JPH02125477A - Visible light emitting element - Google Patents

Visible light emitting element

Info

Publication number
JPH02125477A
JPH02125477A JP63277315A JP27731588A JPH02125477A JP H02125477 A JPH02125477 A JP H02125477A JP 63277315 A JP63277315 A JP 63277315A JP 27731588 A JP27731588 A JP 27731588A JP H02125477 A JPH02125477 A JP H02125477A
Authority
JP
Japan
Prior art keywords
energy gap
light emitting
type
active layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277315A
Other languages
Japanese (ja)
Inventor
Hiroshi Wada
浩 和田
Hiroshi Ogawa
洋 小川
Hideaki Horikawa
英明 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63277315A priority Critical patent/JPH02125477A/en
Publication of JPH02125477A publication Critical patent/JPH02125477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • H01L33/0087Processes for devices with an active region comprising only II-VI compounds with a substrate not being a II-VI compound

Abstract

PURPOSE:To set the difference of the energy gaps of a clad layer and an active layer to 0.3eV or more and to improve a light oscillation efficiency by forming a double hetero structure of ZnxCd1-xSeyTe1-y mixed crystal lattice-matched to an InP board as a material on the board. CONSTITUTION:This light emitting element is formed in a double hetero structure by sequentially laminating, for example, a P-type ZnSeyTe1-y clad layer 2 having largest energy gap of 2.52eV of mixed crystal ZnxCd1-xSeyTe1-y lattice- matched with x=-0.47 and y=0.54 of composition ratio by a Vegard's rule, a ZnxCd1-xSe active layer 3 having smallest energy gap of 2.20eV and no polarity, and an n-type ZnSeyTe1-y clad layer 4 having largest energy gap of 2.52ev on a p-type InP board 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は波長が0.6μ以下の可視領域の光を発振する
発光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light emitting element that oscillates light in the visible region with a wavelength of 0.6 μm or less.

〔従来の技術〕[Conventional technology]

従来、この種の可視光発光素子は、r19B6年7月1
8日、応用物理学会結晶工学分科会第3回結晶工学シン
ポジウム、  II−Vl族化合物の結晶成長と評価、
“zn5@ 、 Zn SSe混晶のMOCVD成長”
、別府達部著、第39〜42頁」に開示されるものがあ
る。これは、GaAs基板上に、この基板に格子整合す
る直接遷移型のII−Vl族化合物半導体であるZnx
 Cd、、 Sy Se+−、の四元混晶を、エピタキ
シャル成長させ、波長が0.6 n以下の可視光を発振
するペテロ接合構造の発光層を形成するものであった。
Conventionally, this type of visible light emitting device
8th, 3rd Crystal Engineering Symposium, Crystal Engineering Subcommittee, Japan Society of Applied Physics, Crystal Growth and Evaluation of II-Vl Group Compounds,
“Zn5@, MOCVD growth of Zn SSe mixed crystal”
, by Tatsube Beppu, pp. 39-42. This is a direct transition type II-Vl group compound semiconductor Znx that is lattice matched to the GaAs substrate.
A quaternary mixed crystal of Cd, SySe+- was grown epitaxially to form a light-emitting layer with a Peter junction structure that oscillated visible light with a wavelength of 0.6 nm or less.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し乍ら、上述した従来発光素子においては、波長が0
.6μ以下の発光層として、GaAs基板に格子整合す
る材料系、即ちZnx Cd+−、、sy 5el−F
材を用いたので、例えば発光層を発振効率の良いダブル
ヘテロ構造にした場合でも、第2図に示す如く、クラッ
ド層と活性層とのエネルギーギャップの巾は:、 Zn
 SSeの2.75eVからZn Cd Sの3.Oe
V迄の0.25eVに亘る領域内にしか実現できないた
め、発振効率が低くなり、例えばクラッド層と活性層と
のエネルギーギャップの差が0.3eV以上を要する室
温連続発振の半導体レーザー等を得ることができないと
いう問題点があった。
However, in the conventional light emitting device described above, the wavelength is 0.
.. As a light emitting layer of 6μ or less, a material system lattice-matched to the GaAs substrate, that is, Znx Cd+-, sy 5el-F
For example, even if the light-emitting layer has a double heterostructure with high oscillation efficiency, the width of the energy gap between the cladding layer and the active layer is: Zn, as shown in Figure 2.
from 2.75 eV for SSe to 3. for ZnCdS. Oe
Since this method can only be realized within the range of 0.25 eV up to V, the oscillation efficiency is low, and for example, a room temperature continuous wave semiconductor laser, etc., which requires an energy gap difference of 0.3 eV or more between the cladding layer and the active layer, etc. can be obtained. The problem was that it could not be done.

本発明の目的は、上述の問題点に鑑み、クラッド層と活
性層とのエネルギーギャップの差を0.3eV以上とし
、光の発振効率が向上できる可視先発光素子を提供する
ものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a visible first light element in which the energy gap difference between the cladding layer and the active layer is 0.3 eV or more, and the light oscillation efficiency can be improved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明″1よ上述した目的を達成するため、InP基板
上に、該1nP基板に格子整合するZnx Cd、−、
5eyT41+−y混晶を社料として、ダブルヘテロ構
造を形成したものである。
In order to achieve the above-mentioned object of the present invention "1", on an InP substrate, Znx Cd, -, which is lattice matched to the 1nP substrate,
A double heterostructure is formed using a 5eyT41+-y mixed crystal as a material.

〔作 用〕[For production]

本発明においては、InP基板上に、これに格子整合す
るn−vi族化合物半導体のZnx Cd1−X5ey
T@+−y混晶を材料として、ダブルヘテロ構造を形成
したので、ダブルヘテロ構造におけるクラフト層と活性
層とのエネルギーギャップの差は0.3eV以上取れる
In the present invention, Znx Cd1-X5ey, which is an n-vi group compound semiconductor that is lattice matched to the InP substrate, is
Since a double heterostructure is formed using T@+-y mixed crystal as a material, the difference in energy gap between the craft layer and the active layer in the double heterostructure can be 0.3 eV or more.

〔実施例〕 本発明発光素子に係る一実施例を、第1図にダブルヘテ
ロの構造図を示して説明する。
[Example] An example of the light emitting device of the present invention will be described with reference to a double hetero structural diagram shown in FIG. 1.

即ち、この発光素子は、P型InP基板1上に、例えば
ベガード(Vegard)の法則により組成比が、x=
0.47及び7−0.54で格子整合する混晶ZnxC
d+−x Say Te+−yのうち、第2図に示すよ
うに、エネルギーギャップが2.52eVと最も大きい
P型のZn Sey Te+−yクラッド層2と、エネ
ルギーギャップが2.20eVと最も小さく、極性のな
いZnx Cd。
That is, this light emitting element is formed on a P-type InP substrate 1 with a composition ratio of x=
Mixed crystal ZnxC with lattice matching at 0.47 and 7-0.54
Among d+-x Say Te+-y, as shown in FIG. 2, the P-type Zn Sey Te+-y cladding layer 2 has the largest energy gap of 2.52 eV, and the smallest energy gap of 2.20 eV. Znx Cd without polarity.

Se活性層3と、エネルギーギャップが2.52eVと
最も大きいn型のZn Sey Te+−yクラッド層
4とを順次積層して、ダブルヘテロ構造を形成したもの
である。
A double heterostructure is formed by sequentially stacking a Se active layer 3 and an n-type Zn Sey Te+-y cladding layer 4 having the largest energy gap of 2.52 eV.

斯くして、かかる発光素子に順方向の電圧を印加すると
、P型Zn Sey Te+−yクラッド層2ヶら正孔
及びn型Zn Sey Te+−yクラフト層4から電
子が夫々Znx cd、−、Se活性層3に導入される
。そして、上記クラッド層2,4と活性層3とのエネル
ギーギャップの差は、0.32eVであるため、電子及
び正孔は、有効に上記活性層3内に、閉じ込められ、発
光再結合を起こし、光を発振する。この時発振される光
の波長λは、次式より約Q、56/nと算出される。
Thus, when a forward voltage is applied to such a light emitting device, holes are generated from the two P-type Zn Sey Te+-y cladding layers and electrons from the n-type Zn Sey Te+-y cladding layer 4, respectively. Se is introduced into the active layer 3. Since the difference in energy gap between the cladding layers 2 and 4 and the active layer 3 is 0.32 eV, electrons and holes are effectively confined within the active layer 3, causing radiative recombination. , oscillates light. The wavelength λ of the light oscillated at this time is calculated as approximately Q, 56/n from the following equation.

λ(Irm)svl、24/Eg(eV)但し、Egは
活性層3のエネルギーギャップ値であり、約2.20e
vである。
λ(Irm)svl, 24/Eg(eV) However, Eg is the energy gap value of the active layer 3, approximately 2.20e
It is v.

従って、活性層とクラフト層とのエネルギーギャップの
差が0.3eV以上のダブルヘテロ構造を有し、波長が
0.6μ以下の可視光を発振する高効率発光ダイオード
又は室温連続発振できる半導体レーザーが実現できる。
Therefore, a high-efficiency light emitting diode that has a double heterostructure with an energy gap difference of 0.3 eV or more between the active layer and the craft layer and that emits visible light with a wavelength of 0.6 μ or less or a semiconductor laser that can continuously oscillate at room temperature is required. realizable.

尚、活性層3としてのZnx Cd+−x Seは、I
nP基板上に格子整合するZnx Cd1−* Sey
 Te+−y (y 41)に代えても良い。
Incidentally, Znx Cd+-x Se as the active layer 3 is I
Znx Cd1-*Sey lattice matched on nP substrate
It may be replaced with Te+-y (y 41).

〔発明の効果〕     □ 以上説明したように本発明によれば、・InP基板に格
子整合するZnx Cd+−x Say Te+−y混
晶を用・いて、ダブルヘテロ構造を形成したので、活性
層とクラッド層とのエネルギーギャップの差が0.3e
V以上取れ、活性層に有効なキャリアの閉じ込めが実現
できるため、波長が0.6n以下の可視光を発振する高
効率発光ダイオード及び室温連続発振半導体レーザー等
を得ることができる等の特有の効果により上述の課題を
解決し得る。
[Effects of the Invention] □ As explained above, according to the present invention, a double heterostructure is formed by using a Znx Cd+-x Say Te+-y mixed crystal that is lattice-matched to an InP substrate. The difference in energy gap with the cladding layer is 0.3e
Since it is possible to obtain more than V and achieve effective carrier confinement in the active layer, it has unique effects such as making it possible to obtain high-efficiency light emitting diodes and room temperature continuous wave semiconductor lasers that oscillate visible light with a wavelength of 0.6 nm or less. The above-mentioned problem can be solved by this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明発光素子の実施例に係わるダブルヘテロ
の構造図、第2図はエネルギーギャップと格子定数との
特性図である。 1−P型1nP基板、2 ・P型Zll Sey Te
1−yクラッド層、3−Zr+x Cd、−、Se活性
層、4 =−n型Zn5ey Te1リクラッド層。
FIG. 1 is a structural diagram of a double hetero in accordance with an embodiment of the light emitting device of the present invention, and FIG. 2 is a characteristic diagram of energy gap and lattice constant. 1-P type 1nP substrate, 2 ・P type Zll Sey Te
1-y cladding layer, 3-Zr+x Cd,-,Se active layer, 4 =-n-type Zn5ey Te1 recladding layer.

Claims (1)

【特許請求の範囲】[Claims] InP基板上に、該InP基板に格子整合するZn_x
Cd_1_−_xSeyTe_1_−_y混晶を材料と
して、ダブルヘテロ構造を形成したことを特徴とする可
視光発光素子。
On the InP substrate, Zn_x is lattice matched to the InP substrate.
A visible light emitting device characterized in that a double heterostructure is formed using a Cd_1_-_xSeyTe_1_-_y mixed crystal material.
JP63277315A 1988-11-04 1988-11-04 Visible light emitting element Pending JPH02125477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277315A JPH02125477A (en) 1988-11-04 1988-11-04 Visible light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277315A JPH02125477A (en) 1988-11-04 1988-11-04 Visible light emitting element

Publications (1)

Publication Number Publication Date
JPH02125477A true JPH02125477A (en) 1990-05-14

Family

ID=17581826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277315A Pending JPH02125477A (en) 1988-11-04 1988-11-04 Visible light emitting element

Country Status (1)

Country Link
JP (1) JPH02125477A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296718A (en) * 1991-02-21 1994-03-22 Seiwa Electric Mfg. Co., Ltd. Light emitting semiconductor device having multilayer structure
EP0807983A2 (en) * 1996-05-10 1997-11-19 Nec Corporation Semiconductor device having II-VI compound semiconductor layer containing te
US6178190B1 (en) 1997-08-04 2001-01-23 Nec Corporation II-VI compound semiconductor light emitting device
EP1416544A4 (en) * 2001-08-10 2006-10-25 Ii-vi compound semiconductor crystal and photo-electric conversion function element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296718A (en) * 1991-02-21 1994-03-22 Seiwa Electric Mfg. Co., Ltd. Light emitting semiconductor device having multilayer structure
EP0807983A2 (en) * 1996-05-10 1997-11-19 Nec Corporation Semiconductor device having II-VI compound semiconductor layer containing te
EP0807983A3 (en) * 1996-05-10 2000-04-26 Nec Corporation Semiconductor device having II-VI compound semiconductor layer containing te
US6178190B1 (en) 1997-08-04 2001-01-23 Nec Corporation II-VI compound semiconductor light emitting device
EP1416544A4 (en) * 2001-08-10 2006-10-25 Ii-vi compound semiconductor crystal and photo-electric conversion function element

Similar Documents

Publication Publication Date Title
JPH04219984A (en) Four-dimentional groupii-vi material for photon device
EP0177617B1 (en) Junction semiconductor light-emitting element
Donnelly et al. 1.5-μm tapered-gain-region lasers with high-CW output powers
US4365260A (en) Semiconductor light emitting device with quantum well active region of indirect bandgap semiconductor material
US4313125A (en) Light emitting semiconductor devices
US5737353A (en) Multiquantum-well semiconductor laser
JPH02125477A (en) Visible light emitting element
US5214663A (en) Semiconductor laser
JPH0523074B2 (en)
US5250814A (en) Semiconductor light-emitting devices
JPH05102600A (en) Semiconductor laser
JPH03236276A (en) Optical functional element
US4270094A (en) Semiconductor light emitting device
US6350629B1 (en) Optical semiconductor device having active layer and carrier recombination layer different from each other
JPH0478036B2 (en)
JPH07112090B2 (en) Semiconductor light emitting device
JPH0325032B2 (en)
Panish Heterostructure injection lasers
JPS6257259A (en) Light emitting semiconductor element
JP2848615B2 (en) Semiconductor light emitting device
JPS62137893A (en) Semiconductor laser
KR100287200B1 (en) Semiconductor laser diode
JP2004111743A (en) Semiconductor optical device
JPH09298338A (en) Quantum well crystalline body and semiconductor laser
JPS58199583A (en) Multiple wavelength semiconductor laser