JPH01241884A - Multiple quantum well semiconductor laser - Google Patents

Multiple quantum well semiconductor laser

Info

Publication number
JPH01241884A
JPH01241884A JP7002688A JP7002688A JPH01241884A JP H01241884 A JPH01241884 A JP H01241884A JP 7002688 A JP7002688 A JP 7002688A JP 7002688 A JP7002688 A JP 7002688A JP H01241884 A JPH01241884 A JP H01241884A
Authority
JP
Japan
Prior art keywords
layer
mqw
semiconductor laser
quantum well
type inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002688A
Other languages
Japanese (ja)
Inventor
Toshiharu Kawabata
川端 敏治
Nagataka Ishiguro
永孝 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7002688A priority Critical patent/JPH01241884A/en
Publication of JPH01241884A publication Critical patent/JPH01241884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a long wavelength band multiple quantum well(MQW) semiconductor laser having a low threshold value current by doping a barrier layer of the MQW with acceptors in a specific concentration range. CONSTITUTION:After an N-type InP clad layer 2 is grown on an N-type InP substrate face 1 in a plane (100), InGaAsP well layers 3 each having 200Angstrom of thickness and InP barrier layers 4 each having 200Angstrom of thickness are alternately grown as a MQW active layer, and a P-type InP clad layer 7 is further partly grown thinly. The number of the layers 3 is 6 and the layer is undoped, and the layer 4 is doped with Zn. In order to improve the hole injection efficiency, the Zn doping to the layer 4 is effective, and its optimum Zn concentration ranges from 1X10<18>cm<-3> to 2.5X10<18>cm<-3>. The Zn concentration is set to this range, thereby manufacturing long wavelength band MQW laser having a low threshold value current.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信に用いられる石英ガラスファイバーの低
損失波長領域1.3μm−1,65μm (長波長帯)
の光源となる半導体レーザに関するものであり、詳しく
は低しきい超電流の多重量子井戸(以下MQWと記す)
レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention applies to the low loss wavelength range of 1.3 μm to 1,65 μm (long wavelength band) of silica glass fiber used in optical communications.
This relates to a semiconductor laser that serves as a light source, and in detail, a low-threshold supercurrent multiple quantum well (hereinafter referred to as MQW).
It is related to lasers.

従来の技術 近年、活性層に工nGaAsPの材料を用いた長波長帯
の半導体レーザが実用化される様になってきた。この半
導体レーザは活性層の厚さが0.1μm〜0.2μmと
厚く、この活性層をn型とp型のInPのクラッド層で
はさんだダブルへテロ(DH)構造となっている。光通
信用光源として利用する半導体レーザには、低しきい超
電流、良好な温度特性、動的単一モード化および高い信
頼性等が要求される。特に長波長帯レーザは砒化ガリウ
ム(GaAs )系の短波長帯レーザに比べて発振しき
い超電流の温度特性が悪く、温度特性の改善が最大の課
題となっている。
BACKGROUND OF THE INVENTION In recent years, long-wavelength semiconductor lasers using nGaAsP materials for their active layers have come into practical use. This semiconductor laser has a thick active layer of 0.1 μm to 0.2 μm, and has a double hetero (DH) structure in which the active layer is sandwiched between n-type and p-type InP cladding layers. Semiconductor lasers used as light sources for optical communications are required to have low threshold supercurrent, good temperature characteristics, dynamic single mode, and high reliability. In particular, long-wavelength lasers have worse temperature characteristics of oscillation threshold supercurrent than short-wavelength lasers based on gallium arsenide (GaAs), and the greatest challenge is to improve the temperature characteristics.

31、−7 この問題を解決する方法として、MQWレーザが注目さ
れている。電子や正孔をド・ブロイ波長と同程鶏(数百
へ)以下の幅のポテンシャル井戸(量子井戸)に閉じ込
めると、電子や正孔が量子力学的な波動としてのふる捷
いを示すため、量子化された離散的なエネルギー準位が
形成される。
31,-7 MQW lasers are attracting attention as a method to solve this problem. When electrons and holes are confined in a potential well (quantum well) with a width equal to the de Broglie wavelength (up to several hundred) or less, the electrons and holes exhibit oscillation as quantum mechanical waves. , quantized discrete energy levels are formed.

その結果、状態密度関数は階段状となる。この量子井戸
を活性層とす半導体レーザを作成すると、高いエネルギ
ーを持った余分なキャリアの数が減少し、小さな注入電
流密度で発振するとともに、利得係数の温度変化が小さ
く、しきい値電流の温度安定性もよい。しかし、活性層
の厚さが極めて薄いために光の閉じ込め係数が減少し、
逆にしきい値が増大する。光閉じ込め係数を改善するた
めに、多数の量子井戸を隣接して並べたのがMQW構造
である。
As a result, the state density function becomes step-like. When a semiconductor laser is created using this quantum well as an active layer, the number of extra carriers with high energy is reduced, and it oscillates with a small injection current density, the temperature change in the gain coefficient is small, and the threshold current is It also has good temperature stability. However, because the thickness of the active layer is extremely thin, the light confinement coefficient decreases.
Conversely, the threshold increases. The MQW structure has a large number of quantum wells arranged next to each other in order to improve the optical confinement coefficient.

長波長帯レーザではウェル層(井戸層)としてInGa
AsPまたはInGaASが、バリア層(障壁層)とし
て、InPまだはウェル層よシも禁制帯幅(バンドギャ
ップ)が大きいInGaAsPが用いられる。
In a long wavelength band laser, InGa is used as a well layer.
AsP or InGaAS is used as a barrier layer (barrier layer), and InGaAsP has a larger forbidden band width (band gap) than that of a well layer.

一般に通常のDHレーザやMQWレーザでは、活性層は
アンドープとなっている。
Generally, in a normal DH laser or MQW laser, the active layer is undoped.

発明が解決しようとする課題 しかしながら、G a A s系短波長帯のMQWレー
ザは極めて良好な特性が実現きれているにもかかわらず
、InP系の長波長帯MQWレーザでは、通常のDHレ
ーザに比べ温度特性は改善されているものの、低しきい
値化は達成されていない。これはクラッド層から注入を
れたキャリアが、多数のバリア層を超える必要があるた
め、注入効率が悪くなっていることが原因である。特に
電子に比べて正孔の有効質量は約1桁大きく、拡散しに
くいため、正孔の注入効率が悪い。
Problems to be Solved by the Invention However, although GaAs-based short-wavelength band MQW lasers have achieved extremely good characteristics, InP-based long-wavelength band MQW lasers are inferior to ordinary DH lasers. Although the temperature characteristics have been improved in comparison, lower threshold values have not been achieved. This is because carriers injected from the cladding layer have to pass through multiple barrier layers, resulting in poor injection efficiency. In particular, the effective mass of a hole is about one order of magnitude larger than that of an electron, and it is difficult to diffuse, so the injection efficiency of holes is poor.

本発明は上記従来の問題点を解決するもので、低しきい
値電流の長波長帯半導体レーザを提供することを目n勺
とする。
The present invention is intended to solve the above-mentioned conventional problems, and its primary purpose is to provide a long wavelength band semiconductor laser with a low threshold current.

課題を解決するだめの手段 この目的を達成するために、本発明のMQWレーザは、
バリア層となるInP層捷たはInGaAsP層に亜鉛
(Zn)等のアクセプタ不純物をドーピン57、−7 グするとともに、その濃度を結晶性が悪化しない程度に
高濃度にしたものである。
Means for Solving the Problem In order to achieve this object, the MQW laser of the present invention:
The InP layer or InGaAsP layer serving as the barrier layer is doped with an acceptor impurity such as zinc (Zn), and the concentration is set to be high enough not to deteriorate the crystallinity.

作   用 この構造の半導体レーザでは、MQWのバリア層にドー
ピングされたアクセプタ不純物から価電子帯に熱的励起
した正孔が隣接したバンドギャップの小さいウェル層に
落ち込む。発光領域はウェル層であり、バリア層への高
濃度不純物ドーピングのため発光効率が低下することは
ない。寸だ発光波長に対してバリア層は透明であシ、不
純物の光吸収損失は小さい。さらにクラッド層からMQ
Wに注入される正孔の注入効率は悪くても、あらかじめ
正孔がウェル層に均一に存在するため、注入された電子
との再結合確率は高(、MQWレーザの低しきb値を達
成することができる。
Function: In a semiconductor laser having this structure, holes thermally excited to the valence band from the acceptor impurity doped in the MQW barrier layer fall into the adjacent well layer having a small band gap. The light emitting region is a well layer, and the light emitting efficiency does not decrease because the barrier layer is doped with impurities at a high concentration. The barrier layer is transparent to light emission wavelengths, and light absorption loss due to impurities is small. Furthermore, MQ from the cladding layer
Even though the injection efficiency of holes injected into W is low, the holes are uniformly present in the well layer in advance, so the probability of recombination with injected electrons is high (achieving a low b value for MQW lasers). can do.

実施例 以下本発明の実施例について、図面を参照しながら説明
する。長波長帯のMQWレーザの作成には、ヘテロ界面
の急峻性、膜厚の均一性および薄膜の制御性に優れた有
機金属気相成長法(MOCVD6 ヘ一〕 法)を採用し、まだ、原料ガスとしてトリメチルインジ
ウム(TMI)、)リエチルガリウム(TEG)、アル
シン(AsH3)およびホスフィン(PH3)を用い、
さらに、不純物としてセレン化水素(H2Se)とジエ
チル亜鉛(DEZ)にょシそれぞれSeとZnをドーピ
ングしたつ第1図は本発明のMQWレーザの断面構造を
示すもので、右上にそのMQW活性層の拡大図をU[せ
て示す。単一横モード化と電流を効率良く活性層へ導く
ため、埋込型構造となっている。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings. To create a long-wavelength MQW laser, we adopted the metal organic chemical vapor deposition method (MOCVD6 method), which has excellent hetero-interface steepness, uniform film thickness, and thin film controllability. Using trimethylindium (TMI), ethylgallium (TEG), arsine (AsH3) and phosphine (PH3) as gases,
Furthermore, hydrogen selenide (H2Se) and diethylzinc (DEZ) were doped as impurities with Se and Zn, respectively. The enlarged view is shown by U. The buried structure is used to achieve a single transverse mode and to efficiently guide current to the active layer.

まずn型InP基板(100)面1上に、n型InPク
ラッド層2を成長したのち、MQW活性層として、厚さ
200人のInGaAsP  ウx ル層3と厚き20
0人のInPバリア層4を交互に成長し、さらにp型I
nPクラッド層7の一部を薄く成長した。ウェル層3の
層数は6層でアンドープであシ、バリア層4にばZnを
ドーピングした。
First, an n-type InP cladding layer 2 is grown on the (100) surface 1 of the n-type InP substrate, and then an InGaAsP layer 3 with a thickness of 200 nm and an InGaAsP layer 3 with a thickness of 200 nm are formed as an MQW active layer.
0 InP barrier layers 4 are grown alternately, and further p-type I
A part of the nP cladding layer 7 was grown thinly. The well layer 3 had six layers and was undoped, and the barrier layer 4 was doped with Zn.

次に上記ウェハのく011〉方向に8102膜のストラ
イプを形成し、これに覆われることのない部分を臭素メ
タノール溶液および塩酸、リン酸溶77、−7 液でエツチングすることによシ、メサ状ストライプ形状
を作成した。なお、この処理で形成するMQW活性層の
幅は約2μmに設定した。続いて2回目のMOCVD成
長により、MQW活性層の両側に、p型InP埋込層5
およびn型InP埋込層6を順次成長し電流ブロック層
とした。
Next, stripes of the 8102 film are formed in the 011> direction of the wafer, and the areas not covered by the stripes are etched with a bromine methanol solution and a hydrochloric acid/phosphoric acid solution 77, -7 to form a mesa. A stripe shape was created. Note that the width of the MQW active layer formed by this process was set to about 2 μm. Subsequently, by second MOCVD growth, p-type InP buried layers 5 are formed on both sides of the MQW active layer.
and an n-type InP buried layer 6 were sequentially grown to form a current blocking layer.

さらに、上記SiO2膜のストライプを除去した後、3
回目のMOCVD成長によってp型InPクラッド層7
およびp型InGaA8Pコンタクト層8を順次成長し
た。
Furthermore, after removing the stripes of the SiO2 film, 3
The p-type InP cladding layer 7 is formed by the second MOCVD growth.
and p-type InGaA8P contact layer 8 were successively grown.

この様な構造のMQWレーザにおける発振しきい値電流
のInPバリア層4中のZn濃度依存性を第2図に示す
。なお、n型InPクラッド層2のSe濃度は2X10
  C7n  、p型InPクラッド層7のZn濃度は
7 X 10170ff−5である。InPバリア層4
のZn濃度が1×1018(7)−3以下特に7X10
171 ”のところではアンドープの場合と大差がなり
、Znドーピングの効果が見られなかった。寸だ、Zn
濃度が2.5 X 1018C71+−5以上になると
、結晶性が悪化し、ヘテロ界面の劣化から逆にしきい値
電流が上昇した。また、InPバリア層4にSeを1.
7Xl○18C2n−3ドーピングした場合は、発振し
きい値電流は5o〜eomAと上昇し、MQWへの電子
の注入効率よシ正孔の注入効率が問題であることが判明
した。正孔の注入効率の改善にはInPバリア層4への
Znドーピングが効果的であり、その最適Zn濃度は1
×10 cm  から2.5 X 10181−3の範
囲である。Zn濃度をこの範囲に設定することにより、
低しきい値電流の長波長帯MQWレーザが作製できるこ
とが確認された。
FIG. 2 shows the dependence of the oscillation threshold current on the Zn concentration in the InP barrier layer 4 in an MQW laser having such a structure. Note that the Se concentration of the n-type InP cladding layer 2 is 2×10
The Zn concentration of the C7n, p-type InP cladding layer 7 is 7×10170ff−5. InP barrier layer 4
Zn concentration of 1×1018(7)-3 or less, especially 7×10
At 171", there was a big difference from the undoped case, and no effect of Zn doping could be seen.
When the concentration exceeded 2.5×1018C71+-5, the crystallinity deteriorated and the threshold current increased due to the deterioration of the hetero interface. In addition, 1.0% of Se was added to the InP barrier layer 4.
In the case of 7Xl○18C2n-3 doping, the oscillation threshold current increased to 50 to eomA, and it was found that the hole injection efficiency was more important than the electron injection efficiency into the MQW. Zn doping to the InP barrier layer 4 is effective for improving the hole injection efficiency, and the optimum Zn concentration is 1.
x 10 cm to 2.5 x 10181-3. By setting the Zn concentration within this range,
It was confirmed that a long wavelength band MQW laser with a low threshold current can be fabricated.

なお、実施例では、ウェル層3は4元混晶のInGaA
sPとしたが、3元混晶のInGaAsとしてもよく、
寸だバリア層4はInPとしたが、ウェル層よりも禁制
帯幅の大きいInGaAsPとしてもよいととは言うま
でもない。
In the embodiment, the well layer 3 is made of quaternary mixed crystal InGaA.
sP, but ternary mixed crystal InGaAs may also be used.
Although the barrier layer 4 is made of InP, it goes without saying that InGaAsP, which has a wider forbidden band width than the well layer, may also be used.

発明の効果 以上のように本発明は多重量子井戸(MQW)のバリア
層に1.0X10  cm  から2.5×1Q180
n″′3の濃度範囲でアクセプタ不純物をドーピングし
だ9、−ノ ものであって、この構造により、低しきい値電流の長波
長帯MQW半導体レーザを実現することができる。
Effects of the Invention As described above, the present invention provides a multi-quantum well (MQW) barrier layer with a thickness of 1.0×10 cm to 2.5×1Q180.
The acceptor impurity is doped in the concentration range of n'''3, and with this structure, a long wavelength band MQW semiconductor laser with a low threshold current can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるMQW半導体レーザ
の断面図、第2図はMQW半導体レーザのしきい値電流
とバリア層中のZnドーピング濃度の関係を示す図であ
る。 1・・・・・・InP基板、2・・・・・・n型InP
クラッド層、3・・・・・MQWのウェル層、4・・・
・MQWのバリア層、5・・・・・・p型InP埋込層
、6・・・・・・n型InP埋込層、7・・・ p型I
nPクラッド層、8・・・・・・p型JnGaAsPコ
ンタクト層。
FIG. 1 is a cross-sectional view of an MQW semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the threshold current of the MQW semiconductor laser and the Zn doping concentration in the barrier layer. 1... InP substrate, 2... n-type InP
Cladding layer, 3...MQW well layer, 4...
・MQW barrier layer, 5... p-type InP buried layer, 6... n-type InP buried layer, 7... p-type I
nP cladding layer, 8... p-type JnGaAsP contact layer.

Claims (3)

【特許請求の範囲】[Claims] (1)4元混晶インジウム、ガリウム、砒素、燐(In
GaAsP)もしくは3元混晶インジウム、ガリウム、
砒素(InGaAs)を材料とするウェル層と、インジ
ウム燐(InP)もしくはウェル層の材料より禁制帯幅
の大きいインジウム、ガリウム、砒素、燐(InGaA
sP)を材料とするバリア層とからなる多重量子井戸を
活性層に有し、上記バリア層にアクセプタ不純物がドー
ピングされていることを特徴とする多重量子井戸半導体
レーザ。
(1) Quaternary mixed crystal indium, gallium, arsenic, phosphorus (In
GaAsP) or ternary mixed crystal indium, gallium,
A well layer made of arsenic (InGaAs) and a material made of indium phosphide (InP) or indium, gallium, arsenic, phosphorus (InGaA), which has a larger forbidden band than the material of the well layer.
1. A multiple quantum well semiconductor laser, characterized in that the active layer has a multiple quantum well including a barrier layer made of sP), and the barrier layer is doped with an acceptor impurity.
(2)アクセプタ不純物のドーピング濃度が、1.0×
10^1^8cm^−^3から2.5×10^1^8c
m^−^3の範囲に選定されていることを特徴とする特
許請求の範囲第1項に記載の多重量子井戸半導体レーザ
(2) Doping concentration of acceptor impurity is 1.0×
10^1^8cm^-^3 to 2.5x10^1^8c
The multi-quantum well semiconductor laser according to claim 1, wherein the laser diode is selected in the range of m^-^3.
(3)アクセプタ不純物が亜鉛(Zn)であることを特
徴とする特許請求の範囲第1項に記載の多重量子井戸半
導体レーザ。
(3) The multi-quantum well semiconductor laser according to claim 1, wherein the acceptor impurity is zinc (Zn).
JP7002688A 1988-03-24 1988-03-24 Multiple quantum well semiconductor laser Pending JPH01241884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002688A JPH01241884A (en) 1988-03-24 1988-03-24 Multiple quantum well semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002688A JPH01241884A (en) 1988-03-24 1988-03-24 Multiple quantum well semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01241884A true JPH01241884A (en) 1989-09-26

Family

ID=13419678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002688A Pending JPH01241884A (en) 1988-03-24 1988-03-24 Multiple quantum well semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01241884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292874A (en) * 1988-05-20 1989-11-27 Hitachi Ltd Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01292874A (en) * 1988-05-20 1989-11-27 Hitachi Ltd Semiconductor laser element

Similar Documents

Publication Publication Date Title
EP0476689B1 (en) Semiconductor laser and manufacturing method of the same
US20050040384A1 (en) Semiconductor light-emitting element and method of manufacturing the same
JPH11274635A (en) Semiconductor light emitting device
US5556804A (en) Method of manufacturing semiconductor laser
JP3189791B2 (en) Semiconductor laser
JP3692269B2 (en) Semiconductor laser device and manufacturing method thereof
US5360762A (en) Semiconductor laser device, and a method for producing a compound semiconductor device including the semiconductor laser device
US20030214989A1 (en) Semiconductor laser
JP2002076514A (en) Laser diode and production method therefor
JP3135109B2 (en) Semiconductor light emitting device
JP2006269568A (en) Semiconductor laser element
JP5381692B2 (en) Semiconductor light emitting device
JPH06302908A (en) Semiconductor laser
JP2004253802A (en) GaAsSb/GaAs DEVICE WITH IMPROVED TEMPERATURE PROPERTY
US7957442B2 (en) Semiconductor optical device
JPS61168981A (en) Semiconductor laser device
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPH0462195B2 (en)
JP2679974B2 (en) Semiconductor laser device
JP2723924B2 (en) Semiconductor laser device
JPH01241884A (en) Multiple quantum well semiconductor laser
JP2003008147A (en) Semiconductor laser device and its manufacturing method
JP2006286870A (en) Semiconductor laser and optical communication system using the same
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP2780625B2 (en) Manufacturing method of semiconductor laser