JP2593845B2 - Semiconductor light emitting device - Google Patents
Semiconductor light emitting deviceInfo
- Publication number
- JP2593845B2 JP2593845B2 JP19172085A JP19172085A JP2593845B2 JP 2593845 B2 JP2593845 B2 JP 2593845B2 JP 19172085 A JP19172085 A JP 19172085A JP 19172085 A JP19172085 A JP 19172085A JP 2593845 B2 JP2593845 B2 JP 2593845B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- light emitting
- layers
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
- H01S5/3432—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体発光装置、特に半導体レーザーに関わ
る。Description: TECHNICAL FIELD The present invention relates to a semiconductor light emitting device, particularly to a semiconductor laser.
本発明は、活性層に光及びキャリアの閉じ込めを行う
クラッド層を、特定した超格子構造としてその伝導異方
性によって電流通路の狭窄効果を奏せしめる。According to the present invention, the cladding layer for confining light and carriers in the active layer has a specified superlattice structure, and the effect of narrowing the current path can be exhibited by its conduction anisotropy.
化合物半導体レーザーの基本的構造は、基板上に第1
のクラッド層、活性層、第2のクラッド層、キャップ層
が順次エピタキシャル成長されて成る。第1及び第2の
クラッド層は活性層に比し、エネルギーバンドギャップ
が大で、屈折率が小なる半導体層によって構成して活性
層に光及びキャリアの閉じ込めを行うものであるが、更
にキャップ層上と基板の裏面とに設けられた対の電極間
の電流の通路を狭窄して活性層に注入する電流を集中さ
せるための電流狭窄手段が設けられる。この電流狭窄手
段としては、電流集中を行わしめるストライプ状の中央
部を残し、その両側に、キャップ層側から第2のクラッ
ド層に至る深さに、或いは第2のクラッド層中に埋込ま
れるように、例えば選択的イオン注入或いはメサエッチ
ングとエピタキシーとの組合せ作業によって高抵抗領域
若しくはこの第2のクラッド層とは異る導電型の電流阻
止領域を設ける方法がとられる。しかしながら、このよ
うな電流狭窄手段を設けることはその製造工程が著しく
繁雑となると共に目的とする特定のものを均一に、しか
も歩留り良く得ることが難しいなどの問題がある。The basic structure of a compound semiconductor laser is the first on a substrate.
, An active layer, a second cladding layer, and a cap layer are sequentially epitaxially grown. The first and second cladding layers are formed of a semiconductor layer having a large energy band gap and a small refractive index as compared with the active layer to confine light and carriers in the active layer. Current narrowing means is provided for narrowing a current path between a pair of electrodes provided on the layer and on the back surface of the substrate to concentrate current injected into the active layer. As the current confining means, a stripe-shaped central portion for performing current concentration is left, and embedded on both sides to a depth from the cap layer side to the second cladding layer or in the second cladding layer. As described above, a method of providing a high resistance region or a current blocking region of a conductivity type different from that of the second cladding layer by, for example, selective ion implantation or a combination of mesa etching and epitaxy is adopted. However, the provision of such a current constriction means has a problem that the manufacturing process thereof is extremely complicated and it is difficult to obtain a specific target product uniformly and with good yield.
一方、本出願人は、8原子層以下の極薄の互いに異る
複数種の半導体構成物質層が交互にエピタキシャル成長
されて成る超格子構造の半導体層が、その極薄の半導体
物質層を横切る方向に関して高い電子移動度を示し得る
ことを見出した。この現象に基いてなされた半導体装置
については、特願昭60−52973号の出願において提案し
たところである。On the other hand, the present applicant has proposed that a semiconductor layer having a superlattice structure formed by alternately epitaxially growing a plurality of different kinds of semiconductor constituent material layers having a thickness of 8 atomic layers or less in a direction crossing the extremely thin semiconductor material layer. It has been found that high electron mobility can be exhibited with respect to. A semiconductor device based on this phenomenon has been proposed in Japanese Patent Application No. 60-52973.
本発明は上述したような電流狭窄領域などの特別の手
段を設けることなく電流通路を規定することができ、高
い効率の半導体レーザー、すなわち半導体発光装置を提
供するものである。The present invention provides a highly efficient semiconductor laser, that is, a semiconductor light emitting device, in which a current path can be defined without providing any special means such as the above-described current confinement region.
本発明においては、第1図に示すように1の導電型例
えばn型の化合物半導体基板(1)の1主面に図示しな
いが必要に応じてバッファ層を形成し、これの上に基板
(1)と同導電型の第1のクラッド層(2)、活性層
(3)、他の導電型の第2のクラッド層(4)、これと
同導電型のキャップ層(5)とが順次MOCVD(Metalorga
nic Chemical Vapour Deposition)、或いはMBE(Molec
ular Beam Epitaxy)による連続的エピタキシーによっ
て形成する。In the present invention, as shown in FIG. 1, a buffer layer (not shown) is formed on one principal surface of one conductivity type, for example, an n-type compound semiconductor substrate (1), if necessary, and a substrate ( A first cladding layer (2) of the same conductivity type as in 1), an active layer (3), a second cladding layer (4) of another conductivity type, and a cap layer (5) of the same conductivity type in this order. MOCVD (Metalorga
nic Chemical Vapor Deposition or MBE (Molec
(Radial Beam Epitaxy).
そして、キャップ層(5)上に、絶縁層(6)を形成
し、この絶縁層(6)に穿設したストライプ状の窓(6
a)を通じて一方の電極(7)をキャップ層(5)に、
窓(6a)の内形状に応じたストライプ状に局部的にオー
ミックに被着する。(8)は基板(1)の他の面に形成
された他方の電極を示す。Then, an insulating layer (6) is formed on the cap layer (5), and a striped window (6) is formed in the insulating layer (6).
Through a), one electrode (7) is used as a cap layer (5),
It is locally ohmically applied in a stripe shape corresponding to the inner shape of the window (6a). (8) shows the other electrode formed on the other surface of the substrate (1).
本発明においては、特に第1及び第2のクラッド層
(2),(4)及びギャップ(5)を、第2図に示すよ
うに、夫々異る複数種の半導体構成物質より成り夫々分
散を含む3原子層以下の極薄の半導体物質層L1,L2,L3・
・・が交互に繰返し重ねられた複数の周期数Mをもって
形成する。すなわち、各層L1,L2,L3・・・によるヘテロ
接合面が活性層(3)のほぼ面方向に沿うようにする。
各層L1,L2,L3・・・は、単体物質、或いは2元または3
元混晶の低元素数混晶によって構成し得る。In the present invention, the first and second cladding layers (2) and (4) and the gap (5) are made of a plurality of different types of semiconductor constituent materials as shown in FIG. Ultrathin semiconductor material layers L 1 , L 2 , L 3
.. are formed with a plurality of periods M alternately and repeatedly. That is, the heterojunction plane formed by the layers L 1 , L 2 , L 3, ... Is arranged substantially in the plane direction of the active layer (3).
Each layer L 1 , L 2 , L 3 ... Is a single substance,
It can be constituted by a low-element-number mixed crystal of the original mixed crystal.
上述した構成によれば、クラッド層(2)及び(4)
を3原子以下の各半導体物質層L1,L2,L3・・・より成る
極薄超格子構造としたことによって両電極(7)及び
(8)の、絶縁層(6)の窓(6a)を通じて対向する部
分にのみ主として電流の通路を形成することができる。
これは、極薄超格子構造の半導体層における伝導異方性
による。すなわち、この極薄超格子構造の半導体層の面
方向、すなわちヘテロ接合面に平行な方向に関するキャ
リアの移動度は、各半導体物質層L1,L2,L3・・・の厚さ
が電子のドブロイ波長に比して充分小さいので半導体物
質層L1,L2,L3・・・全体の組成による混晶における移動
度となり、特にこれが多元になるにつれ、そのディスオ
ーダリング散乱による移動度の低下によって低い移動度
を示す。これに比し、ヘテロ接合面を横切る方向に関し
ては、先記特願昭60−52973号において説明しているよ
うに各半導体物質層L1,L2,L3・・・に電子の非局在、LO
フォノンの局在により電子がLOフォノンと散乱し合わな
いことによって高い移動度を示す。したがってキャップ
層(5)に対する電極(7)の直接的被着部の直下にお
いてのみ、電流の通路を制限的に形成し得る。つまり、
超格子構造の半導体層におけるその極薄半導体構成物質
層L1,L2,L3・・・の面に沿う方向(以下横方向という)
の電子移動度をμHとし、これと直交する方向(以下縦
方向という)の電子移動度をμVとすると、μH≪μV
となる。一方、電流Iは、 I=eρV =eρμE ……(1) (ρはキャリアすなわち電子の密度、vはキャリア速
度、μは移動度、Eは電場)で与えられるので、横方向
の電流をIHとし、縦方向の電流をIVとすると、 IH≪IV ……(2) となり、結果的に横方向への電流の広がりが抑制され電
流通路は電極(7)のキャップ層(5)への直接的被着
部の直下、すなわち両電極(7)及び(8)の対向部間
に電流通路が限定されて電流の狭窄効果が得られる。According to the above configuration, the cladding layers (2) and (4)
Has an ultra-thin superlattice structure composed of each semiconductor material layer L 1 , L 2 , L 3 ... Of 3 atoms or less, so that the window of the insulating layer (6) of both electrodes (7) and (8) Through 6a), a current path can be mainly formed only in the opposing portion.
This is due to conduction anisotropy in the semiconductor layer having an ultra-thin superlattice structure. That is, the mobility of carriers in the plane direction of the semiconductor layer of this ultrathin superlattice structure, that is, in the direction parallel to the heterojunction plane, depends on the thickness of each semiconductor material layer L 1 , L 2 , L 3. Is sufficiently small compared to the de Broglie wavelength of the semiconductor material layers L 1 , L 2 , L 3 ..., The mobility in the mixed crystal due to the overall composition. Low mobility indicates low mobility. On the other hand, in the direction crossing the heterojunction plane, as described in the aforementioned Japanese Patent Application No. 60-52973, each semiconductor material layer L 1 , L 2 , L 3. Currently, LO
High mobility is exhibited by electrons not scattering with LO phonons due to phonon localization. Therefore, the current path can be formed in a limited manner only immediately below the portion where the electrode (7) is directly applied to the cap layer (5). That is,
The direction along the plane of the ultra-thin semiconductor constituent layers L 1 , L 2 , L 3 ...
The electron mobility and mu H of, when the electron mobility mu V of this perpendicular to the direction (hereinafter referred to the longitudinal direction), μ H «μ V
Becomes On the other hand, the current I is, I = e ρ V = e ρμE ...... (1) (ρ is the density of the carriers i.e. the electron, v is the carrier velocity, mu is mobility, E is the electric field) because it is given by, lateral Assuming that the current is I H and the vertical current is I V , I H VI V (2). As a result, the spread of the current in the horizontal direction is suppressed, and the current path becomes the cap of the electrode (7). The current path is limited immediately below the portion directly attached to the layer (5), that is, between the opposing portions of the electrodes (7) and (8), thereby obtaining a current constriction effect.
第1図で説明した構成において、第1及び第2クラッ
ド層(2)及び(4)を夫々n型及びp型の不純物がド
ープされたAlAs層とGaAs層による(AlAs)n(GaAs)m
より成り各層を1〜3原子層すなわちn,mを共に1〜3
とした極薄半導体構成物質層より成る超格子構造とし
た。In the configuration described with reference to FIG. 1, the first and second cladding layers (2) and (4) are made of (AlAs) n (GaAs) m by an AlAs layer doped with n-type and p-type impurities and a GaAs layer, respectively.
Each layer is composed of 1 to 3 atomic layers, that is, n and m are 1 to 3
A superlattice structure composed of an ultra-thin semiconductor constituent material layer as described above.
上述した例では、活性層(3)を挟んで配置された第
1及び第2のクラッド層(2)及び(4)の双方を超格
子構造とした場合であるが、キャップ層(5)側の第2
のクラッド層(4)のみを上述した超格子構造とする場
合においても、この層(4)において横方向の電流の広
がりが抑制されるので電流狭窄効果を奏せしめ得る。In the above-described example, both the first and second clad layers (2) and (4) disposed with the active layer (3) interposed therebetween have a superlattice structure, but the cap layer (5) side Second
In the case where only the cladding layer (4) has the above-mentioned superlattice structure, the current confinement effect can be exerted because the current spreading in the lateral direction is suppressed in this layer (4).
上述したように本発明においては、少くとも一方のク
ラッド層に、特に3原子以下の極薄半導体構成物質層の
積層による超格子構造による半導体層を用いるものであ
るが、今、(AlAs)n(GaAs)m構造の半導体層につい
てn=mとしてこれを変えた場合のエネルギーギャップ
を測定した結果を第3図に示す。同図において黒丸印は
測定値をプロットしたものである。同図中破線曲線はク
ローニッヒ・ペニー(Kronig−Penney)の理論に基く計
算によって得たエネルギーギャップを示したもので、こ
の破線曲線と比較して明らかなように、n=m<8でク
ローニッヒ・ペニーのモデルと一致せず小さいバンドギ
ャップとなっている。つまり8原子層以下、特に1〜3
原子層の所では電子(電荷粒子)は局在しないで積層方
向(縦方向)に伝導できることが分る。As described above, in the present invention, at least one of the cladding layers is formed of a semiconductor layer having a superlattice structure formed by laminating an ultrathin semiconductor constituent material layer of 3 atoms or less, but now (AlAs) n FIG. 3 shows the result of measuring the energy gap when n = m was changed for a (GaAs) m- structured semiconductor layer. In the figure, black circles are plots of measured values. The dashed curve in the figure shows the energy gap obtained by calculation based on the Kronig-Penney theory. As is clear from the comparison with the dashed curve, Kronig- It has a small band gap that does not match the model of Penny. That is, 8 atomic layers or less, especially 1-3
It can be seen that at the atomic layer, electrons (charge particles) can be conducted in the stacking direction (vertical direction) without being localized.
上述したように本発明においては、少くとも一方のク
ラッド層を8原子層以下の極薄の半導体構成物質層によ
る超格子構造として横方向に比し高い縦方向の移動度に
より電流通路の制限を行うものであり、この超格子構造
はMOCVD,MBEによって、層(2)〜(5)に関して一連
の作業で形成できるので従来のように電流狭窄手段を特
別に設ける必要がなくなる。これによって繁雑な製造工
程を経る必要がなく、また歩留りの向上がはかられる。As described above, in the present invention, at least one of the cladding layers has a superlattice structure of an ultra-thin semiconductor constituent material layer of 8 atomic layers or less, and the current path is restricted by the vertical mobility higher than the horizontal direction. This superlattice structure can be formed by a series of operations for the layers (2) to (5) by MOCVD and MBE, so that it is not necessary to provide a special current confining means as in the prior art. This eliminates the need for a complicated manufacturing process and improves the yield.
また上述したように本発明においては、クラッド層を
超格子構造としたのみで電極被着部直下にのみ電流通路
を制限するので電極被着面積の選定によって面発光レー
ザーを得ることもできる。In addition, as described above, in the present invention, since the current path is limited only immediately below the electrode-attached portion only by the clad layer having the superlattice structure, the surface-emitting laser can be obtained by selecting the electrode-attached area.
また、本発明によれば、超格子構造としたことによ
り、発光部からの発熱を有効に放散できレーザー発振の
安定化、長寿命化がはかられる。すなわち超格子構造に
おいては熱伝導に影響するLA(Longi tudinal Acausti
c)フォノンの縦方向の伝搬が良好に行われることによ
って良好な熱伝導が得られることから特に活性層に接す
るクラッド層がこの良熱伝導性の超格子構造によること
から動作部の熱を効率良く放散できる。Further, according to the present invention, by employing a superlattice structure, heat generated from the light emitting portion can be effectively dissipated, thereby stabilizing laser oscillation and extending the life. In other words, LA (Longi tudinal Acausti) which affects heat conduction in the superlattice structure
c) Good heat conduction is obtained by good propagation of phonons in the vertical direction. Especially, since the cladding layer in contact with the active layer has this super-lattice structure with good heat conductivity, the heat of the operating part can be efficiently dissipated. Can dissipate well.
第1図は本発明による半導体発光装置の一例の略線的拡
大断面図、第2図はその超格子構造の半導体層の説明
図、第3図は超格子構造の半導体構成物質層の厚さとエ
ネルギーギャップとの関係の測定値を示す図である。 (1)は基板、(2)及び(4)は第1及び第2のクラ
ッド層、(3)は活性層、(5)はキャップ層、(7)
及び(8)は電極である。FIG. 1 is a schematic enlarged sectional view of an example of a semiconductor light emitting device according to the present invention, FIG. 2 is an explanatory view of a semiconductor layer having a superlattice structure, and FIG. It is a figure showing the measured value of the relation with the energy gap. (1) is a substrate, (2) and (4) are first and second cladding layers, (3) is an active layer, (5) is a cap layer, (7)
And (8) are electrodes.
フロントページの続き (72)発明者 森 芳文 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭60−130878(JP,A) 特開 昭61−131414(JP,A) 特開 昭61−78189(JP,A) 特開 昭60−130878(JP,A) 特開 昭61−184895(JP,A) 特開 昭61−210679(JP,A) T.Yao:Jop.J.Appl, Phys.22(1983)PP.L680−682 江崎,榊著「超格子ヘテロ構造デバイ ス」工業調査会(1988)PP.125−147Continuation of the front page (72) Inventor Yoshifumi Mori 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (56) References JP-A-60-13078 (JP, A) JP-A-61-131414 (JP, A) JP-A-61-78189 (JP, A) JP-A-60-130878 (JP, A) JP-A-61-184895 (JP, A) JP-A-61-210679 (JP, A) T . Yao: Jop. J. Appl, Phys. 22 (1983) PP. L680-682 Ezaki, Sakaki, "Superlattice heterostructure devices", Industrial Research Committee (1988) PP. 125-147
Claims (1)
を、それぞれ3原子層以下の異なる複数種の半導体構成
物質層が交互にエピタキシャル成長された超格子構造の
半導体層によって構成し、該超格子構造の伝導異方性と
発光動作領域に対応して局部的に設けられた電極との共
働によって上記発光動作領域に電流狭窄効果を得るよう
にしたことを特徴とする半導体発光装置。1. A semiconductor device comprising a semiconductor layer having a superlattice structure in which a plurality of different types of semiconductor constituent layers each having three atomic layers or less are alternately epitaxially grown. A semiconductor light emitting device characterized in that a current confinement effect is obtained in the light emitting operation region by cooperating with the conduction anisotropy of the lattice structure and an electrode provided locally corresponding to the light emitting operation region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19172085A JP2593845B2 (en) | 1985-08-30 | 1985-08-30 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19172085A JP2593845B2 (en) | 1985-08-30 | 1985-08-30 | Semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6251283A JPS6251283A (en) | 1987-03-05 |
JP2593845B2 true JP2593845B2 (en) | 1997-03-26 |
Family
ID=16279355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19172085A Expired - Lifetime JP2593845B2 (en) | 1985-08-30 | 1985-08-30 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2593845B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2658291B2 (en) * | 1988-11-04 | 1997-09-30 | 日本電気株式会社 | Light emitting element |
JP2854607B2 (en) * | 1989-06-29 | 1999-02-03 | 株式会社日立製作所 | Semiconductor device and semiconductor laser device |
EP0430041B1 (en) * | 1989-11-22 | 1996-02-07 | Daido Tokushuko Kabushiki Kaisha | Light-emitting diode having light reflecting layer |
US5088099A (en) * | 1990-12-20 | 1992-02-11 | At&T Bell Laboratories | Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60130878A (en) * | 1983-12-19 | 1985-07-12 | Nec Corp | Superlattice semiconductor laser |
-
1985
- 1985-08-30 JP JP19172085A patent/JP2593845B2/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
T.Yao:Jop.J.Appl,Phys.22(1983)PP.L680−682 |
江崎,榊著「超格子ヘテロ構造デバイス」工業調査会(1988)PP.125−147 |
Also Published As
Publication number | Publication date |
---|---|
JPS6251283A (en) | 1987-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4439782A (en) | Semiconductor device with heterojunction of Alx Ga1-x As--AlAs--Ga | |
US4823352A (en) | Semiconductor laser with a variable oscillation wavelength | |
JPS62200784A (en) | Semiconductor laser device | |
EP0215125B1 (en) | Luminescent semiconductor element | |
US5473173A (en) | Quantum well structure having differentially strained quantum well layers | |
JPH0243351B2 (en) | ||
JP2593845B2 (en) | Semiconductor light emitting device | |
JP3257034B2 (en) | Compound semiconductor device and method of manufacturing the same | |
JPH0529713A (en) | Semiconductor laser element | |
US4759025A (en) | Window structure semiconductor laser | |
JP2876642B2 (en) | Quantum well laser | |
JP2773227B2 (en) | Photo conductor | |
JPS6237557B2 (en) | ||
JP2000151020A (en) | Semiconductor laser | |
JPH0414277A (en) | Semiconductor laser and its manufacture | |
JP3144821B2 (en) | Semiconductor laser device | |
JPH07170017A (en) | Semiconductor laser | |
JPS63116483A (en) | Semiconductor laser | |
JP3189900B2 (en) | Semiconductor laser device | |
JPS61147592A (en) | Manufacture of algainp semiconductor laser | |
JP2754671B2 (en) | Semiconductor quantum wire structure and manufacturing method thereof | |
JPS58118184A (en) | Buried hetero structural semiconductor laser | |
JPH0712101B2 (en) | Semiconductor light emitting device | |
JPS60134489A (en) | Semiconductor laser device | |
JPS61295685A (en) | Quantum well laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |