JPS6094787A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6094787A
JPS6094787A JP20093183A JP20093183A JPS6094787A JP S6094787 A JPS6094787 A JP S6094787A JP 20093183 A JP20093183 A JP 20093183A JP 20093183 A JP20093183 A JP 20093183A JP S6094787 A JPS6094787 A JP S6094787A
Authority
JP
Japan
Prior art keywords
layer
layers
laser
active layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20093183A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Shigekazu Minagawa
皆川 重量
Kazuhiro Ito
和弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20093183A priority Critical patent/JPS6094787A/en
Publication of JPS6094787A publication Critical patent/JPS6094787A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Abstract

PURPOSE:To obtain excellent temperature characteristics of longitudinal and lateral gimbal mode and threshold current by using a material which has larger energy gap than the active layer and the same refractive index as a material of enclosing layer in a laser having a multiquantum well structure. CONSTITUTION:The difference of the refractive index of a carrier enclosing layer 14 and an active layer 13 is set to 3% or lower to set the light energy transmission factor between the layers 13 and 14 is 99% or higher. As a result, the electrically implanted carrier is collected in the layer 13 by an energy barrier due to the difference of the energy gap of the layers 13 and 14 to generate photons. Since the refractive indexes of the layers 13, 14 are substantially equal, the produced photons spread to the entire region interposed between the outside light of the multiquantum well and the carrier enclosing layer 14, thereby generating a laser oscillation. Thus, incoherency based on the laser oscillation produced independently between the layers 13 is improved, thereby obtaining the laser light having excellent lateral mode.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体レーザ装置に関する。特にモード制御
、しきい値電流の温度特性に優れた半導体レーザを提供
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor laser device. The present invention provides a semiconductor laser that is particularly excellent in mode control and threshold current temperature characteristics.

〔発明の背景〕[Background of the invention]

G a A tA s系、JnGaAsP系などの半導
体レーザ・ダイオードの室温連続発振を可能にした要因
の1つは、ダブルへテロ(DH)構造にある。これは、
活性層をはさむ両側に、高エネルギーギャップ、低屈折
率の層をもうけることにより、活性層内へのキャリア、
および光のとじこめを有効に行なうものである。また、
このDH構造において、活性層の幅を500Å以下とご
く薄くすることにより(シングルクオンタムウエール構
造)、状態密度の変化に代表される量子的効果が現われ
る。
One of the factors that has enabled continuous oscillation at room temperature in semiconductor laser diodes such as GaAtAs and JnGaAsP is the double hetero (DH) structure. this is,
By creating layers with high energy gap and low refractive index on both sides of the active layer, carriers into the active layer,
It also effectively confines light. Also,
In this DH structure, by making the width of the active layer extremely thin to 500 Å or less (single quantum wale structure), a quantum effect represented by a change in the density of states appears.

その結果、低しきい電流値での室温連続発振、光出力の
高効率化、しきい電流値の温度特性の向上などが得られ
た。さらに、とくうすいDH構造を持つ層の組み合わせ
(各層200人程度)を多段につみかさねたマルチクオ
ンタムウエーム構造の採用により、キャリアの収集効率
を上げ、また、キャリアのエネルギー緩和を行なわせす
ぐれた特性を持つ半導体レーザが得られている。この場
合、マルチクアンタムウエール内のとじこめ層には、D
H構造と同様に活性層と比べ、エネルギーギャツブが大
きく、屈折率の小さい物質を使用している。とじこめ層
の屈折率が活性層のそれよりも小さく、光のとじこめ効
果を持たしているため、多段の活性層で生じた光は、各
活性1−内にとじこめられ相互に独立となる傾向がある
。その結果、各層の光のコヒーレント性に悪影響をあた
え、横モード特性に問題を生じる。
As a result, continuous oscillation at room temperature with a low threshold current value, high efficiency of optical output, and improvement in the temperature characteristics of the threshold current value were achieved. Furthermore, by adopting a multi-quantum wave structure that combines layers with a special DH structure (approximately 200 people in each layer) in multiple stages, carrier collection efficiency is increased and carrier energy relaxation is achieved. Semiconductor lasers with In this case, the containment layer in the multi-quantum wale has D
Similar to the H structure, a material with a larger energy gap and lower refractive index than the active layer is used. Since the refractive index of the confinement layer is smaller than that of the active layer and has a light confinement effect, the light generated in the multi-stage active layer tends to be confined within each active layer and become independent from each other. be. As a result, the coherence of light in each layer is adversely affected, causing problems in transverse mode characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マルチクアンタムウエール構造を有す
る半導体レーザダイオードにおいて、横モードの制御を
改善することである。
An object of the present invention is to improve control of transverse modes in a semiconductor laser diode having a multi-quantum wale structure.

〔発明の概要〕[Summary of the invention]

以上、述べたとおり、マルチカンタムラエールレーザに
は、横モード特性に問題がある。その原因は、マルチク
アンタムウエール層内のとじこめ層の屈折率が、活性層
のそれと比べ小さく、光が各層に独立にとじこめられる
ことにある。
As mentioned above, multi-quantum Rayle lasers have problems with transverse mode characteristics. The reason for this is that the refractive index of the confinement layer in the multi-quantum wale layer is smaller than that of the active layer, and light is confined in each layer independently.

本発明は、上記欠点を改善するため、上記とじこめ層の
材料として、活性層と比べ、エネルギーギャップが大き
く、屈折率は同程度の利料を使用するものである。屈折
率の差し13%以内が良い。
In order to improve the above drawbacks, the present invention uses a material for the confinement layer that has a larger energy gap and a similar refractive index than the active layer. It is preferable that the difference in refractive index be within 13%.

3チ以内にすることにより、キャリアとじこめ層、活性
層間の光のエネルギー透過率は99−以上となる。その
結果、電気的に注入されたキャリアは、活性層、とじこ
め層のエネルギーギャップの違いによるエネルギー障壁
により活性層内にあつめられ、フォトンを発生する。活
性層ととじこめ層の屈折率がほぼ等しいため、生じたフ
ォトンはマルチカンタムラエールの外側の光、キャリア
のとじこめ層ではさまれた全領域に広がり、そこでレー
ザ発振を起こす。そのため、前述の各活性層間に独立に
生じたレーザ発振にもとづくインコヒーレンシーは改善
され、横モード特性の浸れたレーザ光が得られる。
By making it less than 3 inches, the light energy transmittance between the carrier confinement layer and the active layer becomes 99- or more. As a result, the electrically injected carriers are concentrated in the active layer due to the energy barrier caused by the difference in energy gap between the active layer and the confinement layer, generating photons. Since the active layer and the confinement layer have almost the same refractive index, the generated photons spread to the entire area between the light and carrier confinement layers outside the multi-quantum molecular ale, causing laser oscillation there. Therefore, the incoherency based on the laser oscillation that occurs independently between each of the active layers described above is improved, and a laser beam with immersed transverse mode characteristics can be obtained.

なお、マルチカンタムラエール構造を形成する活性層、
とじこめ層の厚さは、60〜200人が適当である。゛
これは、注入されたホットキャリアのエネルギー緩和の
ため60Å以上の厚さが必要であり、また茄子効果をも
たらすため200Å以下の条件が必要であるためである
In addition, the active layer forming a multi-quantum layer structure,
The appropriate thickness of the locking layer is 60 to 200 people. This is because a thickness of 60 Å or more is required to relax the energy of the injected hot carriers, and a thickness of 200 Å or less is required to bring about the eggplant effect.

また、マルチカンタムラエール構造の材料にI n 1
−X G a zP + I ” 1−x’ y G 
az’ A、Z y P系が有力であるが、その場合、
以下の制約を旬けることができる。0<X<11 X’
 =)[、o(y(t−x’ jれは(x=x’ )、
両層間の格子整合を取るために必要である。
In addition, I n 1 for materials with multi-quantum lael structure
-X G a zP + I ” 1-x' y G
The az' A, Z y P system is most likely, but in that case,
The following constraints can be applied. 0<X<11 X'
=) [, o(y(t-x' j is (x=x'),
This is necessary to achieve lattice matching between both layers.

〔発明の実施例〕[Embodiments of the invention]

本発明のマルチカンタムラエール構造e有fる埋め込み
へテロ(HII : Buried 1jeterss
tructure )型レーザダイオードを示す。
The multi-quantum molecular structure of the present invention has a buried heterostructure (HII: Buried 1jeterss).
This shows a structure type laser diode.

作製は以下の手順で行なった。The fabrication was performed according to the following steps.

1 ’)MOCV、D法による多層成長第1図に、MO
CvD法により得られたマルチカンタムラエールレーザ
用ウェハーの上に多層の積層構造を形成した場合の断面
図を示す。n −G a A 511(Siドープn 
” I X 10”cm−3、膜厚t=400μm)を
成長用基板に用い、12.12’のGao、a4Ato
、aaAs による光、キャリアとじこめ層(12:各
々Seドープ” ” 2 X 10” cm−”、t=
2pm、12’ :Zn ドープp = 2 X 10
!8crn−3、t=2μm)内に、マルチカンタムラ
エール層をもうけた。同層は、51−のGaO,511
n0.411)−活性層13(アンドープn = I 
X ] O”cnI−3、t=80人)および4層のG
 a 0.22 I n O,49At O,29pキ
ャリアとじこめ層(アンドープn = ]、 x 10
16cm−3、t=80人)を交互に重ねて構成した。
1') Multilayer growth by MOCV, D method Figure 1 shows the MOCV
A cross-sectional view of a multilayer laminated structure formed on a wafer for a multi-quantum Rayle laser obtained by the CvD method is shown. n -G a A 511 (Si doped n
12.12' Gao, a4Ato
, aaAs light and carrier confinement layer (12: each Se-doped "" 2 X 10"cm-", t=
2pm, 12': Zn doped p = 2 x 10
! 8 crn-3, t=2 μm), a multi-quantum layer was formed. The same layer is 51-GaO, 511
n0.411) - active layer 13 (undoped n = I
X ] O”cnI-3, t = 80 people) and 4-layer G
a 0.22 I n O, 49 At O, 29p carrier confinement layer (undoped n = ], x 10
16cm-3, t=80 people) were stacked alternately.

第1図中15は、p”−GaAsコyタクト11111
(Znドープp = 5 X 10”cm−3、t=l
lzm)である。
15 in Fig. 1 is a p”-GaAs coytact 11111
(Zn doped p = 5 x 10"cm-3, t = l
lzm).

MOCVD成長は、トリメチルガリウム、トリメチルイ
ンジウム、トリメチルアルミニウム、アルシン、ホスフ
ィン、ジエチル亜鉛および士しン化水素を各々Ga、I
n、At、AS、P、ZnおよびBeの原料ガスとして
用いた。成長温度は600tll’、反応管内圧力は1
.00 torr ノ減圧で行ない、ホスフィン、トリ
メチルインジウムの副反応を防止するため、分解炉を備
えた横型反応管を用いた。
MOCVD growth was performed on trimethylgallium, trimethylindium, trimethylaluminum, arsine, phosphine, diethylzinc and hydrogen hydroxide, respectively.
It was used as raw material gas for n, At, AS, P, Zn and Be. The growth temperature was 600 tll', and the pressure inside the reaction tube was 1.
.. The reaction was carried out at a reduced pressure of 0.000 torr, and in order to prevent side reactions of phosphine and trimethylindium, a horizontal reaction tube equipped with a decomposition furnace was used.

2)次いで、BH構造作製のためのメザエツチングを行
なう。
2) Next, mesa etching is performed to create a BH structure.

主水系エツチング液により所定幅のストライプ状メサ構
造を形成した。
A striped mesa structure of a predetermined width was formed using a main water-based etching solution.

3)次いでLPE法によるGaAtAs Jf14め込
み層を形成する。
3) Next, a GaAtAs Jf14 embedded layer is formed by the LPE method.

第2図に、本発明のマルチカンタムラエール構造を有す
るBHレーザのレーザ光の進行方向に垂直な面での断面
図を示す。第1図に示したウェハーを上記エツチングに
よりメサ構造30を形成した後、LPE法によりI) 
GaO,!14A、/−0.66AS1層26(Zn 
ドープp= 2 X 1017cm−3、t=2μm)
、n Gao、a4Ato、saA、s層27(Teド
ープn=2×10”cm−” 、t = 2 μm )
 全形成LJ’j。
FIG. 2 shows a cross-sectional view of a BH laser having a multi-quantum layer structure according to the present invention in a plane perpendicular to the direction in which laser light travels. After forming the mesa structure 30 on the wafer shown in FIG. 1 by the above etching, I)
GaO,! 14A, /-0.66AS1 layer 26 (Zn
doping p=2×1017cm−3, t=2μm)
, n Gao, a4Ato, saA, s layer 27 (Te doped n=2×10"cm-", t=2 μm)
Total formation LJ'j.

成長は、成長温度5ooC,冷却速度1c/分、過飽和
温度約5CでH2雰囲気中で行なった。
The growth was carried out in an H2 atmosphere at a growth temperature of 50C, a cooling rate of 1C/min, and a supersaturation temperature of about 5C.

4)SICh膜、電極形成 電流狭さくのため5iQ2膜28、及び電流注入のため
の電極29.29’を形成した。
4) SICh film and electrode formation A 5iQ2 film 28 for current narrowing and electrodes 29 and 29' for current injection were formed.

注入されたキャリアは0.4eVのエネルギーギャップ
の差を持つキャリアとじこめ層第1図14により活性層
13の中にとじこめられる。そこで発生した光は、13
.14の屈折率差が2%と小さいためマルチカンタムラ
エール層内に拡がり、光及びキャリアのとじこめ層12
.12’l川にとじこめられる。さらに光の横方向につ
いては、第2d26.27のG a AtA s Jj
JJめ込み層により拡がりを制限され、23.24のマ
ルチカンタムラエール層内にとじこめられる。
The injected carriers are confined in the active layer 13 by the carrier confinement layer FIG. 14 having an energy gap difference of 0.4 eV. The light generated there is 13
.. Since the refractive index difference of 14 is as small as 2%, it spreads within the multi-quantum layer and becomes a light and carrier confinement layer 12.
.. 12'L is trapped in the river. Furthermore, regarding the horizontal direction of light, the second d26.27 G a AtA s Jj
The spread is restricted by the JJ inset layer, and is confined within the 23.24 multi-quanta layer.

本素子は、発損波長650nm、l、きい値電流密度2
KA/cFd、縦単一モード0、横車−モードで室温連
続発振した。
This device has an emission wavelength of 650 nm, a threshold current density of 2
KA/cFd, longitudinal single mode 0, horizontal wheel mode, continuous oscillation at room temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各活性層間にわたってコヒーレンシー
の優したマルチカンタムラエールレーザを作製できるの
で、縦、横シンベルモード、シキい値電流の温度特性の
唆れたレーザを作製できる。
According to the present invention, it is possible to fabricate a multi-quantum Rayel laser with excellent coherency between each active layer, so it is possible to fabricate a laser that exhibits longitudinal and transverse symbel modes, and temperature characteristics of peak current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のマルチクアンタムウエールレーザ用
エビウェハーに多ノー構造を形成した状態の断面図であ
る、第2図は、マルチカンタムラエールレーザ装置の断
面図である。 11−・−n−()aAa基板、l 2=・n −(]
 ]ao、34A/−o、66AS光キャリアとじこめ
1m、12’・・・p −Qao、a4Ato、5aA
s光\キヤリアとじこめ層、13・・・n −Ga0.
51 I no、ae I)活性層、14−n−Ga0
.22 I n o、<oAlo、ze I)キャリア
とじこめ層、15・・・p”−GaAsコンタクト層、
26・・・p−Gao、aaAto、asAs埋め込み
層、27・・・n−G a o、a4 At O,1!
6 A 8 Nめ込み層、28・・・51o2膜、29
・・・29’[極。 (9)
FIG. 1 is a cross-sectional view of a multi-no structure formed on a wafer for a multi-quantum wale laser according to the present invention, and FIG. 2 is a cross-sectional view of a multi-quantum wale laser device. 11-・-n-()aAa substrate, l 2=・n-(]
]ao, 34A/-o, 66AS optical carrier confined 1m, 12'...p -Qao, a4Ato, 5aA
s light\carrier confinement layer, 13...n -Ga0.
51 I no, ae I) Active layer, 14-n-Ga0
.. 22 Ino, <oAlo, ze I) Carrier confinement layer, 15...p"-GaAs contact layer,
26...p-Gao, aaAto, asAs buried layer, 27...n-Gao, a4 At O, 1!
6 A 8 N inset layer, 28...51o2 film, 29
...29' [pole. (9)

Claims (1)

【特許請求の範囲】 1、マルチカンタムラエール構造を有するレーザにおい
て、活性層と活性層との間のキャリアの閉じ込め層の材
料として、活性層の材料と比ベバンドギャップが大きく
、かつ屈折率がほぼ等しい(その差が3%以内)材料を
用いることを特徴とする半導体レーザ装置。 2、マルチカンタムラエールレーザにおいて、活性層に
In1−XGaXP (0(X(1)を用い、活性層と
活性層との間のとじこめ層にI ” 1−x ’−ア
[Claims] 1. In a laser having a multi-quantum Rahe structure, the carrier confinement layer between the active layers is made of a material that has a large band gap and a refractive index compared to the material of the active layers. A semiconductor laser device characterized in that it uses materials that are almost the same (the difference is within 3%). 2. In a multi-quantum molecular laser, In1-XGaXP (0(X(1)) is used in the active layer, and I''1-x'-A
JP20093183A 1983-10-28 1983-10-28 Semiconductor laser device Pending JPS6094787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20093183A JPS6094787A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20093183A JPS6094787A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6094787A true JPS6094787A (en) 1985-05-27

Family

ID=16432663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20093183A Pending JPS6094787A (en) 1983-10-28 1983-10-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6094787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292874A (en) * 1988-05-20 1989-11-27 Hitachi Ltd Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292874A (en) * 1988-05-20 1989-11-27 Hitachi Ltd Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2809691B2 (en) Semiconductor laser
US5276698A (en) Semiconductor laser having an optical waveguide layer including an AlGaInP active layer
JPS60192380A (en) Semiconductor laser device
JPS6180882A (en) Semiconductor laser device
US4365260A (en) Semiconductor light emitting device with quantum well active region of indirect bandgap semiconductor material
JPH07263798A (en) Semiconductor laser and its manufacture
US5161167A (en) Semiconductor laser producing visible light
JP4017196B2 (en) Distributed feedback semiconductor laser device
EP0148021B1 (en) Semiconductor laser device
JP3432909B2 (en) Semiconductor laser
JP4002422B2 (en) Semiconductor device and manufacturing method thereof
JP2817710B2 (en) Semiconductor laser
JP5169534B2 (en) Integrated optical semiconductor device manufacturing method and integrated optical semiconductor device
JPH09181389A (en) Self-excited semiconductor laser device
JPS6094787A (en) Semiconductor laser device
JP3938976B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0462195B2 (en)
JPH04350988A (en) Light-emitting element of quantum well structure
US4270094A (en) Semiconductor light emitting device
JPS603178A (en) Semiconductor laser device
JPS59107588A (en) Optical semiconductor device
JPS58118184A (en) Buried hetero structural semiconductor laser
JPS63150982A (en) Semiconductor light emitting device
JP2011216800A (en) Optical semiconductor device and method of manufacturing the same
JPH0278290A (en) Semiconductor laser device