JPS58199583A - Multiple wavelength semiconductor laser - Google Patents
Multiple wavelength semiconductor laserInfo
- Publication number
- JPS58199583A JPS58199583A JP8220082A JP8220082A JPS58199583A JP S58199583 A JPS58199583 A JP S58199583A JP 8220082 A JP8220082 A JP 8220082A JP 8220082 A JP8220082 A JP 8220082A JP S58199583 A JPS58199583 A JP S58199583A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- semiconductor laser
- irlp
- square
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は多数の波長の異なる光を同一の素子から放出す
る多重波長半導体レーザに関し、特に波長の異なる2つ
の光を放出する2波長半導体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-wavelength semiconductor laser that emits light of many different wavelengths from the same element, and more particularly to a two-wavelength semiconductor laser that emits two lights of different wavelengths.
一般に、光ファイバーを用いた光通信において光ファイ
バーの帯域を有効に利用するためには同時に波長の異な
る複数の光を用いて通信を行なういわゆる波長多重光通
信が有用である。In general, in order to effectively utilize the optical fiber band in optical communications using optical fibers, so-called wavelength multiplexing optical communications, in which communications are performed using a plurality of lights of different wavelengths at the same time, is useful.
従来、この波長多重光通信を行なうために波長の異なる
いくつかのレーザにより発振された光を光混合器を用い
て一本の光ファイバーに導き伝送した後光ファイバーか
らの出力光を再び光分波器を用いて波長を分割し、いく
つかの光検出器で受光するという波長多重光通信システ
ムが用いられてきた。しかし、このシステムは、システ
ムが複雑になる上、光混合器及び光分波器でかなり光の
減衰を受けるという欠点がある。Conventionally, in order to perform this wavelength-multiplexed optical communication, light oscillated by several lasers with different wavelengths was guided and transmitted through a single optical fiber using an optical mixer, and then the output light from the optical fiber was passed through an optical demultiplexer again. A wavelength multiplexing optical communication system has been used in which wavelengths are divided using a wavelength division multiplexing method, and the wavelengths are received by several photodetectors. However, this system has the disadvantage that the system is complicated and the light is considerably attenuated by the optical mixer and optical demultiplexer.
本発明の目的は、1枚の基板上に波長の異なる複数のレ
ーザをごく近接して七ノリシックに集積し、1つのレー
ザ素子から複数の波長の光を放出する多重波長半導体レ
ーザを提供することである。An object of the present invention is to provide a multi-wavelength semiconductor laser in which a plurality of lasers with different wavelengths are seven-nolithically integrated in close proximity on one substrate, and which emits light of a plurality of wavelengths from one laser element. It is.
すなわち、2以上の波長の光を放出する多重波長半導体
レーザにより発振された光を直接光ファイバーに導くこ
とにより、より簡単にかつ損失が少ない波長分割多重光
通信が実現できる。That is, by directly guiding light oscillated by a multi-wavelength semiconductor laser that emits light of two or more wavelengths to an optical fiber, it is possible to realize wavelength division multiplexing optical communication more simply and with less loss.
以下に図面を参照して本発明について詳細に説明する。The present invention will be described in detail below with reference to the drawings.
第1図は本発明の多重波長半導体レーザの実施例を示す
図である。第1図では最も簡単な場合として2波長半導
体レーザに例をとり説明する。第1図では燐化インジウ
ムInP (以下、■7LPという)基板4上に成長し
た砒素化燐化インジウムガリウムエrLGaASP(以
下、IybGaA、rPという)四元結晶によって2波
長半導体レーザが構成されている。製作手順を以下に説
明する。まず、エピタキシャル技術によりIrLP基板
4上にル型InP層5、ル型XnGa A、r p層6
、ル型工nP層7、n型エルGaA、pP層8、ル型I
nP層9の薄膜結晶層を順次成長させる。ここで、2つ
のル型工rLGcLA、pP薄膜結晶層6及び8のバン
ドギャップエネルギーは所望の発振波長が得られるよう
に選んでおく。FIG. 1 is a diagram showing an embodiment of a multi-wavelength semiconductor laser according to the present invention. In FIG. 1, a two-wavelength semiconductor laser will be explained as an example as the simplest case. In FIG. 1, a two-wavelength semiconductor laser is constructed of an indium gallium arsenide phosphide ErLGaASP (hereinafter referred to as IybGaA, rP) quaternary crystal grown on an indium phosphide InP (hereinafter referred to as 7LP) substrate 4. . The manufacturing procedure will be explained below. First, an R-type InP layer 5, a R-type
, Le-type nP layer 7, n-type GaA, pP layer 8, Le-type I
Thin film crystal layers of the nP layer 9 are sequentially grown. Here, the bandgap energy of the two molded rLGcLA and pP thin film crystal layers 6 and 8 is selected so as to obtain a desired oscillation wavelength.
各薄膜層の典型的な厚さは、IrLP基板4が100μ
m、n型I?LP層5が5μm、n型IrLGaA、p
PPO20,3μm、 n、型IfLP層7が5μm、
yb型l7LGaA、rP層8が0.3p、m、 n型
■rLP層9が2pmである。エピタキシャル成長後、
化学エツチングによりル型工yLGaAsP層8の下ま
でI7+、P基板4Ω一部分を剥離し、続いてその部分
に熱拡散法により部分的に亜鉛znあるいはカドミニウ
ムCdのP型領域13を形成する。更に、電流閉じ込め
用絶縁層として陽極酸化膜10を形成した後、3つのオ
ーミック電極1,2.3を形成する。この実施例では、
亜鉛ZrLあるいはカドミニウムCdの拡散先端部の2
つのル型InGaA#P層6及び8を横切る点11.1
2が活性層となり、これらの点から波長の異なった2つ
の光が放出される。2つの光出力強度は電極2−1間(
以下、LD21という)及び電極3−2間(以下、L、
D32という)に流す電流によりそれぞれ独立に制御さ
れる。The typical thickness of each thin film layer is 100μ for the IrLP substrate 4.
m, n type I? LP layer 5 is 5 μm, n-type IrLGaA, p
PPO20, 3μm, n type IfLP layer 7, 5μm,
The yb-type l7LGaA, rP layer 8 has a thickness of 0.3p, m, and the n-type ■rLP layer 9 has a thickness of 2pm. After epitaxial growth,
A portion of the I7+, P substrate 4Ω is removed to below the molded yLGaAsP layer 8 by chemical etching, and then a P-type region 13 of zinc Zn or cadmium Cd is partially formed in that portion by a thermal diffusion method. Furthermore, after forming an anodic oxide film 10 as an insulating layer for current confinement, three ohmic electrodes 1, 2.3 are formed. In this example,
2 of the diffusion tip of zinc ZrL or cadmium Cd
Point 11.1 crossing two square InGaA#P layers 6 and 8
2 serves as an active layer, and two lights with different wavelengths are emitted from these points. The two light output intensities are between electrodes 2-1 (
(hereinafter referred to as LD21) and between the electrodes 3-2 (hereinafter referred to as L,
They are each independently controlled by the current flowing through them (referred to as D32).
第2図は本発明の2波長半導体レーザのLD32に流し
た電流と出力光パワーの関係を示す図である0ル型工r
LGaA9P層6及び8のバンドギャップエネルギーは
それぞれ1.06eV(電子ボルト)及び0.95+3
Vである。しきい値電流は約240mAで、LD21に
対してもはソ同程度の値が得られる。しきい値電流かや
\大きいのはItzP中のPn接合への洩れ電流成分の
ためであり、InP中のPn接合面積を小さくすること
により下げることができる。Figure 2 is a diagram showing the relationship between the current flowing through the LD32 and the output optical power of the two-wavelength semiconductor laser of the present invention.
The band gap energies of LGaA9P layers 6 and 8 are 1.06 eV (electron volt) and 0.95+3, respectively.
It is V. The threshold current is about 240 mA, and the same value can be obtained for the LD21. The rather large threshold current is due to the leakage current component to the Pn junction in ItzP, and can be lowered by reducing the area of the Pn junction in InP.
第3図は本発明の2波長半導体レーザのLD32の発振
スペクトルを示す図である。LD32及びLD31の発
振波長はそれぞれ1.17μm及びμm以下の極めて小
さな点である。FIG. 3 is a diagram showing the oscillation spectrum of the LD 32 of the two-wavelength semiconductor laser of the present invention. The oscillation wavelengths of the LD 32 and the LD 31 are extremely small, 1.17 μm and less than μm, respectively.
本発明の素子構造は拡散深さとエツチング深さの制御に
より2つの発光スポラ)11.12を10μm以下程度
にまで近ずけることが可能であり、これらの発光スポッ
トの前に直接光ファイバーを置くことにより発光された
光を光ファイバーへ直接結合することが可能である。従
って、光混合器を使用せずに2以上の波長の光を1本の
光ファイバーへ導くことができ、そのため損失が少なく
、簡単な構成で安価に波長多重光通信を行なうことがで
きる。The device structure of the present invention makes it possible to bring the two light-emitting sporae (11, 12) close to 10 μm or less by controlling the diffusion depth and etching depth, and it is possible to place an optical fiber directly in front of these light-emitting spots. It is possible to couple the light emitted by directly into an optical fiber. Therefore, light of two or more wavelengths can be guided to a single optical fiber without using an optical mixer, so that loss is small and wavelength division multiplexing optical communication can be performed at low cost with a simple configuration.
前述の実施例ではInGa A、r P / InP系
物質物質重波長半導体レーザを構成したが使用する物質
としては通常の半導体レーザを構成する各種の物質が使
用可能であることは言うまでもなく、例えば砒素化ガリ
ウムアルミニウムGaAtAS及び砒素化ガ!J ラム
Cta Agを用いたGaAtAS/GcLAS系物質
を用いて多重波長生物質レーザを構成すれば0.8μm
帯での多重波長半導体レーザを得ることができる。In the above embodiment, a heavy wavelength semiconductor laser was constructed using InGa A, r P / InP based materials, but it goes without saying that various materials constituting ordinary semiconductor lasers can be used, such as arsenic, etc. Gallium aluminum GaAtAS and arsenide Ga! 0.8 μm if a multi-wavelength biological laser is constructed using GaAtAS/GcLAS material using J Lamb Cta Ag
A multi-wavelength semiconductor laser in the band can be obtained.
第1図は本発明の多重波長半導体レーザの実施例を示す
図、第2図は本発明の2波長半導体レーザの電流と出力
光パワーの関係を示す図、第3図は本発明の2波長半導
体レーザの発振スペクトルを示す図である。
1.2,3 :電極 4 : IrLP基板5.7
,9 : n型l7LP層 6 、B : n型工1L
(、aA、pP層10:陽極酸化膜 11,12 :
活性層13:ZiあるいはcdのPM拡散領域特許出願
人 棉 灯 正 義・
幕/図
11 Mし (mA〕FIG. 1 is a diagram showing an embodiment of the multi-wavelength semiconductor laser of the present invention, FIG. 2 is a diagram showing the relationship between the current and output optical power of the two-wavelength semiconductor laser of the present invention, and FIG. FIG. 3 is a diagram showing an oscillation spectrum of a semiconductor laser. 1.2,3: Electrode 4: IrLP substrate 5.7
, 9: n-type 17LP layer 6, B: n-type 1L
(, aA, pP layer 10: anodic oxide film 11, 12:
Active layer 13: PM diffusion region of Zi or CD Patent applicant: Kato Masayoshi/Maku/Figure 11 Mshi (mA)
Claims (1)
上にモノリシックに集積化し、多重波長の光を同時に発
振できることを特徴とする多重波長半導体レーザ。 (2) (1)において、燐化インジウムIrLP基
板上にエピタキシャル成長により順次ル型IrLP層、
ル型砒素化燐化インジウムガリウムIrLGOLA9P
層、ル型IyLP層、ル型し+zGaASP層及びル型
IrLP層を形成し、その表面の一部分を表面からル型
InP層、ル型IrLGaA、pP層及びル型IrLP
層の中間まで剥離し、剥離部分と剥離しない部分とに別
個に亜鉛’lnあるいはカドミウムCciのP型頭域を
それぞれル型IrLP層、ル型IWGαAjP層及びル
型IWP層まで熱拡散により形成し、電流絶縁用の陽極
酸化膜を表面全体に形成し、剥離部分と剥離しない部分
との表面に別個に電極を形成し同時にl7LP基板の下
面にも電極を形成した2波長半導体レーザから成ること
を特徴とする多重波長半導体レーザ。 (3> (2)において、燐化インジウムエrLPに
代えて砒素化ガリウムを、砒素化燐化インジウムガリウ
ムIrLGaA、9Pに代えて砒素化ガリウムアルミニ
ウムGαktAsを用いることを特徴とする多重波長半
導体レーザ。 (4) (1)において、IrLP基板上にエピタキ
シャル成長される各薄膜層が、順次100μrn、’
5μm、0.3ttrn、 5tim、 0.3pm及
び2pmの厚さであることを特徴とする多重波長半導体
レーザ。[Scope of Claims] (1) A multi-wavelength semiconductor laser characterized in that multiple types of semiconductor lasers with different wavelengths are monolithically integrated on the same substrate and can emit light of multiple wavelengths simultaneously. (2) In (1), the R-type IrLP layer is sequentially formed by epitaxial growth on the indium phosphide IrLP substrate,
type indium gallium arsenide phosphide IrLGOLA9P
A layer, a square IyLP layer, a square +zGaASP layer, and a square IrLP layer are formed, and a part of the surface is coated with a square InP layer, a square IrLGaA, a pP layer, and a square IrLP layer.
The layers are peeled off to the middle, and a P-type head region of zinc'ln or cadmium Cci is formed separately in the peeled part and the part that is not peeled off by thermal diffusion to the L-type IrLP layer, L-type IWGαAjP layer, and L-type IWP layer, respectively. , a two-wavelength semiconductor laser in which an anodic oxide film for current insulation is formed on the entire surface, electrodes are formed separately on the surface of the peeled part and the non-peeled part, and electrodes are also formed on the lower surface of the 17LP substrate. Features of multi-wavelength semiconductor laser. (3> A multi-wavelength semiconductor laser characterized in that in (2), gallium arsenide is used in place of indium phosphide ErLP, gallium arsenide gallium phosphide IrLGaA is used, and gallium aluminum arsenide GαktAs is used in place of 9P. (4) In (1), each thin film layer epitaxially grown on the IrLP substrate has a thickness of 100 μrn,'
A multi-wavelength semiconductor laser having a thickness of 5 μm, 0.3 ttrn, 5 tim, 0.3 pm and 2 pm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8220082A JPS58199583A (en) | 1982-05-15 | 1982-05-15 | Multiple wavelength semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8220082A JPS58199583A (en) | 1982-05-15 | 1982-05-15 | Multiple wavelength semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58199583A true JPS58199583A (en) | 1983-11-19 |
Family
ID=13767779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8220082A Pending JPS58199583A (en) | 1982-05-15 | 1982-05-15 | Multiple wavelength semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58199583A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4925811A (en) * | 1986-10-23 | 1990-05-15 | L'etat Francais Represente Par Le Ministre Des Postes Et Telecommunications - Centre National D'etudes Des Telecommunications | Method of manufacturing a semiconductor structure suitable for producing a multi-wavelength laser effect |
US5071786A (en) * | 1990-03-08 | 1991-12-10 | Xerox Corporation | Method of making multiple wavelength p-n junction semiconductor laser with separated waveguides |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5680195A (en) * | 1979-12-05 | 1981-07-01 | Matsushita Electric Ind Co Ltd | Semiconductor laser device |
JPS5735392A (en) * | 1980-08-13 | 1982-02-25 | Masayoshi Umeno | Semiconductor light source with photodetector to monitor |
-
1982
- 1982-05-15 JP JP8220082A patent/JPS58199583A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5680195A (en) * | 1979-12-05 | 1981-07-01 | Matsushita Electric Ind Co Ltd | Semiconductor laser device |
JPS5735392A (en) * | 1980-08-13 | 1982-02-25 | Masayoshi Umeno | Semiconductor light source with photodetector to monitor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4925811A (en) * | 1986-10-23 | 1990-05-15 | L'etat Francais Represente Par Le Ministre Des Postes Et Telecommunications - Centre National D'etudes Des Telecommunications | Method of manufacturing a semiconductor structure suitable for producing a multi-wavelength laser effect |
US5071786A (en) * | 1990-03-08 | 1991-12-10 | Xerox Corporation | Method of making multiple wavelength p-n junction semiconductor laser with separated waveguides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09172229A (en) | Transparent substrate vertical resonance type surface luminescence laser manufactured by semiconductor wafer bonding | |
EP0000638B1 (en) | Devices including epitaxial layers of dissimilar crystalline materials | |
JPH0575214A (en) | Semiconductor device | |
JPH04225588A (en) | Semiconductor laser structure | |
CN111969415A (en) | Wide-spectrum multi-wavelength Fabry-Perot laser | |
US5173913A (en) | Semiconductor laser | |
JPS58199583A (en) | Multiple wavelength semiconductor laser | |
US11367997B2 (en) | Semiconductor integrated optics element and production method therefor | |
US4447822A (en) | Light emitting diode | |
JPH02125477A (en) | Visible light emitting element | |
KR20040098798A (en) | Superluminescent diode using active layer of quantum dots structure and method for manufacturing the same | |
CN114899697B (en) | Dual-wavelength cascade semiconductor laser and preparation method thereof | |
Panish | Heterostructure injection lasers | |
JPS5879791A (en) | Two wave-length buried hetero-structure semiconductor laser | |
JPH0366188A (en) | Multi-wavelength laser diode | |
WO2023012925A1 (en) | Semiconductor optical device and method for producing same | |
JPH10178233A (en) | Photosemic0nductor device and its method of manufacturing the same | |
JPS61123190A (en) | Manufacture of fixed-output semiconductor laser element | |
JPS6244715B2 (en) | ||
JPS61199679A (en) | Semiconductor light-emitting element | |
JPS5871677A (en) | 2-wavelength buried hetero structure semiconductor laser | |
JPH09275237A (en) | Semiconductor laser device | |
JPH10135512A (en) | Semiconductor element and method for manufacturing semiconductor element | |
JPS5986282A (en) | Semiconductor laser | |
JPS62102583A (en) | Buried structure semiconductor laser |