JPS60134489A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS60134489A
JPS60134489A JP24201583A JP24201583A JPS60134489A JP S60134489 A JPS60134489 A JP S60134489A JP 24201583 A JP24201583 A JP 24201583A JP 24201583 A JP24201583 A JP 24201583A JP S60134489 A JPS60134489 A JP S60134489A
Authority
JP
Japan
Prior art keywords
layer
refractive index
active layer
conductive region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24201583A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Kazuhisa Uomi
魚見 和久
Shinichi Nakatsuka
慎一 中塚
Yuichi Ono
小野 佑一
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24201583A priority Critical patent/JPS60134489A/en
Publication of JPS60134489A publication Critical patent/JPS60134489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Abstract

PURPOSE:To make the increase of an output and the improvement of reliability coexist by keeping a difference between the mean refractive index of an active layer and the refractive index of a clad layer within a specific value. CONSTITUTION:An I-Ga1-xAlxAs clad layer 2', an active layer 3' having superlattice structure and an I-Ga1-yAlyAs clad layer 4' are formed on a semi-insulating (I) GaAs substrate 1'. A P type conductive impurity and an N type impurity are introduced up to depth penetrating the layer 3' from one part of the surface of the layer 4', and a P type conductive region 10 and an N type conductive region 11 are formed. Consequently, superlattice structure is collapsed in each conductive region, and mean compositions are obtained. Accordingly, the refractive index of the active layer is made higher than those of impurity introducing regions holding the active layer, and a mode in the horizontal direction is controlled. A mean refractive index through which the refractive indices of a quantum well layer and a barrier layer are obtained as the value of a bulk may be made smaller than the refractive indices of the clad layers, refractive-index waveguide is enabled when a difference between both is -0.5-+0.1, and gain waveguide is also enabled when the value is -0.5-0.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高出力かつ高信頼な境モード制御された半導
体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-output and highly reliable semiconductor laser which is controlled in an optical mode.

〔発明の背景〕[Background of the invention]

従来の光スポツトサイズを大きくして高出力化を図る半
導体レーザは、光閉込め係数が小さいためしきい電流密
度が高く、寿命が短いという欠点がめった。
Conventional semiconductor lasers, which are designed to increase output by increasing the optical spot size, often suffer from the drawbacks of a small optical confinement coefficient, a high threshold current density, and a short lifetime.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高出力かつ高信頼である基本横モード
で発振する半導体レーザを提供することにある。
An object of the present invention is to provide a semiconductor laser that oscillates in the fundamental transverse mode and has high output and high reliability.

〔発明の概要〕[Summary of the invention]

第1図は、屈折率導波型半導体レーザの一例である基板
溝付ストライプ型の断面図である。図において1は半導
体基板、2,4はクラッド層、3は活性層、5はキャッ
プ層、6は不純物拡散層。
FIG. 1 is a sectional view of a substrate grooved stripe type semiconductor laser which is an example of a refractive index guided semiconductor laser. In the figure, 1 is a semiconductor substrate, 2 and 4 are cladding layers, 3 is an active layer, 5 is a cap layer, and 6 is an impurity diffusion layer.

7は凹溝である。又は、12.13は各々電極である。7 is a concave groove. Alternatively, 12 and 13 are each electrodes.

このような構造では、100mWまで基本横モードを維
持しようとすると活性層を300A程度以下にして光ス
ポツトサイズを2μm><6μm程度にしなければなら
ない。この時、光閉込め係数Fは5チ以下となシ、信頼
性が確認されている1ル レーザのFの3=4程度となる。し合い電流密度Jtb
は通常のDHレーザでは次式で与えられる。
In such a structure, if the fundamental transverse mode is to be maintained up to 100 mW, the active layer must be set to about 300 A or less and the light spot size must be about 2 μm><6 μm. At this time, the optical confinement coefficient F must be 5 or less, and is about 3=4, which is F of the 1-channel laser whose reliability has been confirmed. Mutual current density Jtb
is given by the following equation in a normal DH laser.

Jth (A/crr?)=4.5x10”d+1.0
xlO”d/7’ここでdはμm単位で与えられる活性
層の厚さである。この式かられかる通り、Fが小さくな
るとJrh及び活性層内のキャリア密度Jth/dの値
が大きくなり信頼性が悪くなってしまう。通常のレーザ
では1発振波長を指定すると活性層の屈折率が決定され
てしまf)。従って、接合に垂直方向の光の広がシを大
きくするには、活性層を薄くするか、活性層をはさむク
ラッド層の屈折率を高くすることが必要である。しかし
、前述したように、活性層の薄層化は、Fを小さくして
しlうじ、クラッド層の屈折率を高くすることは、活性
層とクラッド層のバンドギャップ差が小さくなり、キャ
リヤ閉込め効果が悪化してしまう。
Jth (A/crr?)=4.5x10”d+1.0
xlO"d/7' where d is the thickness of the active layer given in μm. As can be seen from this equation, as F becomes smaller, the values of Jrh and the carrier density in the active layer Jth/d increase. Reliability deteriorates.In a normal laser, specifying one oscillation wavelength determines the refractive index of the active layer(f).Therefore, in order to increase the spread of light in the direction perpendicular to the junction, it is necessary to It is necessary to make the active layer thinner or to increase the refractive index of the cladding layer sandwiching the active layer.However, as mentioned above, making the active layer thinner requires decreasing F and increasing the refractive index of the cladding layer. Increasing the refractive index of the active layer reduces the band gap difference between the active layer and the cladding layer, which worsens the carrier confinement effect.

第2図は、本発明に適用される活性層とクラッド層のバ
ンド構造を示したものである。第2図において8は量子
井戸層のバンド、9は障壁層のバンドを示している。活
性層は厚さLz (5〜300人)の量子井戸層とこの
量子井戸層より禁制帯の犬@な厚さLB (5〜300
A)の障壁層が交互に配置された超格子構造を有してい
る。ここで量子井戸層の数をNz、屈折率をnz、障壁
層の数をNB、屈折率をnBとすると、活性層の平均的
屈折率π。tlvaは次式で与えられる。
FIG. 2 shows the band structure of the active layer and cladding layer applied to the present invention. In FIG. 2, 8 indicates the band of the quantum well layer, and 9 indicates the band of the barrier layer. The active layer consists of a quantum well layer with a thickness of Lz (5 to 300 nm) and a thickness LB (5 to 300 nm) of a forbidden band than this quantum well layer.
A) has a superlattice structure in which barrier layers are alternately arranged. Here, if the number of quantum well layers is Nz, the refractive index is nz, the number of barrier layers is NB, and the refractive index is nB, then the average refractive index of the active layer is π. tlva is given by the following equation.

従って、活性層を挾む両クラッド層の屈折重金それぞれ
n(、及びnc、とした場合、πaptly。−ncl
とπ、。tlm−nC2の大きさ即ち屈折率差を小さく
すれば活性層を特に薄層化せずとも光スポツトサイズを
大きくすることができる。また、キャリヤは、障壁層が
有効に働き、活性層に効果的に閉込めることができる。
Therefore, if the refractive heavy metals of both cladding layers sandwiching the active layer are n(, and nc, respectively, πaptly.−ncl
and π. By reducing the size of tlm-nC2, that is, the refractive index difference, the light spot size can be increased without making the active layer particularly thin. In addition, the barrier layer works effectively and the carriers can be effectively confined in the active layer.

従って1本発明によれば、光閉込め係数Fがある程度大
すく、キャリヤも有効に閉じ込められ、かつ光スポツト
サイズの大きな半導体レーザを実現することができる。
Therefore, according to the present invention, it is possible to realize a semiconductor laser in which the optical confinement coefficient F is relatively large, carriers are effectively confined, and the optical spot size is large.

以上述べたように、活性層を超格子構造にすることによ
り1発振波長と活性層の屈折重金ある程度独立に設定す
ることができる。活性層を低屈折率化するためには、障
壁層の厚さLBを太きくシ。
As described above, by forming the active layer into a superlattice structure, the oscillation wavelength and the refraction weight of the active layer can be set independently to some extent. In order to lower the refractive index of the active layer, the thickness LB of the barrier layer is increased.

その屈折率nBを小さくすることが有効である。It is effective to reduce the refractive index nB.

しかし、従来の多くの半導体レーザのように活性層を挾
むクラッド層からキャリヤを垂直に注入する場合、障壁
層が厚く、その禁制帯幅が大きいと、キャリヤの注入効
率が悪くなってしまう。特許請求の範囲第2項に記載し
た半導体レーザ装置は。
However, when carriers are vertically injected from the cladding layer sandwiching the active layer as in many conventional semiconductor lasers, if the barrier layer is thick and its forbidden band width is large, the carrier injection efficiency deteriorates. The semiconductor laser device described in claim 2 is as follows.

その問題を解決するためのものであり、同時に水平方向
の横モードを制御する構造を有している。
It is designed to solve this problem, and has a structure that simultaneously controls the transverse mode in the horizontal direction.

第3図は本発明の別な実施態様を示す断面図である。図
は光の進行方向に直交する面での断面図である。ここで
は、GaAS−〇aA、、eAS系半導体レーザ全半導
体レーザ。第3図は半絶縁性(以下iと略す)GaAS
基板1′上り、i −Ga、−X A−6zAsクラッ
ド層2′、超格子構造を有する活性層3/、を−Ga+
−y AJl?yA sクラッド層4′を積層し1Ga
l−yAAyAsクラッド4′の表面の一部からp型導
電不純物及びn型不純物を活性層を突抜ける深さ1で導
入し、p型導電領域10.n型導電領域11を形成する
。すると、各導電領域内では超格子構造はくすれてしま
い、平均的な組成となってしまう。従って、各導電領域
に挾せれた活性層中の量子井戸層の禁制帯幅は、超格子
がくずれた領域の禁制帯幅よりも小さくなり、活性層の
側部からキャリヤ注入が効率よく行なわれる。また、G
aA沼Asは、不純物濃度が〜5 X 10 ” cr
n−”よシ犬きくなると屈折率が小さくなる傾向がある
。従って、活性層の屈折率は、該活性層を挾む不純物尋
人領域よシも高くなシ水平方向のモードが制御される。
FIG. 3 is a sectional view showing another embodiment of the present invention. The figure is a cross-sectional view taken along a plane perpendicular to the direction in which light travels. Here, an all-semiconductor laser is a GaAS-○aA, eAS-based semiconductor laser. Figure 3 shows semi-insulating (hereinafter abbreviated as i) GaAS.
Upward of the substrate 1', i -Ga, -X
-y AJl? yA s cladding layer 4' is laminated and 1Ga
A p-type conductive impurity and an n-type impurity are introduced from a part of the surface of the l-yAAyAs cladding 4' to a depth of 1 penetrating the active layer to form a p-type conductive region 10. An n-type conductive region 11 is formed. As a result, the superlattice structure within each conductive region becomes dull, resulting in an average composition. Therefore, the forbidden band width of the quantum well layer in the active layer sandwiched between each conductive region is smaller than the forbidden band width of the region where the superlattice is collapsed, and carrier injection is efficiently performed from the sides of the active layer. . Also, G
aA Swamp As has an impurity concentration of ~5 x 10” cr
There is a tendency for the refractive index to decrease as the value increases from n to 1. Therefore, the refractive index of the active layer is higher than that of the impurity regions that sandwich the active layer, and the horizontal mode is controlled. .

また、障壁層の厚さが45人程度以上になると、超格子
の屈折率は、その平均的な屈折率よりも数係高くなるこ
とがわかっている()4ef、 ’1’、5uzuki
 andl(、Qkamoto、J、1lectron
ic Materials 12(1983)p、39
7)。従って障壁層の厚さLBを45人〜300人の間
にすることによっても、活性層の屈折率を高くすること
ができ、屈折率導波を実現できる。量子井戸層及び障壁
層の屈折率が。
Furthermore, it is known that when the thickness of the barrier layer becomes approximately 45 nm or more, the refractive index of the superlattice becomes several factors higher than its average refractive index ()4ef, '1', 5uzuki
andl(, Qkamoto, J, 1electron
ic Materials 12 (1983) p, 39
7). Therefore, by setting the thickness LB of the barrier layer to between 45 and 300 layers, the refractive index of the active layer can be increased and refractive index waveguide can be realized. The refractive index of the quantum well layer and barrier layer is

バルクの値と同じであると仮定してめられる平均的屈折
率πは、クラッド層の屈折率n(よシも少なくてもかま
わず、π−n c = −0,2〜+0.1であれば、
屈折率導波可能である。またπ−n(、ニー0.5〜0
であれば、利得導波することも出来る。
The average refractive index π, which is assumed to be the same as the bulk value, is the refractive index n of the cladding layer (it does not matter if it is more or less, π−n c = −0,2 to +0.1). if there is,
Refractive index waveguide is possible. Also, π-n(, knee 0.5~0
If so, gain waveguide can be used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図によシ説明する。まず
、第4図に示した半導体レーザ装置の作製方法について
述べることにする。n”−GaAS基板1上に1G a
o、7 AAO,S A Sクラッド層2′、GaAS
の量子井戸層(厚さ100人)101とG aoaA−
606Asの障壁層(厚さ100人)111を交互に配
置された超格子構造の活性層3′(ただし、量子井戸層
、障壁層共にZnがドープされている) 、1−GaO
,7A−6o、s A Sクラッド層4′を順次有機金
属熱分解気相成長法(MO−CVD法)により成長する
。クラッド層4′の表面の一部からn+−GaAS基板
1に達する深さまで81イオンを注入し、超格子構造の
一部をくずすと共にn型不純物領域11を形成する。
An embodiment of the present invention will be explained below with reference to FIG. First, a method for manufacturing the semiconductor laser device shown in FIG. 4 will be described. 1G a on n”-GaAS substrate 1
o, 7 AAO, S A S cladding layer 2', GaAS
quantum well layer (100 layers thick) 101 and GaoaA-
Active layer 3' with a superlattice structure in which barrier layers (100 layers thick) 111 of 606As are arranged alternately (however, both the quantum well layer and the barrier layer are doped with Zn), 1-GaO
, 7A-6o, and s A S cladding layer 4' is sequentially grown by metal organic pyrolysis vapor deposition (MO-CVD). 81 ions are implanted from a part of the surface of the cladding layer 4' to a depth reaching the n+-GaAS substrate 1 to partially destroy the superlattice structure and form an n-type impurity region 11.

次に、5io2絶縁膜14をスパッタ蒸着した後。Next, after a 5io2 insulating film 14 is sputter-deposited.

図のようにホトレジスト工程によシバターニングする。As shown in the figure, patterning is performed using a photoresist process.

そして、Znを活性層3−2に達するように選択的に拡
散させ、超格子構造の一部をくずすと共にp型不純物領
域10を形成する。最後に。
Then, Zn is selectively diffused to reach the active layer 3-2, thereby partially destroying the superlattice structure and forming the p-type impurity region 10. lastly.

p型電極12及びn型電極13をそれぞれ蒸着法によ多
形成することによって1図のような半導体レーザ装置が
製造される。
A semiconductor laser device as shown in FIG. 1 is manufactured by forming multiple p-type electrodes 12 and n-type electrodes 13 by vapor deposition.

本実施例でに、光出力100mW′1で基本横モードが
維持され、7(I’、100m’Wで、2000時間以
上連続発振可能な、高出力高信頼レーザが実現できた。
In this example, a high-output, highly reliable laser was realized in which the fundamental transverse mode was maintained at an optical output of 100 mW'1 and continuous oscillation was possible for more than 2000 hours at 7(I', 100 m'W).

導電領域10及び11は、実施例で示した拡散法やイオ
ン注入法以外に、エツチングと液相成長法による埋込み
成長によっても形成することができる。また、本発明は
、GaA!As系以外のレーザ材料、例えばInGaA
SP系、InGaP系等化合物半導体を用いた半導体レ
ーザ」般に対しても同様に適用できる。
In addition to the diffusion method and ion implantation method shown in the embodiment, the conductive regions 10 and 11 can also be formed by buried growth using etching and liquid phase growth. Further, the present invention provides GaA! Laser materials other than As-based, such as InGaA
The present invention can be similarly applied to semiconductor lasers using compound semiconductors such as SP-based and InGaP-based semiconductors.

〔発明の効果〕 本発明によれば、キャリヤを有効に閉込めたまま活性層
とクラッド層の屈折率差を小さくできるので、活性層を
ある程度厚くしても光スポツトサイズを大きくできるた
め、光閉じ込め係数が大きくなシ、高出力化と高信頼性
を両立させる効果がある。素子作製の結果、活性層の厚
さが0.2μm程度と厚くても100mWまで基本横モ
ードが維持され、光閉込め係数Fは0.2程度と大きな
値である。そして700.100mWで2000時間以
上の平均寿命の素子が歩留りよく得られた。以上により
1本発明が高出力化と高信頼性を両立させることに相当
効果かめることがわかった。
[Effects of the Invention] According to the present invention, it is possible to reduce the difference in refractive index between the active layer and the cladding layer while effectively confining carriers. The large confinement coefficient has the effect of achieving both high output and high reliability. As a result of device fabrication, even if the active layer is as thick as about 0.2 μm, the fundamental transverse mode is maintained up to 100 mW, and the optical confinement coefficient F is a large value of about 0.2. At 700.100 mW, devices with an average lifespan of 2000 hours or more were obtained with good yield. From the above, it was found that the present invention is considerably effective in achieving both high output and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の基板溝付ストライプレーザの断面図、
第2図は本発明における超格子構造を有する活性層及び
クラッド層のバンド構造図、第3図は本発明による半導
体レーザの断面図、第4図は本発明の実施例の素子の断
面図でろる。 1−” GaAS基板、1’・ 1−eaAs基板、2
−n−GaAAASクラッド層、2′・・・1−GaA
!ASクラッド層、3・・・通常のGaA、13AS活
性層、3′・・・超格子構造を有するp型活性層、4・
・・I)−GaAJ3ASクラッド層、4′・・−1−
QaA影Asクラッド層、5・・・n−GaASキャッ
プ層、6・・・7.n拡散層、7・・・基板上の溝、8
・・・量子井戸層のバンド、9・・・障壁層のバンド、
10・・・n型導電領域、11・・・n型導電領域、1
2・・・n型電極、13・・・n型電極、14・・・第
3m 第1頁の続き [相]発 明 者 茅 根 直 樹 国分寺市東恋ケ窪
央研究所内 0発 明 者 梶 村 俊 国分寺市東恋ケ窪央研究所
Figure 1 is a cross-sectional view of a conventional substrate grooved stripe laser.
FIG. 2 is a band structure diagram of an active layer and a cladding layer having a superlattice structure according to the present invention, FIG. 3 is a cross-sectional view of a semiconductor laser according to the present invention, and FIG. 4 is a cross-sectional view of a device according to an embodiment of the present invention. Ru. 1-” GaAS substrate, 1’・1-eaAs substrate, 2
-n-GaAAAS cladding layer, 2'...1-GaA
! AS cladding layer, 3... normal GaA, 13AS active layer, 3'... p-type active layer having superlattice structure, 4.
...I)-GaAJ3AS cladding layer, 4'...-1-
QaA shadow As cladding layer, 5...n-GaAS cap layer, 6...7. n diffusion layer, 7...groove on substrate, 8
...Band of quantum well layer, 9...Band of barrier layer,
10...n-type conductive region, 11...n-type conductive region, 1
2...n-type electrode, 13...n-type electrode, 14...3rd m Continued from page 1 [Phase] Inventor Naoki Kayane Kokubunji City Higashi Koigakubo Research Institute 0 Inventor Shun Kajimura Kokubunji City Higashi Koigakubo Research Institute

Claims (1)

【特許請求の範囲】 1、屈折率n1なる第1半導体層と屈折率n、なる第2
半導体層に挾まれた第3半導体層において、該第3半導
体層は屈折率がnzであシ、5人ないし300人の範囲
なる厚さLzの量子井戸層と、屈折率がnBであり5人
ないし300人の範囲なる厚さLBの障壁層が交互に配
置された超格子構造を侑しており、Nz個の量子井戸層
とN++個の障壁層−からなる第3半導体の平均屈折n
z LZNZ+n1LBN11 率1.を6−−75.7337、−と表わした時b n
s”1及び6−n2の値が共に−0,5ないし+0.1
の範囲にあることを特徴とする半導体レーザ装置。 2、特許請求の範囲第1項の半導体レーザ装置において
、前記第1及び第2半導体層は半絶縁性でめシ、且前記
第1.第2.第3半導体層を側部から挾むように、少な
くとも第3半導体層の一方の側部に第1導電領域を、他
方の側部に第2導電領域を設けたことを特徴とする半導
体レーザ装置。
[Claims] 1. A first semiconductor layer having a refractive index n1 and a second semiconductor layer having a refractive index n1.
A third semiconductor layer sandwiched between semiconductor layers includes a quantum well layer having a refractive index of nz and a thickness of Lz ranging from 5 to 300 nm, and a quantum well layer having a refractive index of nB and 5 It has a superlattice structure in which barrier layers with a thickness LB ranging from 30 to 300 nm are alternately arranged, and the average refraction n of the third semiconductor is composed of Nz quantum well layers and N++ barrier layers.
z LZNZ+n1LBN11 rate 1. When expressed as 6--75.7337, -, b n
The values of s"1 and 6-n2 are both -0.5 or +0.1
A semiconductor laser device characterized by being in the range of. 2. In the semiconductor laser device according to claim 1, the first and second semiconductor layers are semi-insulating and non-conductive; Second. A semiconductor laser device characterized in that a first conductive region is provided on at least one side of the third semiconductor layer, and a second conductive region is provided on the other side of the third semiconductor layer so as to sandwich the third semiconductor layer from the sides.
JP24201583A 1983-12-23 1983-12-23 Semiconductor laser device Pending JPS60134489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24201583A JPS60134489A (en) 1983-12-23 1983-12-23 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24201583A JPS60134489A (en) 1983-12-23 1983-12-23 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60134489A true JPS60134489A (en) 1985-07-17

Family

ID=17082993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24201583A Pending JPS60134489A (en) 1983-12-23 1983-12-23 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60134489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225772A2 (en) * 1985-11-30 1987-06-16 Fujitsu Limited Method of producing semiconductor laser
US5392725A (en) * 1991-05-10 1995-02-28 Organ Needle Co., Ltd. Sewing machine needle and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225772A2 (en) * 1985-11-30 1987-06-16 Fujitsu Limited Method of producing semiconductor laser
US5392725A (en) * 1991-05-10 1995-02-28 Organ Needle Co., Ltd. Sewing machine needle and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5751754A (en) Semiconductor laser including tunnel diode for reducing contact resistance
US5107514A (en) Semiconductor optical element
US5519722A (en) II-VI compound semiconductor laser with burying layers
JPH02130988A (en) Quantum well semiconductor laser element
EP0020019A1 (en) A heterojunction solid state laser
JPS60145687A (en) Semiconductor laser
JPS606119B2 (en) Composite semiconductor device
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JPS60134489A (en) Semiconductor laser device
JPS61164287A (en) Semiconductor laser
JPS6079785A (en) Semiconductor laser device
US5192711A (en) Method for producing a semiconductor laser device
JPH01286479A (en) Semiconductor laser device
JPS6286782A (en) Quantum well laser
JPS59202677A (en) Semiconductor laser device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPS6355878B2 (en)
JPH11163459A (en) Semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JP3144821B2 (en) Semiconductor laser device
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH04321290A (en) Semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
JPS607789A (en) Planar semiconductor light emitting device