ50〜6
0%に低減することができた.さらにこのレーザウェフ
ァをLPE法により埋め込み構造とし、特性を評価した
ところ室温CWでの発振しきい値電流15〜20nA、
微分量子効率片面あたり25%程度の素子が再現性よく
得られた。
The MQW laser fabricated in this way has a full-surface electrode configuration, and has an average oscillation threshold current density of 800 A/-, which is 50 to 6 A/- compared to 1.2 to 1.5 of a normal DH laser.
We were able to reduce it to 0%. Furthermore, this laser wafer was made into a buried structure using the LPE method, and its characteristics were evaluated. The lasing threshold current at room temperature CW was 15 to 20 nA,
A device with a differential quantum efficiency of about 25% per side was obtained with good reproducibility.

レーザの温度特性を評価したところ、その特性温度T0
は90〜100にと通常のDH構遺レーザと比べて大幅
な改善が認められた。しきい値におけるキャリアライフ
タイムの温度依存性もDHtR遺と比べてその変化率が
小さく、さらにMQW′!PI造による階段状の状態密
度関数を反映してパルス変調時の発振スペクトル拡がり
もDHIiiI造レーザと比べて172〜1/3に低減
されていることがわかった。
When the temperature characteristics of the laser were evaluated, the characteristic temperature T0
was 90 to 100, which was a significant improvement compared to a normal DH structure laser. The temperature dependence of the carrier lifetime at the threshold value also has a smaller rate of change compared to DHtR, and furthermore, MQW'! It was found that the oscillation spectrum spread during pulse modulation was also reduced by 172 to 1/3 compared to the DHIIII laser, reflecting the step-like density of states function due to the PI structure.

(発明の効果) 以上のように本発明においてはMQWレーザにおいてバ
リア層およびウェル層の厚さを活性層の中央部において
大きくすることにより量子効果を損なうことなく、キャ
リア注入を効率的に行なうことが可能となり、特性の優
れた量子井戸型半導体レーザを提供することができた。
(Effects of the Invention) As described above, in the present invention, in an MQW laser, by increasing the thickness of the barrier layer and the well layer in the center of the active layer, carrier injection can be performed efficiently without impairing the quantum effect. This made it possible to provide a quantum well type semiconductor laser with excellent characteristics.

なお実施例においてはInP、InGaAs系の半導体
材料を用いたが、本発明では、用いる材料系はもちろん
これに限るものでなく、GaAJ!As〜GaAs系等
他の材料を用いて何ら差しつかえない、また、以上には
デバイスとしても半導体レーザについて説明したが、本
発明の構造は発光ダイオードについても有効である。
Although InP and InGaAs semiconductor materials were used in the examples, the material systems used in the present invention are of course not limited to these, and include GaAJ! There is no problem in using other materials such as As to GaAs, and although a semiconductor laser has been described above as a device, the structure of the present invention is also effective for a light emitting diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の断面構造図、第1図
(b)はその実施例における活性層周辺のエネルギーバ
ンド図、第2図は発明の詳細な説明するための電子分布
、エネルギーバンド図、第3図(a)は従来例によるM
QWレーザの断面構造図、第3図(b)はそのエネルギ
ーバンド図である。 図中、1は基板、2はn−InPl、3はMQW活性層
、4はI nGaAsウェル屑、5はIn°Pバリア層
、6はp−InPクランド層をそれぞれあられす。 (a) (b) 第1c!I (a) (b) 第2図
FIG. 1(a) is a cross-sectional structural diagram of an embodiment of the present invention, FIG. 1(b) is an energy band diagram around the active layer in the embodiment, and FIG. 2 is an electron diagram for explaining the invention in detail. Distribution, energy band diagram, Fig. 3 (a) is M according to the conventional example.
The cross-sectional structural diagram of the QW laser, FIG. 3(b), is its energy band diagram. In the figure, 1 is a substrate, 2 is an n-InPl layer, 3 is an MQW active layer, 4 is an InGaAs well scrap, 5 is an In°P barrier layer, and 6 is a p-InP ground layer. (a) (b) 1st c! I (a) (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体多層薄膜を活性層として有する量子井戸型半導体
発光素子において、前記活性層を構成する半導体薄膜の
膜厚が、前記活性層をはさむクラッド層近傍よりも前記
活性層の中央部において大きいことを特徴とする量子井
戸型半導体発光素子。
A quantum well type semiconductor light emitting device having a semiconductor multilayer thin film as an active layer, characterized in that the thickness of the semiconductor thin film constituting the active layer is larger in the center of the active layer than in the vicinity of the cladding layer sandwiching the active layer. A quantum well type semiconductor light emitting device.
JP61302239A 1986-12-17 1986-12-17 Quantum well type semiconductor light-emitting element Pending JPS63153883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61302239A JPS63153883A (en) 1986-12-17 1986-12-17 Quantum well type semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61302239A JPS63153883A (en) 1986-12-17 1986-12-17 Quantum well type semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPS63153883A true JPS63153883A (en) 1988-06-27

Family

ID=17906626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61302239A Pending JPS63153883A (en) 1986-12-17 1986-12-17 Quantum well type semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPS63153883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531327A (en) * 2014-10-06 2017-10-19 ウィスコンシン アルムニ リサーチ ファンデイション Hybrid heterostructure light emitting device
US10749062B2 (en) 2015-09-14 2020-08-18 Wisconsin Alumni Research Foundation Hybrid tandem solar cells with improved tunnel junction structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531327A (en) * 2014-10-06 2017-10-19 ウィスコンシン アルムニ リサーチ ファンデイション Hybrid heterostructure light emitting device
US10749062B2 (en) 2015-09-14 2020-08-18 Wisconsin Alumni Research Foundation Hybrid tandem solar cells with improved tunnel junction structures

Similar Documents

Publication Publication Date Title
JPH0143472B2 (en)
US4982408A (en) Variable oscillation wavelength semiconduction laser device
JP3249999B2 (en) Semiconductor laser device
KR100262291B1 (en) Self-pulsation type semiconductor laser device
JPH04305992A (en) Semiconductor laser element
JP2778454B2 (en) Semiconductor laser
US6078602A (en) Separate confinement heterostructured semiconductor laser device having high speed characteristics
JP2812273B2 (en) Semiconductor laser
JPS63153883A (en) Quantum well type semiconductor light-emitting element
JPS60145687A (en) Semiconductor laser
JP2758472B2 (en) Light modulator
JP2518255B2 (en) Multiple quantum well type optical bistable semiconductor laser
JP2748570B2 (en) Semiconductor laser device
JPH01155678A (en) Semiconductor light emitting device
JPH02239680A (en) Semiconductor laser device and its manufacture
JPH02229487A (en) Multiple quantum well type semiconductor light-emitting element
JPH0712103B2 (en) Semiconductor laser device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH0728093B2 (en) Semiconductor laser device
JP2702964B2 (en) Semiconductor laser device
JP2000022203A (en) Light emitting diode
JP2848615B2 (en) Semiconductor light emitting device
JP2876642B2 (en) Quantum well laser
JPH054833B2 (en)
JP2865325B2 (en) Semiconductor laser device