JPH0712101B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH0712101B2
JPH0712101B2 JP60065636A JP6563685A JPH0712101B2 JP H0712101 B2 JPH0712101 B2 JP H0712101B2 JP 60065636 A JP60065636 A JP 60065636A JP 6563685 A JP6563685 A JP 6563685A JP H0712101 B2 JPH0712101 B2 JP H0712101B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
semiconductor
gaas
confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60065636A
Other languages
Japanese (ja)
Other versions
JPS61224482A (en
Inventor
俊夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60065636A priority Critical patent/JPH0712101B2/en
Publication of JPS61224482A publication Critical patent/JPS61224482A/en
Publication of JPH0712101B2 publication Critical patent/JPH0712101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 この発明は量子井戸レーザにおいて、 量子井戸層に不純物のアトミックプレーンドーピングに
よる高濃度のキャリア散乱中心を形成することにより、 キャリアの注入効率を向上するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] According to the present invention, in a quantum well laser, carrier injection efficiency is improved by forming a high concentration carrier scattering center by atomic plane doping of impurities in a quantum well layer. It is a thing.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体発光装置、特に量子井戸半導体レーザの
閾値電流を低減し、効率を向上する構造の改善に関す
る。
The present invention relates to a semiconductor light emitting device, and more particularly, to an improved structure for reducing the threshold current and improving the efficiency of a quantum well semiconductor laser.

光を情報信号の媒体とする光通信その他のシステムの高
度化、多様化が推進されており、その光源として重要な
役割を果たしている半導体発光装置特にレーザについ
て、その効率などの特性の一層の向上が強く要望されて
いる。
Optical communication and other systems that use light as a medium for information signals are being advanced and diversified, and semiconductor light emitting devices, especially lasers, which play an important role as light sources, are further improved in characteristics such as efficiency. Is strongly requested.

〔従来の技術〕[Conventional technology]

従来行われている半導体レーザの多くは、目的とする光
の波長に対応するエネルギーバンドキャップを有する活
性層をストライプ状とし、これをエネルギーバンドキャ
ップが大きく、屈折率が小さい半導体層で挟んでキャリ
ア及び光を閉じ込め共振器を構成して、活性層に注入さ
れたキャリアを励起しレーザ発振を行わせている。
Many semiconductor lasers that have been conventionally used have a stripe-shaped active layer having an energy band cap corresponding to the wavelength of light of interest, and the active layer is sandwiched between semiconductor layers having a large energy band cap and a small refractive index to form a carrier. Further, light is confined to form a resonator, and carriers injected into the active layer are excited to cause laser oscillation.

半導体レーザの活性層の厚さをキャリアのドゥ・ブロー
イー波長程度以下とし量子井戸形ポテンシャルを形成す
れば、その厚さ方向のキャリアの運動が量子化されて2
次元状態となり、そのエネルギー準位が階段状となって
発振に関与するエネルギー準位のキャリアの状態密度が
著しく増加し、発振閾値電流密度が大幅に低減する。
If the quantum well type potential is formed by setting the thickness of the active layer of the semiconductor laser to be equal to or less than the de Broglie wavelength of the carrier, the carrier motion in the thickness direction is quantized.
In the dimensional state, the energy level becomes stepwise, and the density of states of carriers in the energy level involved in the oscillation is significantly increased, and the oscillation threshold current density is significantly reduced.

このキャリアのドゥ・ブローイー波長は例えば砒化ガリ
ウム(GaAs)では30nm程度であり、キャリア特に電子の
エネルギー準位を十分に離散するために、量子井戸層の
厚さはしばしば10nm程度以下とされる。
The de Broglie wavelength of this carrier is, for example, about 30 nm in gallium arsenide (GaAs), and the thickness of the quantum well layer is often set to about 10 nm or less in order to sufficiently disperse the energy level of carriers, especially electrons.

第2図(a)は量子井戸半導体レーザの従来例を示す模
式側断面図、同図(b)はそのエネルギー・バンドダイ
アグラムであり、その対応を同一符号によって示す。
FIG. 2 (a) is a schematic side sectional view showing a conventional example of a quantum well semiconductor laser, and FIG. 2 (b) is an energy band diagram thereof, which correspondence is indicated by the same symbol.

本従来例において、21はn型GaAs半導体基板、22はn型
GaAsバッファ層、23は砒化アルミニウムガリウム(AlGa
As)閉じ込め層、24はGaAsよりなる量子井戸層、25はp
型AlGaAs閉じ込め層、26はp型GaAsコンタクト層であ
り、これらの各半導体層をエピタキシャル成長した後
に、ストライプ領域の両側の半導体層に例えば亜鉛(Z
n)等の不純物を拡散させることによって、p型AlGaAs
閉じ込め層25に含まれるアルミニウム(Al)原子のGaAs
量子井戸層24への拡散などの半導体層相互間の拡散を行
わせて量子井戸構造を破壊し、閉じ込め領域27を形成し
ている。なお、30は絶縁膜、31はp側電極、32はn側電
極である。
In this conventional example, 21 is an n-type GaAs semiconductor substrate and 22 is an n-type
GaAs buffer layer, 23 is aluminum gallium arsenide (AlGa
As) confinement layer, 24 is a quantum well layer made of GaAs, and 25 is p
Type AlGaAs confinement layer 26 is a p-type GaAs contact layer. After epitaxially growing these semiconductor layers, for example, zinc (Z
n) and other impurities to diffuse p-type AlGaAs
Aluminum (Al) atomic GaAs contained in the confinement layer 25
Diffusion between semiconductor layers such as diffusion into the quantum well layer 24 is performed to destroy the quantum well structure and form a confinement region 27. Reference numeral 30 is an insulating film, 31 is a p-side electrode, and 32 is an n-side electrode.

本従来例のGaAs量子井戸層24へのキャリア注入は、活性
層が量子化されていない通常のダブルヘテロ半導体レー
ザと同様に、正孔はp側電極31からp型コンタクト層2
6、p型AlGaAs閉じ込め層25を経て、また電子はn側電
極32からn型半導体基板21、n型バッファ層22、n型Al
GaAs閉じ込め層23を経て行われている。
In the carrier injection into the GaAs quantum well layer 24 of this conventional example, holes are injected from the p-side electrode 31 to the p-type contact layer 2 as in a normal double hetero semiconductor laser in which the active layer is not quantized.
6, through the p-type AlGaAs confinement layer 25, and electrons from the n-side electrode 32, n-type semiconductor substrate 21, n-type buffer layer 22, n-type Al
This is done through the GaAs confinement layer 23.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この様な積層された閉じ込め層から活性層へのキャリア
注入では、活性層が薄くなるに伴ってその通過確率が増
加し注入効率が低下する。
In carrier injection from such a confined confining layer into the active layer, as the active layer becomes thinner, the probability of passage thereof increases and the injection efficiency decreases.

特に活性層が量子論的厚さの量子井戸レーザでは注入効
率の低下が極めて大きく、例えばGRIN-SCH(GRaded INd
ex waveguide Separate Confinement Heterostructur
e)構造など、量子井戸層との界面近傍で閉じ込め層の
バリア高さに勾配を与える構造が提案されているが、満
足できる注入効率に達せずその改善が強く要望されてい
る。
In particular, in quantum well lasers in which the active layer has a quantum thickness, the injection efficiency is extremely low. For example, GRIN-SCH (GRaded INd
ex waveguide Separate Confinement Heterostructur
e) Structures such as a structure that gives a gradient to the barrier height of the confinement layer in the vicinity of the interface with the quantum well layer have been proposed, but satisfactory injection efficiency cannot be achieved, and its improvement is strongly desired.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は,量子井戸層を活性層に有する半導体発光
装置において,不純物をアトミックプレーンドーピング
した層を該量子井戸層の中に有する本発明による半導体
発光装置により解決される。
In the semiconductor light emitting device having a quantum well layer as an active layer, the above problem is solved by the semiconductor light emitting device according to the present invention having a layer in which impurities are atomically plane-doped in the quantum well layer.

〔作用〕[Action]

本発明においては、不純物イオンによるクローン散乱に
よりキャリアの量子井戸層通過確率を減少させ、注入効
率を向上する。
In the present invention, the probability of carriers passing through the quantum well layer is reduced by clonal scattering due to impurity ions, and the injection efficiency is improved.

しかしながら、従来普通に行われている半導体に不純物
を3次元的に混在させるドーピング方法では、例えばGa
As半導体にシリンコン(Si)をドープする場合の最高濃
度が5×1018cm-3程度に止まり、しかも量子井戸層の閉
じ込め層とのヘテロ接合界面までドープされるならば、
閉じ込め層において自由キャリアによる光の吸収が増加
して効果が減殺される。
However, in the conventional doping method in which impurities are three-dimensionally mixed in a semiconductor, for example, Ga
If the maximum concentration of Si semiconductor doped with Sirincon (Si) is about 5 × 10 18 cm −3 and the heterojunction interface with the confinement layer of the quantum well layer is doped,
In the confinement layer, the absorption of light by free carriers increases and the effect is diminished.

これに対して、半導体層に2次元的に不純物を導入する
アトミックプレーンドーピングによれば1×1019cm-3
度以上の高濃度が得られ、しかも不純物イオンを量子井
戸層のヘテロ接合界面から離隔し閉じ込め層における光
の吸収損失を抑制することが可能となる。
On the other hand, according to atomic plane doping, which introduces impurities into the semiconductor layer two-dimensionally, a high concentration of about 1 × 10 19 cm −3 or more can be obtained, and the impurity ions are introduced from the heterojunction interface of the quantum well layer. It is possible to suppress light absorption loss in the separated confinement layer.

この様に量子井戸層へのキャリアの注入効率が増大して
発光再結合が十分に行われ、光の吸収損失は抑制され
て、閾値電流の低減、発光効率の向上が達成される。
Thus, the efficiency of carrier injection into the quantum well layer is increased, emission recombination is sufficiently performed, light absorption loss is suppressed, and the threshold current is reduced and the emission efficiency is improved.

なお量子井戸層が単一でなく、複数の量子井戸層がバリ
ア層を介して設けられている多重量子井戸レーザにおい
ては、本発明による不純物の導入を選択した量子井戸層
に限って実施することも可能である。
In a multiple quantum well laser in which a single quantum well layer is provided and a plurality of quantum well layers are provided via a barrier layer, introduction of impurities according to the present invention should be carried out only in the selected quantum well layer. Is also possible.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically described below with reference to examples.

第1図(a)は本発明をGaAs/AlGaAs系半導体材料から
なるGRIN-SCH構造の量子井戸レーザに適用した実施例を
示す模式側断面図、同図(b)はその活性領域近傍のエ
ネルギーバンドダイアグラムであり、その対応を同一符
号によって示す。
FIG. 1 (a) is a schematic side sectional view showing an embodiment in which the present invention is applied to a quantum well laser having a GRIN-SCH structure made of a GaAs / AlGaAs semiconductor material, and FIG. 1 (b) is an energy near the active region. It is a band diagram, and its correspondence is indicated by the same reference numeral.

本実施例では不純物濃度が例えば2×1018cm-3程度のn
型GaAs半導体基板1上に、分子線エピタキシャル成長方
法により下記の半導体層を順次成長しており、活性層4
以外の各半導体層の不純物ドーピングは通常の3次元的
なドーピングで、ドナー不純物にSi、アクセプタ不純物
にベリリウム(Be)等を用いている。
In this embodiment, n having an impurity concentration of, for example, about 2 × 10 18 cm −3
The following semiconductor layers are sequentially grown on the type GaAs semiconductor substrate 1 by the molecular beam epitaxial growth method.
The impurity doping of each semiconductor layer other than is normal three-dimensional doping, and Si is used as a donor impurity and beryllium (Be) or the like is used as an acceptor impurity.

なお、基板1側のn型閉じ込め層3にはAlの組成比X=
0.7の領域3a上に活性層4との界面に向かってX=0.7か
らX=0.18までグレーディングされた領域3bが設けら
れ、活性層4上のp型閉じ込め層5には同様のグレーデ
ィング領域5bが設けられてGRIN-SCH構造が形成されてい
る。
In the n-type confinement layer 3 on the substrate 1 side, the Al composition ratio X =
A region 3b graded from X = 0.7 to X = 0.18 toward the interface with the active layer 4 is provided on the 0.7 region 3a, and a similar grading region 5b is provided in the p-type confinement layer 5 on the active layer 4. The GRIN-SCH structure is formed by being provided.

活性層4の成長は、n型閉じ込め層3のグレーディング
領域3b上にAs、Gaビームにより厚さ3nmのGaAs層4aを成
長した後に、Gaビームを止めSiビームを入射して面濃度
約6×1012cm-2のSiのアトミックプレーンドーピング4b
を行ってSiビームを止め、再びGaAs層4cを厚さ3nmに成
長している。
The growth of the active layer 4 is carried out by growing the GaAs layer 4a having a thickness of 3 nm on the grading region 3b of the n-type confinement layer 3 with As and Ga beams, stopping the Ga beam and injecting the Si beam to a surface concentration of about 6 ×. 10 12 cm -2 Si atomic plane doping 4b
Then, the Si beam is stopped, and the GaAs layer 4c is grown again to a thickness of 3 nm.

この様にして第1図(b)に見られる如く、活性層4は
閉じ込め層3、5間に挟まれて幅(厚さ)6nmの量子井
戸構造を構成し、その不純物濃度は1×1019cm-3に達し
ている。
Thus, as shown in FIG. 1B, the active layer 4 is sandwiched between the confinement layers 3 and 5 to form a quantum well structure having a width (thickness) of 6 nm, and the impurity concentration thereof is 1 × 10 5. It has reached 19 cm -3 .

この半導体基体にZn拡散により半導体層間でAl原子等の
相互拡散を行わせて閉じ込め領域7を形成し、絶縁膜1
0、p側電極11、n側電極12を配設し、劈開等の工程を
経て本実施例のレーザ素子が完成する。
The confinement region 7 is formed by interdiffusion of Al atoms or the like between the semiconductor layers by Zn diffusion in this semiconductor substrate, and the insulating film 1 is formed.
The laser element of the present embodiment is completed by arranging 0, p-side electrode 11 and n-side electrode 12, and through the steps such as cleavage.

以上説明した実施例と、これと同等の構造で活性層にド
ーピングを行わない比較試料とについて閾値電流を比較
測定し、本実施例では比較試料に対して約10〜20%の電
流密度の低減が確認された。
The threshold currents of the above-described example and a comparative sample having the same structure as that of the comparative example in which the active layer is not doped are compared and measured, and in this example, the current density is reduced by about 10 to 20% with respect to the comparative sample. Was confirmed.

本実施例ではアトミックプレーンドーピングを1層とし
ているが、例えば1〜2nm程度の間隔で複数回のアトミ
ックプレーンドーピングを行うことにより不純物濃度を
更に高めることも可能である。
Although the atomic plane doping is one layer in this embodiment, the impurity concentration can be further increased by performing the atomic plane doping a plurality of times at intervals of, for example, about 1 to 2 nm.

以上の説明では活性領域が単一の量子井戸層で構成され
ているが、バリア層を挟んで複数の量子井戸層を設けた
多重量子井戸レーザについても本発明を適用して、同様
の効果を得ることができる。この場合に必ずしも総ての
量子井戸層にアトミックプレーンドーピングを行わず、
光吸収効果を考慮して一部の量子井戸層のみにアトミッ
クプレーンドーピングを行ってもよい。
In the above description, the active region is composed of a single quantum well layer, but the present invention is also applied to a multiple quantum well laser in which a plurality of quantum well layers are provided with a barrier layer in between, and the same effect is obtained. Obtainable. In this case, not all the quantum well layers are subjected to atomic plane doping,
Atomic plane doping may be performed only on some quantum well layers in consideration of the light absorption effect.

また以上の説明ではGaAs/AlGaAs系半導体を用いている
が、インジウム燐/インジウムガリウム砒素(燐)(In
P/InGaAs(P))系など他の半導体材料を用いた量子井
戸半導体レーザに本発明を適用して同様の効果を収める
ことができる。
In the above description, the GaAs / AlGaAs semiconductor is used, but indium phosphide / indium gallium arsenide (phosphorus) (In
The same effect can be obtained by applying the present invention to a quantum well semiconductor laser using another semiconductor material such as P / InGaAs (P) system.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば、量子井戸活性層への
キャリアの注入効率が増大し、発光再結合が十分に行わ
れて、閾値電流の低減、発光効率の向上が達成される。
As described above, according to the present invention, the efficiency of injecting carriers into the quantum well active layer is increased, emission recombination is sufficiently performed, and the threshold current is reduced and the emission efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明による量子井戸レーザの実施例を
示す模式側断面図、 第1図(b)はその活性領域近傍のエネルギーバンドダ
イアグラム、 第2図(a)は従来例を示す模式側断面図、 第2図(b)はその活性領域近傍のエネルギーバンドダ
イアグラムである。 図において、 1はn型GaAs基板、2はn型GaAsバッファ層、3はn型
AlGaAs閉じ込め層、4はGaAs量子井戸活性層、4a及び4c
はノンドープのGaAs層、4bはSiアトミックプレーンドー
ピング層、5はp型AlGaAs閉じ込め層、6はp型GaAsコ
ンタクト層、7は閉じ込め領域、10は絶縁膜、11はp側
電極、12はn側電極を示す。
1 (a) is a schematic side sectional view showing an embodiment of a quantum well laser according to the present invention, FIG. 1 (b) is an energy band diagram in the vicinity of its active region, and FIG. 2 (a) shows a conventional example. A schematic side sectional view, FIG. 2 (b) is an energy band diagram near the active region. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type GaAs buffer layer, and 3 is an n-type
AlGaAs confinement layer, 4 is GaAs quantum well active layer, 4a and 4c
Is a non-doped GaAs layer, 4b is a Si atomic plane doping layer, 5 is a p-type AlGaAs confinement layer, 6 is a p-type GaAs contact layer, 7 is a confinement region, 10 is an insulating film, 11 is a p-side electrode, and 12 is an n-side. The electrodes are shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】量子井戸層を活性層に有する半導体発光装
置において, 不純物をアトミックプレーンドーピングした層を該量子
井戸層の中に有することを特徴とする半導体発光装置。
1. A semiconductor light emitting device having a quantum well layer as an active layer, wherein a layer in which impurities are atomically plane-doped is provided in the quantum well layer.
JP60065636A 1985-03-29 1985-03-29 Semiconductor light emitting device Expired - Lifetime JPH0712101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065636A JPH0712101B2 (en) 1985-03-29 1985-03-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065636A JPH0712101B2 (en) 1985-03-29 1985-03-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS61224482A JPS61224482A (en) 1986-10-06
JPH0712101B2 true JPH0712101B2 (en) 1995-02-08

Family

ID=13292707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065636A Expired - Lifetime JPH0712101B2 (en) 1985-03-29 1985-03-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0712101B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262578A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Semiconductor laser
JP2679974B2 (en) * 1986-04-23 1997-11-19 株式会社日立製作所 Semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915388B2 (en) * 1977-02-02 1984-04-09 株式会社日立製作所 semiconductor equipment
JPS5826539Y2 (en) * 1981-07-16 1983-06-08 松下電器産業株式会社 semiconductor laser

Also Published As

Publication number Publication date
JPS61224482A (en) 1986-10-06

Similar Documents

Publication Publication Date Title
US20120236891A1 (en) Lasers with quantum wells having high indium and low aluminum with barrier layers having high aluminum and low indium with reduced traps
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0143472B2 (en)
US5331656A (en) Very short wavelength semiconductor laser
Ikeda et al. Room‐temperature continuous‐wave operation of a GaInP/AlGaInP multiquantum well laser grown by metalorganic chemical vapor deposition
EP0215125A1 (en) Luminescent semiconductor element
EP0293000B1 (en) Light emitting device
JPH0529713A (en) Semiconductor laser element
US5914496A (en) Radiation emitting semiconductor diode of buried hetero type having confinement region of limited Al content between active layer and at least one inp cladding layer, and method of manufacturing same
KR920003679B1 (en) Semiconductor apparatus
EP0915542A2 (en) Semiconductor laser having improved current blocking layers and method of forming the same
JPH0712101B2 (en) Semiconductor light emitting device
JPH0697592A (en) Semiconductor laser and manufacture thereof
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
JPH05160504A (en) Semiconductor laser device
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JP3033333B2 (en) Semiconductor laser device
JPH0669589A (en) Semiconductor laser element
KR0130066B1 (en) Semiconductor laser devices and process for making them
JPH0467353B2 (en)
JP3255244B2 (en) Semiconductor laser
JPH07122811A (en) Semiconductor laser element
JPH0685385A (en) Semiconductor laser
JPH10294530A (en) Multiquantum well type semiconductor light emitting element
JPH07235725A (en) Semiconductor laser element and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term