JP2702964B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2702964B2
JP2702964B2 JP63121713A JP12171388A JP2702964B2 JP 2702964 B2 JP2702964 B2 JP 2702964B2 JP 63121713 A JP63121713 A JP 63121713A JP 12171388 A JP12171388 A JP 12171388A JP 2702964 B2 JP2702964 B2 JP 2702964B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
layer
band
active layer
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63121713A
Other languages
Japanese (ja)
Other versions
JPH01292874A (en
Inventor
直樹 茅根
和久 魚見
友義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63121713A priority Critical patent/JP2702964B2/en
Publication of JPH01292874A publication Critical patent/JPH01292874A/en
Application granted granted Critical
Publication of JP2702964B2 publication Critical patent/JP2702964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1.2〜1.6μm帯で発振する量子井戸型の半
導体レーザ素子に係り、特に変調帯域が広く、又はしき
い値の低い半導体レーザ素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum well type semiconductor laser device oscillating in a band of 1.2 to 1.6 μm, and particularly to a semiconductor laser having a wide modulation band or a low threshold. Related to the element.

〔従来の技術〕[Conventional technology]

従来、特開昭62−025484号公報に記載の如く、GaAlAs
/GaAs系の量子井戸型半導体レーザにおいて、活性層あ
るいは活性層の両側のバリア層、あるいはその双方に不
純物をドープすると、変調帯域が大幅に向上し、または
しきい電流値が低減することが知られていた。ところ
が、この材料系では石英系フアイパの損失が小さい波長
域の1.2〜1.6μm帯や可視領域である0.6〜0.7μm帯に
おける安定なレーザ発振は難かしい。
Conventionally, as described in JP-A-62-025484, GaAlAs
In a GaAs / GaAs quantum well semiconductor laser, when the active layer or the barrier layers on both sides of the active layer, or both, are doped with impurities, it is known that the modulation band is greatly improved or the threshold current value is reduced. Had been. However, in this material system, stable laser oscillation is difficult in the 1.2 to 1.6 μm band in the wavelength region where the loss of the quartz fiber is small or in the 0.6 to 0.7 μm band in the visible region.

一方1.2〜1.6μm帯における量子井戸型半導体レーザ
は、InGaAs/InP系などにより、実現されており、例えば
第10回半導体レーザ国際会議予稿集(1986年10月)の44
頁から45頁(10th.International Semiconductor Laser
Conference)などにより論じられている。
On the other hand, the quantum well type semiconductor laser in the 1.2 to 1.6 μm band is realized by an InGaAs / InP system or the like. For example, 44th edition of the 10th International Conference on Semiconductor Lasers (October 1986)
From page 45 to page 45 (10th.International Semiconductor Laser
Conference).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記従来技術は、光通信に最適な1.2〜1.6μ
m帯の発振波長を保つ量子井戸型半導体レーザにおいて
変調帯域の向上や、しきい電流値の低減がなされていな
かつた。
However, the above-mentioned prior art is the most suitable for optical communication, 1.2 to 1.6 μm.
In a quantum well semiconductor laser that maintains an m-band oscillation wavelength, the modulation band has not been improved and the threshold current value has not been reduced.

本発明の目的は、光通信用あるいは可視光用に変調帯
域の広い、あるいはしきい電流値の低い量子井戸型半導
体レーザを提供することにある。
An object of the present invention is to provide a quantum well semiconductor laser having a wide modulation band or a low threshold current value for optical communication or visible light.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、1.2〜1.6μm帯でレーザ発振を生ずる材
料により量子井戸構造を形成し、この活性層の両側に位
置するバリア層に不純物をドープすることにより達成さ
れる。材料としては、活性層にInGaAsが、バリア層にIn
GaAlAsが夫々適している。各々の組成は、望ましい発振
波長について、各層の厚みを考慮して決定される。
The above object is achieved by forming a quantum well structure using a material that generates laser oscillation in a band of 1.2 to 1.6 μm and doping impurities into barrier layers located on both sides of the active layer. As materials, InGaAs is used for the active layer and InGaAs is used for the barrier layer.
GaAlAs are each suitable. Each composition is determined for a desired oscillation wavelength in consideration of the thickness of each layer.

〔作用〕[Action]

以上の材料により形成した量子井戸構造に対して、p
型の不純物を注入されるキヤリア密度以上の密度でドー
プすると、過剰の正孔が活性層内に生じ、微分利得が向
上し、変調帯域が拡大される。このため、半導体レーザ
の高速変調が可能となる。一方n型の不純物を注入され
るキヤリア密度以上の密度でドープすると、過剰の電子
が活性層内に生じ、誘導吸収が低減されるので、しきい
電流値が低減される。このため低電流動作が可能とな
る。
For the quantum well structure formed of the above materials, p
If the impurity of the type is doped at a density higher than the carrier density to be implanted, excess holes are generated in the active layer, the differential gain is improved, and the modulation band is expanded. Therefore, high-speed modulation of the semiconductor laser becomes possible. On the other hand, when the n-type impurity is doped at a density higher than the carrier density to be injected, excess electrons are generated in the active layer, and the induced absorption is reduced, so that the threshold current value is reduced. For this reason, a low current operation becomes possible.

以上のように、本発明によれば、発振波長1.2〜1.6μ
mにおいて、半導体レーザの大幅な性能向上が達成され
る。通常レーザ発振に必要な注入キヤリア密度は5×10
17cm-3〜2×1018cm-3なので、ドープする不純物の密度
は1×1018cm-3以上が良く、望ましくは4×1018cm-3
上が良い。
As described above, according to the present invention, the oscillation wavelength is 1.2 to 1.6 μm.
At m, a significant performance improvement of the semiconductor laser is achieved. The injection carrier density required for normal laser oscillation is 5 × 10
Since 17 cm −3 to 2 × 10 18 cm −3 , the density of the impurity to be doped is preferably 1 × 10 18 cm −3 or more, and more preferably 4 × 10 18 cm −3 or more.

また、1.2〜1.6μmの長波長帯では、オージエ効果
や、価電子帯間吸収により、キヤビテイ中に多数のキヤ
リアを注入しないと発振しない。このため注入された電
子がエネルギ的に拡がつて、微分利得が低下し易い。し
かし、本発明の構成により、井戸層内に多数の正孔が存
在すると、わずかの電子によつて発振するで、井戸層内
の電子のエネルギが拡がりを小さくすることができ、微
分利得が大幅に向上する。この効果は、0.8μm帯のGaA
lAs系より大きい。そして、微分利得が大きくなると、
緩和振動周波数が大きくなり高速化がはかれる。
In the long wavelength band of 1.2 to 1.6 μm, oscillation does not occur unless a large number of carriers are injected into the cavity due to the Auger effect and absorption between valence bands. For this reason, the injected electrons are energetically spread, and the differential gain tends to decrease. However, according to the structure of the present invention, when a large number of holes are present in the well layer, oscillation is caused by a small number of electrons, so that the energy of electrons in the well layer can be reduced in spread and the differential gain can be greatly increased. To improve. This effect is due to the 0.8 μm band GaAs
Larger than lAs system. And when the differential gain increases,
The relaxation oscillation frequency increases and the speed is increased.

また長波長帯では、端面破壊の光出力レベルがGaAlAs
系に比べ1桁以上大きい。光出力が大きいと緩和振動周
波数が大きくなるので非常に高い緩和振動周波数が得ら
れる。
Also, in the long wavelength band, the optical output level for end face breakdown is GaAlAs
One order of magnitude greater than the system. When the light output is large, the relaxation oscillation frequency becomes large, so that a very high relaxation oscillation frequency can be obtained.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第1図により説明す
る。n型InP基板1(厚み100μm)の上に分子線成長法
により、n型InAlAsクラツド層2(厚み3μm,Al組成0.
45)を成長した後、アンドープInGaAs活性層3(厚み10
0Å,Ga組成0.45),p型InGaAlAsバリア層4(厚み100Å,
Ga組成0.20,Al組成0.25,Beドープ)を交互に成長する。
この後p型InAlAsクラツド層5(厚み2μm,Al組成0.4
5),p型InGaAsキヤツプ層6(厚み0.5μm,Ga組成0.45)
を成長する。次にp側電極7,n側電極8を蒸着により形
成し、素子に切り離す。この素子において、バリア層4
にドープした不純物密度を2×1019cm-3にしたところ、
高速の変調限界を決めている緩和振動周波数が、30GHz
以上に達し、従来の不純物をドープしない量子井戸型レ
ーザに比べ2倍以上の値が得られた。
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. An n-type InAlAs cladding layer 2 (thickness: 3 μm, Al composition: 0.2 μm) is formed on an n-type InP substrate 1 (thickness: 100 μm) by a molecular beam growth method.
45), and then undoped InGaAs active layer 3 (thickness: 10).
0Å, Ga composition 0.45), p-type InGaAlAs barrier layer 4 (thickness 100Å,
Ga composition 0.20, Al composition 0.25, Be dope) are alternately grown.
Thereafter, the p-type InAlAs cladding layer 5 (thickness 2 μm, Al composition 0.4
5), p-type InGaAs cap layer 6 (thickness 0.5 μm, Ga composition 0.45)
Grow. Next, the p-side electrode 7 and the n-side electrode 8 are formed by vapor deposition, and cut into elements. In this device, the barrier layer 4
When the impurity density doped into is 2 × 10 19 cm −3 ,
The relaxation oscillation frequency that determines the high-speed modulation limit is 30 GHz
As a result, a value twice or more as compared with the conventional quantum well laser not doped with impurities was obtained.

レーザ発振波長は1.55μmであつた。 The laser oscillation wavelength was 1.55 μm.

本発明の第2の実施例を第2図を用いて説明する。第
1の実施例と同様な多層成長を行なつた後、素子中央部
分をメサ状に残し、化学食刻によつて、領域9を除去す
る。この後領域9を半絶縁性InP、あるいはポリイミ
ド、あるいはプロトン、ボロンなどのイオン打込みによ
り絶縁化したInPにより埋込む。この後、絶縁膜10を被
着し、p側電極7,n側電極8を蒸着し素子に切り離す。
この素子では、領域9により、メサ部分に光分布が閉込
められ、しかも領域9の容量が小さいので、高速変調の
周波数限界が向上する。変調強度が3dB低下するまでの
周波数帯域として35GHz以上の値が得られた。
A second embodiment of the present invention will be described with reference to FIG. After the same multi-layer growth as in the first embodiment is performed, the region 9 is removed by chemical etching while leaving the element central portion in a mesa shape. Thereafter, the region 9 is filled with semi-insulating InP, or polyimide, or InP which has been insulated by ion implantation of protons, boron, or the like. Thereafter, an insulating film 10 is applied, and the p-side electrode 7 and the n-side electrode 8 are deposited and separated into elements.
In this element, the light distribution is confined in the mesa portion by the region 9 and the capacity of the region 9 is small, so that the frequency limit of high-speed modulation is improved. A value of 35 GHz or more was obtained as a frequency band until the modulation intensity decreased by 3 dB.

以上、p型不純物をバリア層にドープした場合につい
て述べたが、活性層にドープしても、またはバリア層の
一部にドープしても同様の結果が得られた。また、以上
の説明ではドープする不純物をp型にして、高速変調限
界を調べたが、逆にドープする不純物をTe,Se,Siなどの
n型にして、しきい電流密度を調べたところ、1/2以下
の低減がはかれた。
As described above, the case where the p-type impurity is doped into the barrier layer has been described. However, similar results were obtained by doping the active layer or doping a part of the barrier layer. Also, in the above description, the doping impurity was made p-type, and the high-speed modulation limit was examined.On the contrary, the doping impurity was made n-type such as Te, Se, Si, etc., and the threshold current density was examined. A reduction of less than 1/2 was achieved.

〔発明の効果〕〔The invention's effect〕

本発明によれば、量子井戸型レーザにおいて、1.2〜
1.6μm帯の波長でレーザ発振し、高速変調限界を高
く、あるいはしきい電流値を低くできる。高速変調限界
については、従来の量子井戸型レーザに比べ2倍以上、
しきい電流値については1/2以下の値が得られる。
According to the present invention, in the quantum well laser,
Laser oscillation is performed at a wavelength in the 1.6 μm band, and the high-speed modulation limit can be increased or the threshold current value can be reduced. The high-speed modulation limit is more than twice that of the conventional quantum well laser.
Regarding the threshold current value, a value of 1/2 or less is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の量子井戸型半導体レーザ
の横断面図、第2図は本発明の第2実施例の埋込型半導
体レーザの横断面図である。 1……基板、2……クラツド層、3……活性層、4……
バリア層、5……クラツド層、6……キヤツプ層、8…
…電極、9……埋込領域。
FIG. 1 is a cross-sectional view of a quantum well semiconductor laser according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a buried semiconductor laser according to a second embodiment of the present invention. 1 ... substrate, 2 ... clad layer, 3 ... active layer, 4 ...
Barrier layer, 5 ... clad layer, 6 ... cap layer, 8 ...
... Electrode, 9 ... Embedded area.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−190992(JP,A) 特開 昭62−229990(JP,A) 特開 昭62−25484(JP,A) 特開 昭60−94787(JP,A) 特開 平1−241884(JP,A) 特開 平1−205586(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-190992 (JP, A) JP-A-62-2229990 (JP, A) JP-A-62-24844 (JP, A) JP-A-60-1990 94787 (JP, A) JP-A-1-241884 (JP, A) JP-A-1-205586 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶内自由電子の波束より小さい厚さの活
性層と該活性層の両側に形成された半導体層を含む量子
井戸構造の発光領域を有し、 上記半導体層には1×1018cm-3以上の不純物が導入さ
れ、 上記活性層はInGaAsからなり且つ該半導体層はInGaAlAs
からなることを特徴とする半導体レーザ素子。
A light emitting region having a quantum well structure including an active layer having a thickness smaller than a wave packet of free electrons in a crystal and semiconductor layers formed on both sides of the active layer; 18 cm -3 are introduced more impurities, the active layer is made of InGaAs and the semiconductor layer InGaAlAs
A semiconductor laser device comprising:
JP63121713A 1988-05-20 1988-05-20 Semiconductor laser device Expired - Lifetime JP2702964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121713A JP2702964B2 (en) 1988-05-20 1988-05-20 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121713A JP2702964B2 (en) 1988-05-20 1988-05-20 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01292874A JPH01292874A (en) 1989-11-27
JP2702964B2 true JP2702964B2 (en) 1998-01-26

Family

ID=14818038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121713A Expired - Lifetime JP2702964B2 (en) 1988-05-20 1988-05-20 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2702964B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022545A1 (en) * 1999-09-22 2001-03-29 Mitsubishi Chemical Corporation Luminous element and luminous element module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094787A (en) * 1983-10-28 1985-05-27 Hitachi Ltd Semiconductor laser device
JPH0712103B2 (en) * 1985-07-26 1995-02-08 株式会社日立製作所 Semiconductor laser device
JPH01205586A (en) * 1988-02-12 1989-08-17 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser having quantum well structure
JPH01241884A (en) * 1988-03-24 1989-09-26 Matsushita Electric Ind Co Ltd Multiple quantum well semiconductor laser

Also Published As

Publication number Publication date
JPH01292874A (en) 1989-11-27

Similar Documents

Publication Publication Date Title
US4881238A (en) Semiconductor laser having quantum well active region doped with impurities
EP0215298B1 (en) Semiconductor laser
JPS6288389A (en) Semiconductor light emitting element
JPS62188393A (en) Semiconductor laser
JPH07162086A (en) Manufacture of semiconductor laser
US4759025A (en) Window structure semiconductor laser
JP2702964B2 (en) Semiconductor laser device
JPH02203585A (en) Semiconductor laser device and its manufacture
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
US5351254A (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
US4866723A (en) DCPBH laser having a high temperature stability
JPH0712103B2 (en) Semiconductor laser device
US5360763A (en) Method for fabricating an optical semiconductor device
JP2679974B2 (en) Semiconductor laser device
JPH0278290A (en) Semiconductor laser device
JP2644729B2 (en) Semiconductor laser device
JP3204969B2 (en) Semiconductor laser and optical communication system
JP3648357B2 (en) Manufacturing method of semiconductor laser device
KR900000021B1 (en) Semiconductor laser
JP2529854B2 (en) Infrared semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JP2740165B2 (en) Semiconductor laser
JP2771318B2 (en) Semiconductor laser
JPH07183619A (en) Modulated dope quantum well semiconductor laser