WO2023012925A1 - Semiconductor optical device and method for producing same - Google Patents

Semiconductor optical device and method for producing same Download PDF

Info

Publication number
WO2023012925A1
WO2023012925A1 PCT/JP2021/028920 JP2021028920W WO2023012925A1 WO 2023012925 A1 WO2023012925 A1 WO 2023012925A1 JP 2021028920 W JP2021028920 W JP 2021028920W WO 2023012925 A1 WO2023012925 A1 WO 2023012925A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical device
diffraction grating
semiconductor optical
clad layer
Prior art date
Application number
PCT/JP2021/028920
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 藤井
慎治 松尾
拓磨 鶴谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/028920 priority Critical patent/WO2023012925A1/en
Priority to JP2023539443A priority patent/JPWO2023012925A1/ja
Publication of WO2023012925A1 publication Critical patent/WO2023012925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Definitions

  • the present invention relates to a semiconductor optical device used in a wavelength division multiplexing (WDM) optical communication system and a manufacturing method thereof.
  • WDM wavelength division multiplexing
  • wavelength division multiplexing (WDM) technology is required for short-distance communication in data centers and the like. Since the number of optical transceivers is enormous in short-distance communication, optical transceivers for WDM are required to be compact, consume little power, and be manufactured at low cost.
  • a compound semiconductor optical device in which an embedded heterostructure is formed in a laminated structure in which multiple thin semiconductor layers are laminated, has been developed as a compact, low-power-consumption, heterogeneous-material integrated device (see Non-Patent Documents 1 to 5).
  • a buried heterostructure is a structure in which a semiconductor (active layer) with a high refractive index and a small bandgap is sandwiched vertically and horizontally between semiconductors with a relatively low refractive index and a large bandgap. This structure makes it possible to improve the light confinement factor in the active layer, which greatly contributes to various performances of the semiconductor device.
  • a device with a buried heterostructure in this thin film structure typically uses a semiconductor multilayer structure with a thickness of about 250 nm to 500 nm, and power consumption can be reduced by reducing the volume of the semiconductor active layer.
  • the active layer employs a multiple quantum well (MQW) structure with excellent carrier coupling efficiency.
  • MQW multiple quantum well
  • a horizontal pin structure is employed in which the semiconductor layers on the left and right sides of the active layer are p-type and n-type.
  • silicon photonics technology is widely used to fabricate thin wire waveguides and passive devices by microfabrication of silicon (Si).
  • Si silicon is an inexpensive material and microfabrication technology cultivated in the electronics field can be applied to photonics applications, silicon is an indirect transition material, so highly efficient light-emitting devices have not been realized. Therefore, it is essential to integrate heterogeneous materials with direct transition materials that can realize highly efficient light emission.
  • a waveguide, a modulator, and an arrayed waveguide diffractometer fabricated by silicon photonics technology are formed in the silicon layer below the active layer.
  • Gratings (AWG), optical switches, photodetectors, etc. can be produced, and optical integrated circuits can be produced by silicon photonics integration.
  • the required oscillation wavelengths for short-wave and long-wave lasers differ by 60 nm for four wavelengths and by 140 nm for eight wavelengths.
  • the required accuracy of the absolute value of the oscillation wavelength is ⁇ 6.5 nm.
  • the required oscillation wavelength range is relaxed to 36 nm, but the required accuracy of the oscillation wavelength becomes strict to ⁇ 1.0 nm. It is also required to operate with high efficiency and high speed in all wide wavelength regions.
  • the full width at half maximum of the photoluminescence spectrum of a quantum well structure generally used as an active layer at room temperature is approximately 30 to 40 meV or less, that is, the full width at half maximum is 40 to 50 nm or less in the 1310 nm wavelength band. Therefore, when a single active layer material is used to fabricate a plurality of directly modulated light sources with different operating wavelengths, unless the operating wavelength range is sufficiently narrower than 40 to 50 nm, a light source with a small material gain is included at the oscillation wavelength. , high-efficiency and high-speed direct modulation operation cannot be obtained for all light sources. Also, if the operating wavelength range is much wider than 40-50 nm, it is difficult to obtain oscillation.
  • Active layer selective growth is a method for forming an active layer with multiple wavelengths in the range of 36 to 140 nm or more that conforms to the WDM standard described above.
  • a III-V compound semiconductor is grown by the MOVPE method, in an atmosphere of a group V gas such as phosphine (PH3), a group III gas such as trimethylindium (TMIn) is directed toward the high-temperature semiconductor surface.
  • a group III-V compound semiconductor 52 is grown on the surface of the substrate 53 by providing the organic metal 51 in a vapor phase state.
  • a selective growth mask 54 made of SiO 2 , SiN, or the like is formed in advance on the semiconductor surface, atoms are less likely to adhere to the dielectric surface than to the semiconductor surface. Most of the group III atoms 51 thus formed migrate (surface migration and vapor phase diffusion) across the mask surface in the horizontal direction with respect to the substrate, and crystals are selectively grown on the semiconductor surface in the mask openings.
  • the probability (selection ratio) of atoms adhering to the semiconductor surface and the dielectric surface is extremely high, about 100 to 1000 times. Migrate and adhere.
  • the migration length on the mask surface differs depending on the type of atoms.
  • the width and shape of the selection masks 54_1 and 54_2 it is possible to collectively grow a plurality of active layers 522_1 and 522_2 having different film thicknesses and mixed crystal compositions in one epitaxial growth.
  • Non-Patent Document 6 For example, as shown in FIG. 15, by changing the widths 54_1 and 54_2 of the selective growth masks, a thicker crystal structure (cladding layer 521_2, active layer 522_2) 52_2 can be obtained in the vicinity of the wider mask 54_2.
  • a distributed feedback (DFB) laser is generally used for precise oscillation wavelength control.
  • DFB distributed feedback
  • the DFB laser by fabricating a diffraction grating structure near the active layer, it is possible to realize a single mode laser that oscillates near the Bragg wavelength ⁇ determined by the diffraction grating spacing p and the equivalent refractive index neq .
  • Specific single-mode laser configurations include a configuration that oscillates at the center of the Bragg wavelength by providing a 1/4 wavelength phase shift at the center of the diffraction grating ( ⁇ /4 shift DFB laser), There is also a configuration (distributed reflection laser/DR laser) in which regions with different Bragg wavelengths are provided in the region and used as a Bragg reflector to selectively oscillate one end of the stop band.
  • One of the parameters that determine the characteristics of a laser using this diffraction grating is the product ⁇ L of the coupling coefficient ⁇ of the diffraction grating and the length L of the diffraction grating.
  • FIG. 16 shows the relationship between ⁇ L in a DR laser with an active layer length of 100 mm and a DBR mirror length of 100 mm and the threshold gain of a laser with an active layer length of 200 ⁇ m.
  • the detuning of the Bragg wavelengths of DFB and DBR was set to 2 nm.
  • increasing ⁇ L causes non-uniform light distribution in the cavity, which causes non-uniform carrier density and equivalent refractive index, thereby deteriorating the single-mode property (spatial hole burning).
  • ⁇ L achieves a low threshold gain within a range in which spatial hole burning does not occur.
  • is determined by the equivalent refractive index difference of the regions forming the diffraction grating.
  • a method of changing the refractive index in the diffraction grating there is a method of periodically changing the semiconductor structure itself by etching the semiconductor structure or the like, or a method of placing SiO2 , SiN, SiON, SiOx , etc. in the vicinity of the semiconductor structure depending on the operating wavelength.
  • a method of periodically forming a transparent dielectric structure there is a method of periodically forming a transparent dielectric structure.
  • the semiconductor laser region fabricated on one wafer is generally designed to have a uniform structure and equivalent refractive index. Lasers of the same wavelength and ⁇ L can be made.
  • lasers with different operating wavelengths are fabricated on one wafer, lasers with different oscillation wavelengths and substantially uniform ⁇ L can be fabricated by changing only the diffraction grating pitch (period). .
  • each active layer structure is equivalent because it has an individual active layer structure optimized for each laser operating wavelength. Refractive index is very different.
  • Non-Patent Document 5 Non-Patent Document 5
  • FIG. 17 shows the calculation result of the slab thickness dependence of the equivalent refractive index.
  • the slab thickness is the thickness of a layer (hereinafter referred to as "slab layer") consisting of a lower clad layer, an active layer, and an upper clad layer in the waveguide structure.
  • the active layer was positioned in the center of the slab layer, and the layer thickness of the active layer was changed in proportion to the slab thickness.
  • InP was used for the upper clad layer and the lower clad layer, and InGaAlAs multiple quantum well (MQW) was used for the active layer.
  • the width of the active layer was 0.5 ⁇ m (black squares, dashed line in the figure), 0.7 ⁇ m (black triangles, dotted line in the figure), and 0.9 ⁇ m (black circles, solid line in the figure).
  • the equivalent refractive index change is about 4% when the film thickness changes from about 250 nm to 350 nm.
  • FIG. 18 shows the calculation result of the dependence of ⁇ on the thickness of the active layer. Calculations were performed in the same manner as described above (FIG. 17).
  • is shown when, for example, a diffraction grating with a depth of 20 nm is formed on the surface of the upper clad layer (InP) of the slab layer with different layer thicknesses.
  • InP upper clad layer
  • ⁇ in the semiconductor thin film structure (1) the material forming the diffraction grating is changed, (2) the etching depth is changed when the diffraction grating is formed by etching, and (3) the dielectric material is changed.
  • a possible method is to change the thickness of a dielectric when forming a diffraction grating on a semiconductor, but it is difficult to realize all of them on a single wafer in a batch process.
  • a semiconductor optical device includes a plurality of waveguide structures on a second lower clad layer on the same substrate, the waveguide structures sequentially comprising: A first lower cladding layer, an active layer, a first upper cladding layer, and a second upper cladding layer, the waveguide structures comprising a diffraction grating, each waveguide structure comprising: The thicknesses of the first lower clad layer, the active layer, and the first upper clad layer are different, and the coupling coefficients of the diffraction gratings are substantially the same.
  • a method for manufacturing a semiconductor optical device includes the step of crystal-growing a semiconductor layer on a second lower clad layer on the same substrate; forming a mask layer for selective growth comprising: crystal-growing a selective growth layer having a first lower clad layer, an active layer and a first upper clad layer in the opening; forming a current injection layer on the side of the mesa structure; forming a diffraction grating on the upper surface of the first upper clad layer; and having the diffraction grating.
  • the diffraction gratings formed on the top surface of the first upper cladding layer crystal-grown in the plurality of openings are substantially equal in coupling coefficient.
  • the present invention it is possible to provide a single-mode, high-output, low-threshold, multi-wavelength laser-operating semiconductor optical device and a method for manufacturing the same.
  • FIG. 1 is a schematic bird's-eye view showing the configuration of a semiconductor optical device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic front sectional view showing the configuration of the semiconductor optical device according to the first embodiment of the present invention.
  • FIG. 3A is a schematic side sectional view showing the configuration of the semiconductor optical device according to the first embodiment of the invention.
  • FIG. 3B is a schematic side sectional view showing the configuration of the semiconductor optical device according to the first embodiment of the invention.
  • FIG. 4 is a diagram for explaining the operation of the semiconductor optical device according to the first embodiment of the present invention.
  • FIG. 5A is a schematic side cross-sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the invention.
  • FIG. 5B is a schematic side sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the invention.
  • FIG. 6 is a diagram for explaining the manufacturing method of the semiconductor optical device according to the first embodiment of the present invention.
  • 7A is a diagram for explaining the operation of the semiconductor optical device according to the first embodiment of the present invention;
  • FIG. 7B is a diagram for explaining the operation of the semiconductor optical device according to the first embodiment of the present invention;
  • FIG. FIG. 8A is a schematic top sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the invention.
  • 8B is a schematic top sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the present invention;
  • FIG. 9 is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the invention.
  • FIG. 10 is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the invention.
  • FIG. 11A is a schematic top sectional view showing the configuration of a semiconductor optical device according to a second embodiment of the present invention.
  • FIG. 11B is a schematic top sectional view showing the configuration of the semiconductor optical device according to the second embodiment of the present invention.
  • FIG. 12 is a schematic front sectional view showing the configuration of a semiconductor optical device according to a third embodiment of the invention.
  • FIG. 13 is a schematic front sectional view showing the configuration of a semiconductor optical device according to a fourth embodiment of the invention.
  • FIG. 11A is a schematic top sectional view showing the configuration of a semiconductor optical device according to a second embodiment of the present invention.
  • FIG. 11B is a schematic top sectional view showing the configuration of the semiconductor optical device according to the second embodiment of the present invention.
  • FIG. 12 is
  • FIG. 14 is a diagram for explaining selective growth used for crystal growth in a conventional semiconductor optical device.
  • FIG. 15 is a diagram for explaining selective growth used for crystal growth in a conventional semiconductor optical device.
  • FIG. 16 is a diagram for explaining the operation of a conventional semiconductor optical device.
  • FIG. 17 is a diagram for explaining the operation of a conventional semiconductor optical device.
  • FIG. 18 is a diagram for explaining the operation of a conventional semiconductor optical device.
  • FIG. 1 A semiconductor optical device and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • FIG. 1 A semiconductor optical device and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • FIG. 1 A semiconductor optical device and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • the semiconductor optical device 10 includes, in order, a substrate 11, a common lower clad layer (second lower clad layer) 12, and a plurality (two in the present embodiment). (this) waveguide structures 13_1 and 13_2.
  • the substrate 11 is Si. Si, SiO 2 , Al 2 O 3 , InP, GaAs, and SiC may also be used.
  • SiO 2 is used for the common lower clad layer 12 .
  • SiO x , SiN, SiON, Al 2 O 3 , or a structure in which these are combined may be used, which has a lower refractive index than the semiconductor layer and is transparent to the oscillation wavelength (for example, 300 nm to 1650 nm) of the laser to be manufactured. I wish I had.
  • Each waveguide structure 13_1, 13_2 includes, as slab layers 14_1, 14_2, first lower clad layers 141_1, 141_2, active layers 142_1, 142_2, and first upper clad layers 143_1, 143_2. Second upper clad layers 15_1 and 15_2 are provided on the slab layers 14_1 and 14_2.
  • InP is used for the first lower clad layers 141_1 and 141_2 and the first upper clad layers 143_1 and 143_2.
  • the slab layer 14_1 of one waveguide structure 13_1 can have, for example, a layer thickness of 315 nm, an active layer 142_1 with a composition wavelength of 1240 nm, and a laser oscillation wavelength of 1275 nm.
  • the slab layer 14_2 of the other waveguide structure 13_2 can have a layer thickness of 350 nm, a composition wavelength of the active layer 142_2 of 1275 nm, and a laser oscillation wavelength of 1310 nm.
  • the width of the active layers 142_1 and 142_2 of each waveguide structure is, for example, 0.7 ⁇ m.
  • compositions and slab layer thicknesses of the active layers 142_1 and 142_2 of the waveguide structures 13_1 and 13_2 are different.
  • the slab layer 14_2 of the other waveguide structure 13_2 is thicker than the slab layer 14_1 of the one waveguide structure 13_1. Also, the composition wavelength of the active layer 142_2 of the other waveguide structure 13_2 is longer than the composition wavelength of the active layer 142_1 of the waveguide structure 13_1.
  • Electrodes 17_1 and 17_2 are formed on the p-type and n-type semiconductor layers so that they can be electrically driven by pin junctions. Injecting current through the electrodes results in oscillation at a wavelength determined by the grating spacing and the equivalent refractive index of the buried heterostructure.
  • the diffraction gratings 18_1 and 18_2 are formed on the surfaces of the first upper cladding layers 143_1 and 143_2, and have periodic concave-convex structures in the light guiding direction. is formed. Second upper clad layers 15_1 and 15_2 are laminated on the diffraction gratings 18_1 and 18_2.
  • the waveguide direction of light is the direction perpendicular to the end surface of the waveguide structure.
  • the second upper cladding layers 15_1 and 15_2 are SiO 2 , and SiO 2 , SiO x , SiN, SiON, and Al 2 O 3 may be used.
  • diffraction gratings are formed at the boundaries between the first upper clad layers (InP) 143_1, 143_2 and the second upper clad layers (SiO 2 ) 15_1, 15_2.
  • the diffraction grating is formed by etching the first upper clad layer and then embedded with SiO 2 or the like.
  • a refractive index difference due to an air layer may be used.
  • the diffraction gratings 18_1 and 18_2 have periods corresponding to laser oscillation in the 1.3 ⁇ m wavelength band and have different duty ratios.
  • the duty ratio of the diffraction grating is the ratio D of the length ⁇ occupied by the projections of the diffraction grating to the length T of one period of the diffraction grating, and takes a value between 0 and 1.
  • the length ⁇ occupied by the projections of the diffraction grating 18_1 is large and the duty ratio is large.
  • the length ⁇ occupied by the projections of the diffraction grating 18_2 is small and the duty ratio is small.
  • the length T of one period of the diffraction grating is the same.
  • FIG. 4 shows the calculation result of the duty ratio dependence of the coupling coefficient ⁇ of the diffraction grating.
  • the calculation was performed by the transfer matrix method.
  • is shown when, for example, a diffraction grating with a depth of 20 nm is formed on the surface of the upper clad layer (InP) of the slab layer.
  • the slab layer consists of a lower InP clad layer (160 nm thick), an InGaAlAs-MQW (100 nm thick), and an upper InP clad layer (70 nm thick).
  • can be changed by changing the duty ratio. Therefore, diffraction gratings with the same ⁇ can be formed for a plurality of semiconductor waveguide structures having different equivalent refractive indices formed on the same substrate.
  • the duty ratio of the diffraction grating may be changed. Since the shape of the mask can be arbitrarily determined by photolithography or electron beam lithography, diffraction gratings with different duty ratios can be easily formed collectively on the same substrate surface.
  • the duty ratio of one waveguide structure (the waveguide structure with the thinner slab layer) 13_1 is increased, and the other waveguide structure (the waveguide structure with the thicker slab layer) is increased.
  • the coupling coefficients of the waveguide structures 13_1 and 13_2 are set substantially equal.
  • the diffraction grating of the semiconductor optical device has structures 181_1 and 181_2 made of, for example, rectangular SiO 2 on the surface of the first upper clad layers 143_1 and 143_2.
  • a second upper cladding layer (SiN) 15_1, 15_2 may be provided on the first upper cladding layer periodically formed in the direction and having its SiO 2 periodic structure.
  • This diffraction grating (structure) is formed by laminating a layer (third upper clad layer) made of, for example, SiO 2 on the flat surface of the first upper clad layer without processing the surface, and then laminating the SiO 2 layer. It is formed by periodic processing. After that, a second upper clad layer (eg, SiN) is laminated on the first upper clad layer and the processed SiO 2 . Also in this case, the refractive index difference between, for example, SiN and SiO 2 functions as a diffraction grating.
  • the combination of the structure (third upper clad layer) and the second upper clad layer is not limited to SiO2 and SiN, and other dielectrics such as SiOx , SiON, and Al2O3 may be used. .
  • the structure (third upper clad layer) and the second upper clad layer may be made of materials having different refractive indices.
  • the refractive index difference may be used by using an air layer as the second upper clad layer without embedding the structure (the third upper clad layer).
  • the semiconductor layer 144 is formed on the substrate 11 on which the common lower clad layer 12 is formed (step S1).
  • Si is used as the substrate material.
  • SiO 2 , Al 2 O 3 , InP, GaAs, SiC, etc. may be used.
  • SiO 2 is used for the common lower clad layer 12 .
  • SiN, SiC, or a structure combining these may be used as long as it has a lower refractive index than the semiconductor layer and is transparent to the oscillation wavelength (for example, 300 nm to 1650 nm) of the laser to be manufactured.
  • the film formation of the semiconductor layer 144 is performed by wafer direct bonding or by crystal growth such as metalorganic chemical vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE).
  • MOVPE metalorganic chemical vapor phase epitaxy
  • MBE molecular beam epitaxy
  • a selective growth mask layer 191 made of SiO 2 , SiN, or the like is formed on the semiconductor layer 144 (step S2).
  • selective growth layers 140_1 and 140_2 having active layers of multiple wavelengths are selectively grown by MOVPE or the like (step S3).
  • the selectively grown layers 140_1 and 140_2 have a first lower clad layer, an active layer, and a first upper clad layer in order from the common lower clad layer 12 side.
  • the group III atoms supplied near the mask surface move horizontally on the mask surface with respect to the substrate 11, and the group III atoms selectively adhere to the semiconductor surface in the mask openings. Therefore, the material of the mask layer for selective growth should be such that atoms are less likely to adhere to the surface of the semiconductor.
  • the mask region width in the mask varies from 0 to 55 ⁇ m, and the interval (opening width) between the masks is constant at 40 ⁇ m.
  • the opening width or both the mask width and the opening width may be changed.
  • the selective growth film thickness can be changed. Narrower openings allow for thicker crystal layers.
  • the width of the mask region was 0 to 55 ⁇ m, and the gap between the masks was 40 ⁇ m. It is sufficient if it is equal to or longer than the surface migration length of group III atoms.
  • a multiple quantum well structure using a mixed crystal of InGaAs, InP, InGaAsP, or InGaAlAs may be used.
  • the active layer by adopting a quantum well structure for the active layer, it is possible to apply a very large strain (about 1.5%) to the well layer without causing crystal defects. This makes it possible to increase the gain coefficient, which is suitable for achieving high efficiency and high-speed operation of a directly modulated laser. Even if a bulk mixed crystal is selectively grown instead of the multiple quantum well structure, an active layer that emits light at different wavelengths can be obtained by changing the composition of the mixed crystal.
  • FIGS. 7A and 7B show calculation results of the dependence of light confinement in the active layer on the thickness of the entire InP thin film (slab thickness).
  • the calculation was performed using software (product name: "FIMMWAVE", distributor: Convenient Business Solutions).
  • MQW multiple quantum well structure
  • InP InP
  • the light confinement factor in the active layer reaches a maximum when the slab thickness (thickness of the entire InP-based thin film) is about 150 nm, which is higher than that of a general laser with a thickness of 3000 to 4000 nm. about three times higher. Also, the dependence of the optical confinement coefficient on the film thickness decreases as the slab thickness increases. Therefore, from the viewpoint of the light confinement factor, it is effective to set the slab thickness to about 500 nm or less.
  • a thin film for example, SiO 2 , SiN, etc.
  • the material of the thin film may be the same as or different from that of the selective growth mask layer.
  • a mask pattern made of resist or the like is formed on the active layer by lithography or the like on the thin film used as the buried growth mask, and the buried growth mask layer 192 is formed by dry etching or the like.
  • the selectively grown layers 140_1 and 140_2 are processed to have the active layer width (mesa structure width, eg, 0.7 ⁇ m) in a semiconductor optical device (semiconductor laser).
  • slab layers 14_1 and 14_2 including first lower clad layers 141_1 and 141_2, active layers 142_1 and 142_2, and first upper clad layers 143_1 and 143_2 are formed.
  • buried semiconductors 160_1 and 160_2 are formed on the sides of the active layer by MOCVD, MBE, or the like, and planarized (step S4).
  • the embedded growth mask layer 192 is removed. If the semiconductor surface is slightly uneven, it may be further planarized by slightly regrowing the semiconductor layer after removing the buried growth mask layer 192 .
  • some of the semiconductor layers 162_1 and 162_2 are made n-type by, for example, Si ion implantation, and some of the semiconductor layers 161_1 and 161_2 are made to be p-type by, for example, Zn thermal diffusion.
  • current injection layers 161_1, 161_2, 162_1, and 162_2 are formed.
  • electrodes 17_1 and 17_2 so as to be in contact with the p-type semiconductor layers 161_1 and 161_2 and the n-type semiconductor layers 162_1 and 162_2, electrical driving is enabled (step S5).
  • a contact semiconductor layer for obtaining ohmic current-voltage characteristics may be formed between the p-type semiconductor layer and the electrode or between the n-type semiconductor layer and the electrode.
  • diffraction gratings 18_1 and 18_2 are formed in the light guiding direction (the direction perpendicular to the end surface of the waveguide structure) (step S6).
  • diffraction Gratings (structures) 181_1 and 181_2 are formed.
  • the duty ratio of one slab layer (thin slab layer) 14_1 is increased, and the other waveguide structure (the waveguide structure with the thicker slab layer)
  • the coupling coefficients of 14_1 and 14_2 of the respective slab layers are set substantially equal.
  • second upper clad layers 15_1 and 15_2 having a refractive index smaller than that of the semiconductor are formed (step S7).
  • an example is shown in which two waveguide structures each having an active layer and a slab layer with different film thicknesses are provided on the same substrate. You may prepare. For example, in the case of application to 8-wavelength WDM, a waveguide structure having 8 active layers and slab layers with different film thicknesses and diffraction gratings with appropriate duty ratios corresponding to each should be provided. Further, there is no problem even if the arrangement of the p-type semiconductor layer and the n-type semiconductor layer is horizontally reversed, and it is not necessary that the directions of all the channels are the same.
  • the diffraction grating may be formed in another region as long as the waveguide mode exists.
  • diffraction gratings may be formed on the side portions (side surfaces) of waveguide structures 13_3 and 13_4.
  • FIG. 8A shows a diffraction grating with a large duty ratio
  • FIG. 8B shows a diffraction grating with a small duty ratio.
  • the diffraction grating may be formed on the side portion of the waveguide structure in the step immediately before the step of forming the buried semiconductor (step S4).
  • the mask for forming the diffraction grating of the active layer can be easily formed in any number of different shapes on the same substrate, forming diffraction gratings with different duty ratios in a single etching. can.
  • the diffraction grating forming mask is formed on the first upper clad layer, and the diffraction gratings can be formed on the side portions (side surfaces) of the waveguide structures 13_3 and 13_4 by etching using this mask. After that, the mask for forming the diffraction grating may be used as it is to carry out burying growth.
  • the diffraction grating may be formed on a part of the side portion (side surface) of the waveguide structure, and includes the first lower clad layer, the active layer, the first upper clad layer, and the second upper clad layer. It may be formed on a part of the side portion (side surface) with the layer.
  • Fig. 9 shows the calculation results of the slab thickness dependence of ⁇ .
  • is shown when a diffraction grating having a depth of 20 nm and duty ratios of 0.5, 0.4, 0.3, and 0.25 is formed.
  • the grating was assumed to be rectangular in shape and sufficiently wide for the cross-sectional mode field of the light.
  • the slab thickness was varied from 240 nm to 340 nm. At this time, the layer thickness of the active layer was changed in proportion to the slab thickness.
  • changes from about 670 cm ⁇ 1 to 400 cm ⁇ 1 (solid line with white circles in the figure).
  • changes from approximately 370 cm ⁇ 1 to 220 cm ⁇ 1 (in the figure, dashed-dotted black circle line).
  • FIG. 10 shows the film thickness dependence of the threshold gain in the semiconductor optical device according to this embodiment.
  • the diffraction grating shape is changed according to the slab thickness so that the diffraction grating coupling coefficient ⁇ is constant.
  • the film thickness dependence of the threshold gain in a conventional semiconductor optical device is also shown.
  • the same diffraction grating shape is set regardless of the slab thickness.
  • the waveguide structure used for calculation is the same as described above (calculation in FIG. 17).
  • the slab thickness was varied from 240 nm to 340 nm.
  • the cavity is assumed to be a DR laser consisting of a DFB region with an active layer length of 100 ⁇ m and a DBR mirror with a length of 200 ⁇ m, and the Bragg wavelength detuning of each is set to 2 nm.
  • the diffraction grating depth in the conventional structure was 20 nm
  • the duty ratio was 0.5
  • the width of the diffraction grating was sufficiently wide relative to the width of the cross-sectional mode field.
  • the threshold gain is about 14.4 cm ⁇ 1 to 30.1 cm ⁇ 1 when forming a diffraction grating with a duty ratio of 0.5 for slab layers with different film thicknesses in the conventional structure. up to about twice or more (broken black square line in the figure).
  • the diffraction gratings should be formed so that ⁇ is approximately the same for slab layers with different film thicknesses.
  • substantially equivalent includes a complete equivalent, a range including a difference of about ⁇ 30%, and a range in which a laser operates in a single mode with a high optical output and a low threshold in each waveguide structure.
  • the coupling coefficient ⁇ of the diffraction grating is approximately
  • the duty ratios of the diffraction gratings can be realized at different wavelengths that are precisely controlled in each waveguide structure.
  • the semiconductor optical device 20 according to the present embodiment differs from the first embodiment in the mode of change of the diffraction grating coupling coefficient ⁇ of the diffraction grating.
  • Other configurations are substantially the same as those of the first embodiment.
  • the diffraction grating coupling coefficient ⁇ is appropriately set by changing the duty ratio of the diffraction grating according to changes in the slab layer thickness and active layer composition in each waveguide structure. rice field.
  • the width of the diffraction grating is the length in the direction perpendicular to the waveguide direction of light on the horizontal plane of the waveguide structure.
  • the slab layer 24_2 of the other waveguide structure 23_2 is thicker than the slab layer 24_1 of the one waveguide structure 23_1. Also, the composition wavelength of the active layer 242_2 of the other waveguide structure 23_2 is longer than the composition wavelength of the active layer 242_1 of the one waveguide structure 23_1.
  • the width of the second upper clad layers 25_1 and 25_2 formed above the first upper clad layers 243_1 and 243_2 formed above the active layer is set to the optical is changed periodically in the waveguide direction.
  • the widths of the first upper clad layers 243_1 and 243_2 are constant (dotted lines in FIGS. 11A and 11B).
  • the widths of the second upper cladding layers 25_1 and 25_2 change in a cycle consisting of the first widths W1_1 and W1_2 and the second widths 2_1 and W2_2.
  • the first widths W1_1 and W1_2 are equivalent to the widths of the first upper clad layers 243_1 and 243_2.
  • the second widths W2_1, W2_2 are wider than the widths of the first upper cladding layers 243_1, 243_2 and are different for the second upper cladding layers 25_1, 25_2.
  • the second width W2_1 of the second upper clad layer 25_1 in one waveguide 23_1 is wider than the second width W2_2 of the second upper clad layer 25_2 in the other waveguide 23_2. Further, the duty ratio is constant in each of the waveguide structures 23_1 and 23_2.
  • first widths W1_1, W1_2 and the second widths W2_1, W2_2 may be set within the range of 500 nm to 3 ⁇ m.
  • the coupling coefficient of the diffraction grating can be changed according to changes in the slab layer thickness and the composition of the active layer.
  • the width of the uneven structure of the first upper clad layer is constant and the width of the second upper clad layer thereon is varied, but the present invention is not limited to this.
  • the width of the concave-convex structure of the first upper clad layer may be changed, and the width of the second upper clad layer thereon may be kept constant.
  • the first width may not be the same as that of the first upper clad layer.
  • the semiconductor optical device according to this embodiment differs from the horizontal pin structure in the first and second embodiments in that it has a vertical pin structure.
  • Other configurations are substantially the same as those of the first and second embodiments.
  • the first upper clad layers 343_1 and 343_2 are p-type InP and extend to the top of the buried layers 361_1 and 361_2.
  • p-type InPs 343_1 and 343_2 are arranged on the buried layers 361_1 and 361_2, and electrodes 37_1 and 37_2 are arranged on the p-type InPs 343_1 and 343_2.
  • the buried layers 361_1 and 361_2 are semi-insulating InP.
  • the first lower clad layers 341_1 and 341_2 are n-type InP and extend to the bottom of the buried layers 362_1 and 362_2.
  • n-type InPs 341_1 and 341_2 are arranged under the buried layers 362_1 and 362_2, and electrodes 37_1 and 37_2 are arranged on the n-type InPs 341_1 and 341_2.
  • the buried layers 362_1 and 362_2 are semi-insulating InP.
  • the p-type InP (first upper clad layer) above the active layer, the active layer, and the n-type InP (first lower clad layer) below the active layer A pin structure is formed, current is injected from p-type InP to n-type InP, and a so-called vertical current injection laser is formed.
  • the diffraction gratings 18_1 and 18_2 are formed on the surfaces of the first upper clad layers 343_1 and 343_2 and are embedded with the second upper clad layers 15_1 and 15_2.
  • the present embodiment may be combined with the first and second embodiments.
  • a layer having a refractive index different from that of the first upper clad layer eg, SiN
  • SiN first upper clad layer
  • the semiconductor optical device 40 includes a core 49 below the slab layers 14_1 and 14_2 in the common lower clad layer (second lower clad layer) 12, as shown in FIG. Si is used for the core 49 .
  • a semiconductor such as InP may be used.
  • the same effects as those of the first or second embodiment are obtained, and the laser light emitted (oscillated) in the active layers 142_1 and 142_2 is guided by the core 49. be able to.
  • the core 49 may be arranged in the second upper clad layers 15_1 and 15_2.
  • the core 49 may be arranged within a range where the laser light emitted (oscillated) in the active layers 142_1 and 142_2 can be coupled.
  • the second core may be arranged near the active layer having the vertical pin structure.
  • the diffraction grating may be formed on the second core.
  • the diffraction grating may be formed on any of the core upper portion, the core bottom portion, and the core side portion of the second core.
  • the present invention can be applied to multi-wavelength lasers in wavelength division multiplexing (WDM) optical communication systems.
  • WDM wavelength division multiplexing
  • semiconductor optical device 11 substrate 12 second lower clad layers 13_1, 13_2 waveguide structures 141_1, 141_2 first lower clad layers 142_1, 142_2 active layers 143_1, 143_2 first upper clad layers 15_1, 15_2 second upper clad Layers 18_1, 18_2 diffraction grating

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor optical device (10) according to the present invention is provided with a plurality of waveguide structures (13_1, 13_2) on a second lower cladding layer (12) on a same substrate (11); the waveguide structures (13_1, 13_2) are sequentially provided with first lower cladding layers (141_1, 141_2), active layers (142_1, 142_2), first upper cladding layers (143_1, 143_2) and second upper cladding layers (15_1, 15_2); the waveguide structures respectively comprise diffraction gratings (18_1, 18_2); with respect to the waveguide structures (13_1, 13_2), the first lower cladding layers (141_1, 141_2), the active layers (142_1, 142_2) and the first upper cladding layers (143_1, 143_2) are different from each other in the thickness; and the coupling coefficients of the diffraction gratings (18_1, 18_2) are generally equal to each other. Consequently, a semiconductor optical device according to the present invention is able to provide a multiwavelength laser operation in a single mode with high optical output and low threshold value.

Description

半導体光デバイスおよびその製造方法Semiconductor optical device and manufacturing method thereof
 本発明は、波長多重(WDM)光通信システムに用いる半導体光デバイスおよびその製造方法に関する。 The present invention relates to a semiconductor optical device used in a wavelength division multiplexing (WDM) optical communication system and a manufacturing method thereof.
 近年、データセンタ内などの通信容量増大に伴い、波長多重(Wavelength division multiplexing、WDM)技術が、データセンタ内などの近距離通信で必要とされている。近距離通信では光送受信機の数が膨大となるため、WDM用光送受信機は、小型・低消費電力であり、安価に作製できることが求められる。 In recent years, with the increase in communication capacity in data centers and the like, wavelength division multiplexing (WDM) technology is required for short-distance communication in data centers and the like. Since the number of optical transceivers is enormous in short-distance communication, optical transceivers for WDM are required to be compact, consume little power, and be manufactured at low cost.
 小型・低消費電力の異種材料集積デバイスとして、複数の薄い半導体層を積層した積層構造内に埋め込みヘテロ構造を形成した化合物半導体光デバイスが開発されている(非特許文献1~5参照)。埋め込みヘテロ構造とは、屈折率が高くバンドギャップの小さい半導体(活性層)を、相対的に屈折率が低くバンドギャップの大きい半導体により上下左右方向に挟み込む構造である。この構造により、半導体デバイスの各種性能に大きく寄与する活性層への光閉じ込め係数を向上させることが可能となる。 A compound semiconductor optical device, in which an embedded heterostructure is formed in a laminated structure in which multiple thin semiconductor layers are laminated, has been developed as a compact, low-power-consumption, heterogeneous-material integrated device (see Non-Patent Documents 1 to 5). A buried heterostructure is a structure in which a semiconductor (active layer) with a high refractive index and a small bandgap is sandwiched vertically and horizontally between semiconductors with a relatively low refractive index and a large bandgap. This structure makes it possible to improve the light confinement factor in the active layer, which greatly contributes to various performances of the semiconductor device.
 この薄膜構造内に埋め込みヘテロ構造を有するデバイスでは、典型的に厚さ250nm~500nm程度の半導体多層構造が用いられ、半導体活性層の体積を小さくすることで消費電力を低減できる。 A device with a buried heterostructure in this thin film structure typically uses a semiconductor multilayer structure with a thickness of about 250 nm to 500 nm, and power consumption can be reduced by reducing the volume of the semiconductor active layer.
 また、活性層上部に任意のピッチの回折格子を形成することによって、WDMに求められる任意の波長でのシングルモード動作を容易に実現可能である。また、活性層には、キャリア結合効率に優れた多重量子井戸(MQW)構造が採用されている。デバイスへの電界印加、電流注入を行うためには、活性層左右の半導体層をp型、n型とする横型pin構造が採用されている。 Also, by forming a diffraction grating with an arbitrary pitch above the active layer, it is possible to easily achieve single-mode operation at an arbitrary wavelength required for WDM. In addition, the active layer employs a multiple quantum well (MQW) structure with excellent carrier coupling efficiency. In order to apply an electric field to the device and to inject current, a horizontal pin structure is employed in which the semiconductor layers on the left and right sides of the active layer are p-type and n-type.
 また、送受信機の低コスト化のためには、個々のデバイス個別に作製してから集積する形態ではなく、複数のデバイスを1枚のウエハ上で一括作製・集積した光集積回路(photonic integrated circuit、PIC)とすることが望ましい。光集積回路とすることで、デバイスの組み立てコストを大幅に削減できる。 In addition, in order to reduce the cost of the transceiver, instead of fabricating and integrating each device individually, a photonic integrated circuit in which multiple devices are collectively fabricated and integrated on a single wafer. , PIC). By using an optical integrated circuit, the device assembly cost can be greatly reduced.
 光集積回路の作製において、シリコン(Si)の微細加工により細線導波路やパッシブデバイスを作製する、シリコンフォトニクス技術が広く用いられている。シリコンのフォトニクス応用には、材料が安価であることや、エレクトロニクス技術分野で培われた微細加工技術を転用できる反面、シリコンは間接遷移材料であるため高効率な発光デバイスは実現されていない。したがって、高効率な発光を実現できる直接遷移材料との異種材料集積が必須となる。 In the fabrication of optical integrated circuits, silicon photonics technology is widely used to fabricate thin wire waveguides and passive devices by microfabrication of silicon (Si). Although silicon is an inexpensive material and microfabrication technology cultivated in the electronics field can be applied to photonics applications, silicon is an indirect transition material, so highly efficient light-emitting devices have not been realized. Therefore, it is essential to integrate heterogeneous materials with direct transition materials that can realize highly efficient light emission.
 そこで、上述の埋め込みヘテロ構造を備える、薄膜の化合物半導体デバイスをシリコン上に集積する手法によれば、活性層下部のシリコン層に、シリコンフォトニクス技術により作製した導波路、変調器、アレイ導波路回折格子(AWG)、光スイッチ、受光器等を作製でき、シリコンフォトニクス集積による光集積回路を作製できる。 Therefore, according to the method of integrating a thin-film compound semiconductor device having the above-described buried heterostructure on silicon, a waveguide, a modulator, and an arrayed waveguide diffractometer fabricated by silicon photonics technology are formed in the silicon layer below the active layer. Gratings (AWG), optical switches, photodetectors, etc. can be produced, and optical integrated circuits can be produced by silicon photonics integration.
 上述の光集積回路によりWDM技術を実現するためには、複数の波長で発光するレーザを一括作製する必要がある。このとき、レーザ同士の波長間隔およびレーザの絶対波長を精密に制御することが求められる。例えば、400GBASE-FR4(CWDMグリッド)の通信規格に適合させる場合、短波側と長波側のレーザに求められる発振波長は4波長の場合で60nm異なり、8波長の場合で140nm異なり、それぞれのレーザの発振波長の絶対値の要求精度は±6.5nmである。400GBASE-FR8/LR8(LAN-WDM)の場合、求められる発振波長範囲は36nmに緩和されるが、発振波長の要求精度は±1.0nmまで厳しくなる。また、幅広い波長領域のすべてにおいて、高効率かつ高速に動作することも求められる。 In order to realize WDM technology with the optical integrated circuit described above, it is necessary to collectively fabricate lasers that emit light at multiple wavelengths. At this time, it is required to precisely control the wavelength interval between the lasers and the absolute wavelength of the lasers. For example, when conforming to the 400GBASE-FR4 (CWDM grid) communication standard, the required oscillation wavelengths for short-wave and long-wave lasers differ by 60 nm for four wavelengths and by 140 nm for eight wavelengths. The required accuracy of the absolute value of the oscillation wavelength is ±6.5 nm. In the case of 400GBASE-FR8/LR8 (LAN-WDM), the required oscillation wavelength range is relaxed to 36 nm, but the required accuracy of the oscillation wavelength becomes strict to ±1.0 nm. It is also required to operate with high efficiency and high speed in all wide wavelength regions.
 まず、広い波長範囲のレーザを作製する方法について述べる。幅広い波長領域において高効率かつ高速な動作を得るためには、活性層の材料利得波長と発振波長の整合が求められる。活性層として一般に用いられる量子井戸構造の室温におけるフォトルミネッセンススペクトルの半値全幅は、概ね30~40meV以下、すなわち1310nm波長帯では半値全幅40~50nm以下である。このため、単一活性層材料を用いて動作波長の異なる複数の直接変調光源を作製する場合、その動作波長範囲が40~50nmより十分狭くなければ、発振波長において材料利得の小さい光源が含まれ、すべての光源で高効率・高速な直接変調動作が得られない。また、動作波長範囲が40~50nmより大幅に広い場合には、発振を得ることが困難である。 First, we will describe the method of fabricating a laser with a wide wavelength range. In order to obtain high-efficiency and high-speed operation over a wide wavelength range, matching between the material gain wavelength of the active layer and the oscillation wavelength is required. The full width at half maximum of the photoluminescence spectrum of a quantum well structure generally used as an active layer at room temperature is approximately 30 to 40 meV or less, that is, the full width at half maximum is 40 to 50 nm or less in the 1310 nm wavelength band. Therefore, when a single active layer material is used to fabricate a plurality of directly modulated light sources with different operating wavelengths, unless the operating wavelength range is sufficiently narrower than 40 to 50 nm, a light source with a small material gain is included at the oscillation wavelength. , high-efficiency and high-speed direct modulation operation cannot be obtained for all light sources. Also, if the operating wavelength range is much wider than 40-50 nm, it is difficult to obtain oscillation.
 上述したWDMの規格に適合する36~140nm以上の範囲の複数波長の活性層を形成する方法として、活性層選択成長がある。図14に示すように、III-V族化合物半導体をMOVPE法により成長する場合、ホスフィン(PH3)等のV族ガス雰囲気下において、高温の半導体表面に向けてトリメチルインジウム(TMIn)などのIII族有機金属51を気相状態で与えることにより、III-V族化合物半導体52が基板53表面に成長される。 Active layer selective growth is a method for forming an active layer with multiple wavelengths in the range of 36 to 140 nm or more that conforms to the WDM standard described above. As shown in FIG. 14, when a III-V compound semiconductor is grown by the MOVPE method, in an atmosphere of a group V gas such as phosphine (PH3), a group III gas such as trimethylindium (TMIn) is directed toward the high-temperature semiconductor surface. A group III-V compound semiconductor 52 is grown on the surface of the substrate 53 by providing the organic metal 51 in a vapor phase state.
 このとき、半導体表面にあらかじめSiOやSiN等から成る選択成長用マスク54が形成される場合、半導体表面に比べて誘電体表面へは原子が付着し難いことから、マスク54の表面近傍に供給されたIII族原子51の多くはマスク表面を基板に対して水平方向へ移動(表面マイグレーションおよび気相拡散)し、マスク開口部の半導体表面に選択的に結晶が成長される。 At this time, if a selective growth mask 54 made of SiO 2 , SiN, or the like is formed in advance on the semiconductor surface, atoms are less likely to adhere to the dielectric surface than to the semiconductor surface. Most of the group III atoms 51 thus formed migrate (surface migration and vapor phase diffusion) across the mask surface in the horizontal direction with respect to the substrate, and crystals are selectively grown on the semiconductor surface in the mask openings.
 半導体表面と誘電体表面へ原子が付着する確率(選択比)は100~1000倍程度と極めて大きく、マスク上へ供給されたIII族原子の多くは誘電体表面には付着せず、半導体表面までマイグレーションして付着する。 The probability (selection ratio) of atoms adhering to the semiconductor surface and the dielectric surface is extremely high, about 100 to 1000 times. Migrate and adhere.
 このとき、マスク表面でのマイグレーション長は原子の種類によって異なる。これを利用して、選択マスク54_1、54_2の幅および形状を変化させることで、一度のエピタキシャル成長において、膜厚および混晶組成の異なる複数の活性層522_1、522_2を一括成長することが可能となる(非特許文献6)。例えば、図15に示すように、選択成長用マスクの幅54_1、54_2を変えることにより、幅の広いマスク54_2近傍においてより厚い結晶構造(クラッド層521_2、活性層522_2)52_2を得ることができる。 At this time, the migration length on the mask surface differs depending on the type of atoms. Using this, by changing the width and shape of the selection masks 54_1 and 54_2, it is possible to collectively grow a plurality of active layers 522_1 and 522_2 having different film thicknesses and mixed crystal compositions in one epitaxial growth. (Non-Patent Document 6). For example, as shown in FIG. 15, by changing the widths 54_1 and 54_2 of the selective growth masks, a thicker crystal structure (cladding layer 521_2, active layer 522_2) 52_2 can be obtained in the vicinity of the wider mask 54_2.
 次に、半導体レーザにおける波長制御の方法について述べる。精密な発振波長制御を行う場合、一般に分布帰還型(DFB)レーザが用いられる。DFBレーザにおいては、活性層近傍に回折格子構造を作製することにより、回折格子間隔pおよび等価屈折率neqによって決まるブラッグ波長λ近傍で発振する単一モードレーザを実現できる。 Next, a method of wavelength control in a semiconductor laser will be described. A distributed feedback (DFB) laser is generally used for precise oscillation wavelength control. In the DFB laser, by fabricating a diffraction grating structure near the active layer, it is possible to realize a single mode laser that oscillates near the Bragg wavelength λ determined by the diffraction grating spacing p and the equivalent refractive index neq .
 具体的な単一モードレーザの構成には、回折格子の中心部に1/4波長の位相シフトを設けることによりブラッグ波長の中心で発振させる構成(λ/4シフトDFBレーザ)や、回折格子端部にブラッグ波長の異なる領域を設けることでブラッグリフレクターとして使用し、ストップバンドの片端を選択的に発振させる構成(分布反射型レーザ/DRレーザ)などがある。この回折格子を用いたレーザの特性を決定するパラメータの一つに、回折格子の結合係数κと回折格子長Lの積κLがある。 Specific single-mode laser configurations include a configuration that oscillates at the center of the Bragg wavelength by providing a 1/4 wavelength phase shift at the center of the diffraction grating (λ/4 shift DFB laser), There is also a configuration (distributed reflection laser/DR laser) in which regions with different Bragg wavelengths are provided in the region and used as a Bragg reflector to selectively oscillate one end of the stop band. One of the parameters that determine the characteristics of a laser using this diffraction grating is the product κL of the coupling coefficient κ of the diffraction grating and the length L of the diffraction grating.
 図16に、活性層長100mm、DBRミラー長100mmのDRレーザにおけるκLと、活性層長200μmのレーザのしきい値利得の関係を示す。DFBとDBRのブラッグ波長のデチューニングは2nmとした。レーザを安定して発振させるためにはしきい値利得を小さくすることが重要であり、この観点からはκを上げることが有効である。しかしながら、κLを大きくすることで共振器中の光分布の不均一が生じ、これがキャリア密度、等価屈折率の不均一を引き起こすことから、シングルモード性を悪化させる(空間的ホールバーニング)。 FIG. 16 shows the relationship between κL in a DR laser with an active layer length of 100 mm and a DBR mirror length of 100 mm and the threshold gain of a laser with an active layer length of 200 μm. The detuning of the Bragg wavelengths of DFB and DBR was set to 2 nm. In order to stably oscillate the laser, it is important to reduce the threshold gain, and from this point of view it is effective to increase κ. However, increasing κL causes non-uniform light distribution in the cavity, which causes non-uniform carrier density and equivalent refractive index, thereby deteriorating the single-mode property (spatial hole burning).
 したがって、空間的ホールバーニングが生じない範囲で、低いしきい値利得が達成されるκLとなるように共振器を設計する必要がある。κは、回折格子を形成する領域の等価屈折率差によって決まる。 Therefore, it is necessary to design the resonator so that κL achieves a low threshold gain within a range in which spatial hole burning does not occur. κ is determined by the equivalent refractive index difference of the regions forming the diffraction grating.
 そこで、回折格子における屈折率を変化させる方法としては、半導体構造のエッチング等によって半導体構造そのものを周期的に変化させる方法や、半導体構造の近傍にSiOやSiN、SiON、SiOなど動作波長に対して透明な誘電体構造を周期的に形成する方法がある。 Therefore, as a method of changing the refractive index in the diffraction grating, there is a method of periodically changing the semiconductor structure itself by etching the semiconductor structure or the like, or a method of placing SiO2 , SiN, SiON, SiOx , etc. in the vicinity of the semiconductor structure depending on the operating wavelength. On the other hand, there is a method of periodically forming a transparent dielectric structure.
 いずれの方法を用いる場合でも、一般的には1ウエハ上に作製する半導体レーザ領域は均一の構造および等価屈折率を有するように設計されているため、一様な回折格子を形成することで同一波長かつ同一のκLのレーザを作製することができる。 Regardless of which method is used, the semiconductor laser region fabricated on one wafer is generally designed to have a uniform structure and equivalent refractive index. Lasers of the same wavelength and κL can be made.
 また、仮に動作波長の異なるレーザを1ウエハ上で作製する場合であっても、回折格子ピッチ(周期)だけを変更すれば、発振波長が異なりκLがほぼ一様なレーザを作製することができる。 Further, even if lasers with different operating wavelengths are fabricated on one wafer, lasers with different oscillation wavelengths and substantially uniform κL can be fabricated by changing only the diffraction grating pitch (period). .
 しかしながら、上述した選択成長で作製した半導体構造を用いてWDM用の多波長レーザを作製する場合、レーザ動作波長ごとに最適化された個別の活性層構造を有するため、それぞれの活性層構造で等価屈折率が大きく異なる。 However, when fabricating a multi-wavelength laser for WDM using the semiconductor structure fabricated by the selective growth described above, each active layer structure is equivalent because it has an individual active layer structure optimized for each laser operating wavelength. Refractive index is very different.
 例えば、選択成長により、ピーク波長が150nm程度異なる活性層を一括で成長できる。また、約40nmの波長変化を生じさせるために、約35nmの膜厚変化が必要であり、より広い波長変化を必要とする場合には膜厚変化量を増加させる必要がある(非特許文献5)。 For example, by selective growth, active layers with different peak wavelengths of about 150 nm can be grown all at once. In addition, in order to generate a wavelength change of about 40 nm, a film thickness change of about 35 nm is required, and when a wider wavelength change is required, it is necessary to increase the film thickness change amount (Non-Patent Document 5). ).
 図17に、等価屈折率のスラブ厚依存性の計算結果を示す。ここで、スラブ厚とは、導波路構造において下部クラッド層、活性層、上部クラッド層からなる層(以下、「スラブ層」という。)の厚さである。 FIG. 17 shows the calculation result of the slab thickness dependence of the equivalent refractive index. Here, the slab thickness is the thickness of a layer (hereinafter referred to as "slab layer") consisting of a lower clad layer, an active layer, and an upper clad layer in the waveguide structure.
 計算は、ソフトウェア(製品名:「FIMMWAVE」、販売元:コンビニエントビジネスソル-ションズ)を用いて行った。ここで、活性層はスラブ層の中央に位置し、活性層の層厚はスラブ厚と比例して変化させた。また、上部クラッド層と下部クラッド層にはInP、活性層にはInGaAlAs多重量子井戸(MQW)を用いた。活性層幅は、0.5μm(図中、黒四角、一点鎖線)、0.7μm(図中、黒三角、点線)、0.9μm(図中、黒丸、実線)とした。 The calculation was performed using software (product name: "FIMMWAVE", distributor: Convenient Business Solutions). Here, the active layer was positioned in the center of the slab layer, and the layer thickness of the active layer was changed in proportion to the slab thickness. InP was used for the upper clad layer and the lower clad layer, and InGaAlAs multiple quantum well (MQW) was used for the active layer. The width of the active layer was 0.5 μm (black squares, dashed line in the figure), 0.7 μm (black triangles, dotted line in the figure), and 0.9 μm (black circles, solid line in the figure).
 計算結果によれば、膜厚が約250nm~350nmで変化するときの等価屈折率変化は、4%程度である。 According to the calculation results, the equivalent refractive index change is about 4% when the film thickness changes from about 250 nm to 350 nm.
 この等価屈折率変化に伴い、回折格子結合係数κが変化する。図18に、κの活性層膜厚依存性の計算結果を示す。計算は上述(図17)と同様に行った。ここで、層厚が異なるスラブ層の上部クラッド層(InP)の表面に対して、例えば深さ20nmの回折格子を形成したときのκを示す。スラブ層厚240nmから340nmまでの層構造に対して同一の回折格子を形成すると、κは約670cm-1から400cm-1まで変化する。 Accompanying this equivalent refractive index change, the diffraction grating coupling coefficient κ changes. FIG. 18 shows the calculation result of the dependence of κ on the thickness of the active layer. Calculations were performed in the same manner as described above (FIG. 17). Here, κ is shown when, for example, a diffraction grating with a depth of 20 nm is formed on the surface of the upper clad layer (InP) of the slab layer with different layer thicknesses. When forming the same diffraction grating for layer structures with slab layer thicknesses from 240 nm to 340 nm, κ varies from approximately 670 cm −1 to 400 cm −1 .
 このように、複数の導波路構造を有する多波長半導体レーザにおいて、選択成長で各導波路構造の活性層を含むスラブ層の層厚および組成を変化させる場合、層厚及び組成が異なり等価屈折率が異なる各領域に同一の構成の回折格子を形成すると、κを揃える(一定にする)ことができず、シングルモードかつ高光出力・低しきい値の特性を実現することが困難である。 In this way, in a multi-wavelength semiconductor laser having a plurality of waveguide structures, when the layer thickness and composition of the slab layer including the active layer of each waveguide structure are changed by selective growth, the layer thickness and composition are different and the equivalent refractive index If diffraction gratings with the same configuration are formed in regions with different λ, κ cannot be uniformed (constant), and it is difficult to achieve single-mode, high optical output, and low threshold characteristics.
 このことは、とくに薄膜デバイスでは、InP薄膜構造上下の空気・ガラス等の誘電体によって光を閉じ込めるため、等価屈折率の膜厚依存性が大きいので問題となる。 This is particularly problematic in thin-film devices, because light is confined by dielectrics such as air and glass above and below the InP thin-film structure, and the equivalent refractive index greatly depends on the film thickness.
 半導体薄膜構造でκを変化させるためには、(1)回折格子を構成する材料を変化させる、(2)回折格子をエッチングにより形成する場合にエッチング深さを変化させる、(3)誘電体の回折格子を半導体上に形成する場合に誘電体の厚さを変化させる、という方法が考えられるが、いずれも単一のウエハ上に一括プロセスで実現することは困難である。 In order to change κ in the semiconductor thin film structure, (1) the material forming the diffraction grating is changed, (2) the etching depth is changed when the diffraction grating is formed by etching, and (3) the dielectric material is changed. A possible method is to change the thickness of a dielectric when forming a diffraction grating on a semiconductor, but it is difficult to realize all of them on a single wafer in a batch process.
 また、複数回のプロセスを行う場合、例えばエッチング時間の異なる複数回のエッチングを行うことでκを変化させることは可能であるが、工数およびコストの増大を招く。 Also, when performing multiple processes, it is possible to change κ by, for example, performing multiple etchings with different etching times, but this leads to an increase in man-hours and cost.
 上述したような課題を解決するために、本発明に係る半導体光デバイスは、同一基板上の第2の下部クラッド層の上に、複数の導波路構造を備え、前記導波路構造が、順に、第1の下部クラッド層と、活性層と、第1の上部クラッド層と、第2の上部クラッド層とを備え、前記導波路構造が、回折格子を備え、それぞれの前記導波路構造において、前記第1の下部クラッド層と、前記活性層と、前記第1の上部クラッド層それぞれの厚さが異なり、前記回折格子の結合係数が略同等であることを特徴とする。 In order to solve the above-described problems, a semiconductor optical device according to the present invention includes a plurality of waveguide structures on a second lower clad layer on the same substrate, the waveguide structures sequentially comprising: A first lower cladding layer, an active layer, a first upper cladding layer, and a second upper cladding layer, the waveguide structures comprising a diffraction grating, each waveguide structure comprising: The thicknesses of the first lower clad layer, the active layer, and the first upper clad layer are different, and the coupling coefficients of the diffraction gratings are substantially the same.
 また、本発明に係る半導体光デバイスの製造方法は、同一基板上の第2の下部クラッド層の上に、半導体層を結晶成長させる工程と、前記半導体層に、複数のマスクと複数の開口部とを有する選択成長用マスク層を形成する工程と、前記開口部に、第1の下部クラッド層と活性層と第1の上部クラッド層とを有する選択成長層を結晶成長する工程と、前記選択成長層をメサ構造に加工する工程と、前記メサ構造の側方に電流注入層を形成する工程と、前記第1の上部クラッド層の上面に回折格子を形成する工程と、前記回折格子を有する前記第1の上部クラッド層の上面に第2のクラッド層を形成する工程とを備え、前記選択成長用マスク層において、前記マスクの面積と前記開口部の面積との少なくともいずれかが変化し、前記複数の開口部に結晶成長される前記第1の上部クラッド層の上面に形成される回折格子それぞれの結合係数が略同等であることを特徴とする。 Further, a method for manufacturing a semiconductor optical device according to the present invention includes the step of crystal-growing a semiconductor layer on a second lower clad layer on the same substrate; forming a mask layer for selective growth comprising: crystal-growing a selective growth layer having a first lower clad layer, an active layer and a first upper clad layer in the opening; forming a current injection layer on the side of the mesa structure; forming a diffraction grating on the upper surface of the first upper clad layer; and having the diffraction grating. forming a second clad layer on the upper surface of the first upper clad layer, wherein at least one of the area of the mask and the area of the opening changes in the mask layer for selective growth, The diffraction gratings formed on the top surface of the first upper cladding layer crystal-grown in the plurality of openings are substantially equal in coupling coefficient.
 本発明によれば、シングルモード、高光出力・低しきい値で多波長レーザ動作する半導体光デバイスおよびその製造方法を提供できる。 According to the present invention, it is possible to provide a single-mode, high-output, low-threshold, multi-wavelength laser-operating semiconductor optical device and a method for manufacturing the same.
図1は、本発明の第1の実施の形態に係る半導体光デバイス構成を示す概略鳥瞰図である。FIG. 1 is a schematic bird's-eye view showing the configuration of a semiconductor optical device according to the first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係る半導体光デバイスの構成を示す概略正面断面図である。FIG. 2 is a schematic front sectional view showing the configuration of the semiconductor optical device according to the first embodiment of the present invention. 図3Aは、本発明の第1の実施の形態に係る半導体光デバイスの構成を示す概略側面断面図である。FIG. 3A is a schematic side sectional view showing the configuration of the semiconductor optical device according to the first embodiment of the invention. 図3Bは、本発明の第1の実施の形態に係る半導体光デバイスの構成を示す概略側面断面図である。FIG. 3B is a schematic side sectional view showing the configuration of the semiconductor optical device according to the first embodiment of the invention. 図4は、本発明の第1の実施の形態に係る半導体光デバイスの動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the semiconductor optical device according to the first embodiment of the present invention. 図5Aは、本発明の第1の実施の形態に係る半導体光デバイスの構成の一例を示す概略側面断面図である。FIG. 5A is a schematic side cross-sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the invention. 図5Bは、本発明の第1の実施の形態に係る半導体光デバイスの構成の一例を示す概略側面断面図である。FIG. 5B is a schematic side sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the invention. 図6は、本発明の第1の実施の形態に係る半導体光デバイスの製造方法を説明するための図である。FIG. 6 is a diagram for explaining the manufacturing method of the semiconductor optical device according to the first embodiment of the present invention. 図7Aは、本発明の第1の実施の形態に係る半導体光デバイスの動作を説明するための図である。7A is a diagram for explaining the operation of the semiconductor optical device according to the first embodiment of the present invention; FIG. 図7Bは、本発明の第1の実施の形態に係る半導体光デバイスの動作を説明するための図である。7B is a diagram for explaining the operation of the semiconductor optical device according to the first embodiment of the present invention; FIG. 図8Aは、本発明の第1の実施の形態に係る半導体光デバイスの構成の一例を示す概略上面断面図である。FIG. 8A is a schematic top sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the invention. 図8Bは、本発明の第1の実施の形態に係る半導体光デバイスの構成の一例を示す概略上面断面図である。8B is a schematic top sectional view showing an example of the configuration of the semiconductor optical device according to the first embodiment of the present invention; FIG. 図9は、本発明の第1の実施の形態に係る半導体光デバイスの効果を説明するための図である。FIG. 9 is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the invention. 図10は、本発明の第1の実施の形態に係る半導体光デバイスの効果を説明するための図である。FIG. 10 is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the invention. 図11Aは、本発明の第2の実施の形態に係る半導体光デバイスの構成を示す概略上面断面図である。FIG. 11A is a schematic top sectional view showing the configuration of a semiconductor optical device according to a second embodiment of the present invention. 図11Bは、本発明の第2の実施の形態に係る半導体光デバイスの構成を示す概略上面断面図である。FIG. 11B is a schematic top sectional view showing the configuration of the semiconductor optical device according to the second embodiment of the present invention. 図12は、本発明の第3の実施の形態に係る半導体光デバイスの構成を示す概略正面断面図である。FIG. 12 is a schematic front sectional view showing the configuration of a semiconductor optical device according to a third embodiment of the invention. 図13は、本発明の第4の実施の形態に係る半導体光デバイスの構成を示す概略正面断面図である。FIG. 13 is a schematic front sectional view showing the configuration of a semiconductor optical device according to a fourth embodiment of the invention. 図14は、従来の半導体光デバイスにおける結晶の成長に用いる選択成長を説明するための図である。FIG. 14 is a diagram for explaining selective growth used for crystal growth in a conventional semiconductor optical device. 図15は、従来の半導体光デバイスにおける結晶の成長に用いる選択成長を説明するための図である。FIG. 15 is a diagram for explaining selective growth used for crystal growth in a conventional semiconductor optical device. 図16は、従来の半導体光デバイスの動作を説明するための図である。FIG. 16 is a diagram for explaining the operation of a conventional semiconductor optical device. 図17は、従来の半導体光デバイスの動作を説明するための図である。FIG. 17 is a diagram for explaining the operation of a conventional semiconductor optical device. 図18は、従来の半導体光デバイスの動作を説明するための図である。FIG. 18 is a diagram for explaining the operation of a conventional semiconductor optical device.
<第1の実施の形態>
 本発明の第1の実施の形態に係る半導体光デバイスおよびその製造方法について、図1~図10を参照して説明する。
<First Embodiment>
A semiconductor optical device and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 10. FIG.
<半導体光デバイスの構成>
 本実施の形態に係る半導体光デバイス10は、図1、2に示すように、順に、基板11と、共通下部クラッド層(第2の下部クラッド層)12と、複数(本実施の形態では2本)の導波路構造13_1、13_2とを備える。
<Structure of semiconductor optical device>
As shown in FIGS. 1 and 2, the semiconductor optical device 10 according to the present embodiment includes, in order, a substrate 11, a common lower clad layer (second lower clad layer) 12, and a plurality (two in the present embodiment). (this) waveguide structures 13_1 and 13_2.
 基板11はSiである。これに限らず、Si、SiO、Al、InP、GaAs、SiCでもよい。 The substrate 11 is Si. Si, SiO 2 , Al 2 O 3 , InP, GaAs, and SiC may also be used.
 共通下部クラッド層12には、SiOを用いる。その他、SiO、SiN、SiON、Al、またはこれらを組み合わせた構造でよく、半導体層に比べて屈折率が低く、作製するレーザの発振波長(例えば300nm~1650nm)に対して透明であればよい。 SiO 2 is used for the common lower clad layer 12 . In addition, SiO x , SiN, SiON, Al 2 O 3 , or a structure in which these are combined may be used, which has a lower refractive index than the semiconductor layer and is transparent to the oscillation wavelength (for example, 300 nm to 1650 nm) of the laser to be manufactured. I wish I had.
 それぞれの導波路構造13_1、13_2は、スラブ層14_1、14_2として、第1の下部クラッド層141_1、141_2と、活性層142_1、142_2と、第1の上部クラッド層143_1、143_2とを備える。またスラブ層14_1、14_2の上に、第2の上部クラッド層15_1、15_2を備える。 Each waveguide structure 13_1, 13_2 includes, as slab layers 14_1, 14_2, first lower clad layers 141_1, 141_2, active layers 142_1, 142_2, and first upper clad layers 143_1, 143_2. Second upper clad layers 15_1 and 15_2 are provided on the slab layers 14_1 and 14_2.
 第1の下部クラッド層141_1、141_2と第1の上部クラッド層143_1、143_2に、InPを用いる。 InP is used for the first lower clad layers 141_1 and 141_2 and the first upper clad layers 143_1 and 143_2.
 また、活性層142_1、142_2に、1310nm波長帯の6層のInAlGaAsを用いる。 Six layers of InAlGaAs with a wavelength band of 1310 nm are used for the active layers 142_1 and 142_2.
 2本の導波路構造において、一方の導波路構造13_1のスラブ層14_1は、例えば層厚が315nm、活性層142_1の組成波長が1240nm、レーザ発振波長が1275nmとすることができる。他方の導波路構造13_2のスラブ層14_2は、層厚が350nm、活性層142_2の組成波長が1275nm、レーザ発振波長が1310nmとすることができる。また、各導波路構造の活性層142_1、142_2の幅は、例えば0.7μmである。 In the two waveguide structures, the slab layer 14_1 of one waveguide structure 13_1 can have, for example, a layer thickness of 315 nm, an active layer 142_1 with a composition wavelength of 1240 nm, and a laser oscillation wavelength of 1275 nm. The slab layer 14_2 of the other waveguide structure 13_2 can have a layer thickness of 350 nm, a composition wavelength of the active layer 142_2 of 1275 nm, and a laser oscillation wavelength of 1310 nm. Also, the width of the active layers 142_1 and 142_2 of each waveguide structure is, for example, 0.7 μm.
 このように、半導体光デバイス10では、それぞれの導波路構造13_1、13_2の活性層142_1、142_2の組成とスラブ層の厚さが異なる。 Thus, in the semiconductor optical device 10, the compositions and slab layer thicknesses of the active layers 142_1 and 142_2 of the waveguide structures 13_1 and 13_2 are different.
 他方の導波路構造13_2のスラブ層14_2が、一方の導波路構造13_1のスラブ層14_1よりも厚い。また、他方の導波路構造13_2の活性層142_2の組成波長が、一方の導波路構造13_1の活性層142_1の組成波長より長い。 The slab layer 14_2 of the other waveguide structure 13_2 is thicker than the slab layer 14_1 of the one waveguide structure 13_1. Also, the composition wavelength of the active layer 142_2 of the other waveguide structure 13_2 is longer than the composition wavelength of the active layer 142_1 of the waveguide structure 13_1.
 また、スラブ層14_1、14_2の側面に接するように、埋め込み半導体層として、p型半導体層161_1、161_2と、n型半導体層162_1、162_2とを備える。p型およびn型半導体層の上には電極17_1、17_2が形成されており、p-i-n接合による電気的な駆動が可能となっている。電極を介して電流を注入すると、回折格子間隔および埋め込みヘテロ構造の等価屈折率により決まる波長で発振が得られる。 In addition, p-type semiconductor layers 161_1 and 161_2 and n-type semiconductor layers 162_1 and 162_2 are provided as buried semiconductor layers so as to be in contact with the side surfaces of the slab layers 14_1 and 14_2. Electrodes 17_1 and 17_2 are formed on the p-type and n-type semiconductor layers so that they can be electrically driven by pin junctions. Injecting current through the electrodes results in oscillation at a wavelength determined by the grating spacing and the equivalent refractive index of the buried heterostructure.
 それぞれの導波路構造13_1、13_2において、図3A、Bに示すように、回折格子18_1、18_2は、第1の上部クラッド層143_1、143_2の表面に、光の導波方向に周期的な凹凸構造が形成される。この回折格子18_1、18_2の上に、第2の上部クラッド層15_1、15_2が積層される。ここで、光の導波方向は、導波路構造の端面に垂直な方向である。 In the respective waveguide structures 13_1 and 13_2, as shown in FIGS. 3A and 3B, the diffraction gratings 18_1 and 18_2 are formed on the surfaces of the first upper cladding layers 143_1 and 143_2, and have periodic concave-convex structures in the light guiding direction. is formed. Second upper clad layers 15_1 and 15_2 are laminated on the diffraction gratings 18_1 and 18_2. Here, the waveguide direction of light is the direction perpendicular to the end surface of the waveguide structure.
 ここで、第2の上部クラッド層15_1、15_2は、SiOであり、その他、SiO、SiO、SiN、SiON、Alを用いてもよい。 Here, the second upper cladding layers 15_1 and 15_2 are SiO 2 , and SiO 2 , SiO x , SiN, SiON, and Al 2 O 3 may be used.
 このように、第1の上部クラッド層(InP)143_1、143_2と第2の上部クラッド層(SiO)15_1、15_2との境界に、回折格子が形成される。 Thus, diffraction gratings are formed at the boundaries between the first upper clad layers (InP) 143_1, 143_2 and the second upper clad layers (SiO 2 ) 15_1, 15_2.
 本実施の形態では、回折格子を第1の上部クラッド層のエッチングによって形成した後にSiO等で埋め込む例を示したが、これに限らず、回折格子を埋め込まずに第2の上部クラッド層を空気層とすることによる屈折率差を用いてもよい。 In the present embodiment, an example is shown in which the diffraction grating is formed by etching the first upper clad layer and then embedded with SiO 2 or the like. A refractive index difference due to an air layer may be used.
 それぞれの導波路構造13_1、13_2で、回折格子18_1、18_2は、1.3μm波長帯でのレーザ発振に対応する周期を有し、デューティ比が異なる。回折格子のデューティ比とは、回折格子1周期の長さTに対する、回折格子の凸部の占める長さτの割合Dであり、0~1の間の値を取る。 In the respective waveguide structures 13_1 and 13_2, the diffraction gratings 18_1 and 18_2 have periods corresponding to laser oscillation in the 1.3 μm wavelength band and have different duty ratios. The duty ratio of the diffraction grating is the ratio D of the length τ occupied by the projections of the diffraction grating to the length T of one period of the diffraction grating, and takes a value between 0 and 1.
 一方の導波路構造(スラブ層が薄い方の導波路構造)13_1では、図3Aに示すように、回折格子18_1の凸部の占める長さτが大きく、デューティ比が大きい。 In one waveguide structure (waveguide structure with a thinner slab layer) 13_1, as shown in FIG. 3A, the length τ occupied by the projections of the diffraction grating 18_1 is large and the duty ratio is large.
 他方の導波路構造(スラブ層が厚い方の導波路構造)13_2では、図3Bに示すように、回折格子18_2の凸部の占める長さτが小さく、デューティ比が小さい。 In the other waveguide structure (waveguide structure with a thicker slab layer) 13_2, as shown in FIG. 3B, the length τ occupied by the projections of the diffraction grating 18_2 is small and the duty ratio is small.
 ここで、それぞれの導波路構造13_1、13_2において、回折格子の1周期の長さTは同等である。 Here, in each of the waveguide structures 13_1 and 13_2, the length T of one period of the diffraction grating is the same.
 図4に、回折格子の結合係数κのデューティ比依存性の計算結果を示す。ここで、計算は、トランスファーマトリックス法により行った。また、スラブ層の上部クラッド層(InP)の表面に対して、例えば深さ20nmの回折格子を形成したときのκを示す。スラブ層は、下部InPクラッド層(160nm厚)、InGaAlAs-MQW(100nm厚)、上部InPクラッド層(70nm厚)からなる。 FIG. 4 shows the calculation result of the duty ratio dependence of the coupling coefficient κ of the diffraction grating. Here, the calculation was performed by the transfer matrix method. Also, κ is shown when, for example, a diffraction grating with a depth of 20 nm is formed on the surface of the upper clad layer (InP) of the slab layer. The slab layer consists of a lower InP clad layer (160 nm thick), an InGaAlAs-MQW (100 nm thick), and an upper InP clad layer (70 nm thick).
 このように、回折格子の深さは同一であっても、デューティ比を変えることによってκを変化させることができる。したがって、同一基板上に形成された複数の等価屈折率の異なる半導体導波構造に対して、同一のκの回折格子を形成できる。 Thus, even if the depth of the diffraction grating is the same, κ can be changed by changing the duty ratio. Therefore, diffraction gratings with the same κ can be formed for a plurality of semiconductor waveguide structures having different equivalent refractive indices formed on the same substrate.
 回折格子のデューティ比を変化させる方法としては、例えば、回折格子エッチング時に用いるマスクのデューティ比を変えればよい。マスクの形状はフォトリソグラフィーや電子線リソグラフィーによって任意に決定可能であるから、容易に、デューティ比の異なる回折格子を同一基板面内に一括で形成できる。 As a method of changing the duty ratio of the diffraction grating, for example, the duty ratio of the mask used during diffraction grating etching may be changed. Since the shape of the mask can be arbitrarily determined by photolithography or electron beam lithography, diffraction gratings with different duty ratios can be easily formed collectively on the same substrate surface.
 このように、半導体光デバイス10では、一方の導波路構造(スラブ層が薄い方の導波路構造)13_1のデューティ比を大きくして、他方の導波路構造(スラブ層が厚い方の導波路構造)13_2のデューティ比を小さくすることにより、それぞれの導波路構造13_1、13_2の結合係数が略同等に設定される。 Thus, in the semiconductor optical device 10, the duty ratio of one waveguide structure (the waveguide structure with the thinner slab layer) 13_1 is increased, and the other waveguide structure (the waveguide structure with the thicker slab layer) is increased. ) 13_2, the coupling coefficients of the waveguide structures 13_1 and 13_2 are set substantially equal.
 また、半導体光デバイスの回折格子は、図5A、Bに示すように、第1の上部クラッド層143_1、143_2の表面に、例えば矩形のSiOからなる構造体181_1、181_2が、光の導波方向に周期的に形成され、そのSiO周期構造を有する第1の上部クラッド層の上に第2の上部クラッド層(SiN)15_1、15_2を備えてもよい。 In addition, as shown in FIGS. 5A and 5B, the diffraction grating of the semiconductor optical device has structures 181_1 and 181_2 made of, for example, rectangular SiO 2 on the surface of the first upper clad layers 143_1 and 143_2. A second upper cladding layer (SiN) 15_1, 15_2 may be provided on the first upper cladding layer periodically formed in the direction and having its SiO 2 periodic structure.
 この回折格子(構造体)は、第1の上部クラッド層の表面を加工せずに平坦な表面に、例えばSiOからなる層(第3の上部クラッド層)を積層した後、SiO層を周期的に加工して形成される。その後、第1の上部クラッド層と加工されたSiOの上に、第2の上部クラッド層(例えばSiN)を積層する。この場合においても、例えばSiNとSiOの屈折率差によって回折格子として機能する。 This diffraction grating (structure) is formed by laminating a layer (third upper clad layer) made of, for example, SiO 2 on the flat surface of the first upper clad layer without processing the surface, and then laminating the SiO 2 layer. It is formed by periodic processing. After that, a second upper clad layer (eg, SiN) is laminated on the first upper clad layer and the processed SiO 2 . Also in this case, the refractive index difference between, for example, SiN and SiO 2 functions as a diffraction grating.
 構造体(第3の上部クラッド層)と第2の上部クラッド層との組み合わせは、SiOとSiNに限らず、他のSiO、SiON、Alなどの誘電体を用いてもよい。構造体(第3の上部クラッド層)と第2の上部クラッド層とが異なる屈折率を有する材料から構成されればよい。 The combination of the structure (third upper clad layer) and the second upper clad layer is not limited to SiO2 and SiN, and other dielectrics such as SiOx , SiON, and Al2O3 may be used. . The structure (third upper clad layer) and the second upper clad layer may be made of materials having different refractive indices.
 また、構造体(第3の上部クラッド層)を埋め込まずに第2の上部クラッド層を空気層とすることによる屈折率差を用いてもよい。 Alternatively, the refractive index difference may be used by using an air layer as the second upper clad layer without embedding the structure (the third upper clad layer).
<半導体光デバイスの製造方法>
 本実施の形態に係る半導体光デバイスの製造方法について、図6~図7Bを参照に説明する。
<Method for Manufacturing Semiconductor Optical Device>
A method for manufacturing a semiconductor optical device according to this embodiment will be described with reference to FIGS. 6 to 7B.
 初めに、共通下部クラッド層12が形成された基板11上に、半導体層144を形成する(工程S1)。基板材料にSiを用いる。その他、SiO、Al、InP、GaAs、SiCなどを用いてもよい。 First, the semiconductor layer 144 is formed on the substrate 11 on which the common lower clad layer 12 is formed (step S1). Si is used as the substrate material. In addition, SiO 2 , Al 2 O 3 , InP, GaAs, SiC, etc. may be used.
 共通下部クラッド層12にはSiOを用いる。その他、SiN、SiC、またはこれらを組み合わせた構造でよく、半導体層に比べて屈折率が低く、作製するレーザの発振波長(例えば300nm~1650nm)に対して透明であればよい。 SiO 2 is used for the common lower clad layer 12 . In addition, SiN, SiC, or a structure combining these may be used as long as it has a lower refractive index than the semiconductor layer and is transparent to the oscillation wavelength (for example, 300 nm to 1650 nm) of the laser to be manufactured.
 半導体層144の成膜はウエハ直接接合、または有機金属化学気相成長(MOVPE)や分子線エピタキシー(MBE)等の結晶成長により行う。 The film formation of the semiconductor layer 144 is performed by wafer direct bonding or by crystal growth such as metalorganic chemical vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE).
 次に、SiOやSiN等からなる選択成長用マスク層191を半導体層144上に形成する(工程S2)。 Next, a selective growth mask layer 191 made of SiO 2 , SiN, or the like is formed on the semiconductor layer 144 (step S2).
 次に、複数波長の活性層を有する選択成長層140_1、140_2を、MOVPEなどにより選択成長する(工程S3)。ここで、選択成長層140_1、140_2は、共通下部クラッド層12側から、順に、第1の下部クラッド層と活性層と第1の上部クラッド層とを有する。 Next, selective growth layers 140_1 and 140_2 having active layers of multiple wavelengths are selectively grown by MOVPE or the like (step S3). Here, the selectively grown layers 140_1 and 140_2 have a first lower clad layer, an active layer, and a first upper clad layer in order from the common lower clad layer 12 side.
 選択成長においては、マスク表面近傍に供給されたIII族原子がマスク表面を基板11に対して水平方向へ移動し、マスク開口部の半導体表面にIII族原子が選択的に付着する。したがって、選択成長用マスク層の材料は、半導体表面に比べて原子が付着し難ければよい。 In the selective growth, the group III atoms supplied near the mask surface move horizontally on the mask surface with respect to the substrate 11, and the group III atoms selectively adhere to the semiconductor surface in the mask openings. Therefore, the material of the mask layer for selective growth should be such that atoms are less likely to adhere to the surface of the semiconductor.
 また、選択成長用マスク層191において、マスクにおけるマスク領域幅が0~55μmで変化し、マスクとマスクとの間隔(開口部幅)が40μmで一定である。 In addition, in the selective growth mask layer 191, the mask region width in the mask varies from 0 to 55 μm, and the interval (opening width) between the masks is constant at 40 μm.
 本実施の形態では、マスク幅を変化させ、開口部幅を一定とする例を示したが、開口部幅、またはマスクの幅と開口部幅両方を変化させてもよい。 Although the mask width is changed and the opening width is kept constant in this embodiment, the opening width or both the mask width and the opening width may be changed.
 ここで、マスクの幅すなわちマスクの面積が広いほど、また開口部幅すなわち開口部の面積が狭いほど、選択成長に起因した結晶組成変化および成長レートの加速が顕著に生じる。 Here, the wider the width of the mask, ie, the area of the mask, and the narrower the width of the opening, ie, the area of the opening, the more pronounced the crystal composition change and growth rate acceleration due to selective growth.
 このように、選択成長用マスク層において、マスクの面積と開口部の面積との少なくともいずれかをマスク層内で変えることによって選択成長膜厚を変化させることができ、面積の広いマスクまたは面積の狭い開口部により厚い結晶層を得ることができる。 Thus, in the mask layer for selective growth, by changing at least one of the mask area and the opening area within the mask layer, the selective growth film thickness can be changed. Narrower openings allow for thicker crystal layers.
 本実施の形態では、マスク領域幅を0~55μm、マスクとマスクとの間隔を40μmとする例を示したが、これに限らず、それぞれ500nm~500μm程度でもよい。III族原子の表面マイグレーション長と同程度以上であればよい。 In this embodiment, an example was shown in which the width of the mask region was 0 to 55 μm, and the gap between the masks was 40 μm. It is sufficient if it is equal to or longer than the surface migration length of group III atoms.
 選択成長によって形成する活性層の材料、構造は、例えばInP系の場合、InGaAs、InP、InGaAsPまたはInGaAlAsからなる混晶を用いた多重量子井戸構造を用いればよい。 For the material and structure of the active layer formed by selective growth, for example, in the case of an InP system, a multiple quantum well structure using a mixed crystal of InGaAs, InP, InGaAsP, or InGaAlAs may be used.
 量子井戸構造を選択成長する場合、混晶組成変化による波長変化に加えて、量子井戸層厚変化に起因する活性層の発光波長変化を用いることができる。 When selectively growing a quantum well structure, it is possible to use the emission wavelength change of the active layer due to the quantum well layer thickness change in addition to the wavelength change due to the mixed crystal composition change.
 また、活性層に量子井戸構造を採用することで、結晶欠陥を生じることなく井戸層に非常に大きな歪(1.5%程度)を印加することが可能となる。これにより利得係数を大きくすることができるため、直接変調レーザの高効率化・高速動作に好適である。なお、多重量子井戸構造の代わりにバルク混晶を選択成長した場合においても、混晶組成の変化により異なる波長で発光する活性層を得ることができる。 Also, by adopting a quantum well structure for the active layer, it is possible to apply a very large strain (about 1.5%) to the well layer without causing crystal defects. This makes it possible to increase the gain coefficient, which is suitable for achieving high efficiency and high-speed operation of a directly modulated laser. Even if a bulk mixed crystal is selectively grown instead of the multiple quantum well structure, an active layer that emits light at different wavelengths can be obtained by changing the composition of the mixed crystal.
 また、選択成長により形成する半導体構造を数百nm程度の薄膜構造とすることで、活性層への光閉じ込めを高めることができる。例えば、図7A、Bに、活性層への光閉じ込めのInP系薄膜全体の膜厚(スラブ厚)依存性の計算結果を示す。ここで、計算は、ソフトウェア(製品名:「FIMMWAVE」、販売元:コンビニエントビジネスソル-ションズ)を用いて行った。 In addition, light confinement in the active layer can be enhanced by making the semiconductor structure formed by selective growth into a thin film structure of about several hundred nm. For example, FIGS. 7A and 7B show calculation results of the dependence of light confinement in the active layer on the thickness of the entire InP thin film (slab thickness). Here, the calculation was performed using software (product name: "FIMMWAVE", distributor: Convenient Business Solutions).
 計算には、図7Aに示すように、スラブ層が低屈折材料(SiO、屈折率n=1.47)に上下から挟まれた構造を用いた。スラブ層は、約100nm厚の多重量子井戸構造(MQW、n=3.40)とMQWを囲むInP(n=3.17)からなる。多重量子井戸層上下のInP膜厚を変えてスラブ厚を変化させた。 For the calculation, as shown in FIG. 7A, a structure in which a slab layer is sandwiched between low refractive materials (SiO 2 , refractive index n=1.47) from above and below was used. The slab layer consists of a multiple quantum well structure (MQW, n=3.40) about 100 nm thick and InP (n=3.17) surrounding the MQW. The slab thickness was changed by changing the InP film thickness above and below the multiple quantum well layer.
 図7Bに示すように、活性層への光閉じ込め係数は、スラブ厚(InP系薄膜全体の膜厚)が150nm程度で最大となり、膜厚3000~4000nmの一般的なレーザの光閉じ込めと比べて3倍程度高い。また、スラブ厚の増加に伴い、光閉じ込め係数の膜厚依存性は減少する。したがって、光閉じ込め係数の観点からは、スラブ厚を概ね500nm程度以下にすることが有効である。 As shown in FIG. 7B, the light confinement factor in the active layer reaches a maximum when the slab thickness (thickness of the entire InP-based thin film) is about 150 nm, which is higher than that of a general laser with a thickness of 3000 to 4000 nm. about three times higher. Also, the dependence of the optical confinement coefficient on the film thickness decreases as the slab thickness increases. Therefore, from the viewpoint of the light confinement factor, it is effective to set the slab thickness to about 500 nm or less.
 選択成長を実施した後、選択成長用マスク層191を除去してから、または除去せずに、埋め込み成長用マスクに用いる薄膜(例えば、SiOやSiN等)を成膜する。薄膜の材料は選択成長用マスク層と同じでもよいし、異なっていてもよい。 After performing the selective growth, a thin film (for example, SiO 2 , SiN, etc.) to be used as a mask for buried growth is formed after removing the mask layer 191 for selective growth or without removing it. The material of the thin film may be the same as or different from that of the selective growth mask layer.
 次に、埋め込み成長用マスクに用いる薄膜上にリソグラフィー等によって、活性層上部にレジスト等から成るマスクパターンを形成し、ドライエッチング等によって埋め込み成長用マスク層192を形成する。 Next, a mask pattern made of resist or the like is formed on the active layer by lithography or the like on the thin film used as the buried growth mask, and the buried growth mask layer 192 is formed by dry etching or the like.
 次に、埋め込み成長用マスク層192を用いてスラブ層の選択エッチングを行う。エッチングにはドライエッチングまたはウエットエッチングまたはこれらの組み合わせにより行えばよい。このエッチングにより、選択成長層140_1、140_2を、半導体光デバイス(半導体レーザ)における活性層幅(メサ構造幅、例えば、0.7μm)に加工する。その結果、第1の下部クラッド層141_1、141_2と、活性層142_1、142_2と、第1の上部クラッド層143_1、143_2とを備えるスラブ層14_1、14_2が形成される。 Next, selective etching of the slab layer is performed using the buried growth mask layer 192 . The etching may be dry etching, wet etching, or a combination thereof. By this etching, the selectively grown layers 140_1 and 140_2 are processed to have the active layer width (mesa structure width, eg, 0.7 μm) in a semiconductor optical device (semiconductor laser). As a result, slab layers 14_1 and 14_2 including first lower clad layers 141_1 and 141_2, active layers 142_1 and 142_2, and first upper clad layers 143_1 and 143_2 are formed.
 次に、MOCVDやMBE等によって、活性層脇に埋込み半導体160_1、160_2を形成し、平坦化する(工程S4)。 Next, buried semiconductors 160_1 and 160_2 are formed on the sides of the active layer by MOCVD, MBE, or the like, and planarized (step S4).
 埋め込み成長用マスク層192を除去する。半導体表面がわずかに平坦でない場合は、埋め込み成長用マスク層192を除去した後にわずかに半導体層を再成長することで、表面を更に平坦化してもよい。 The embedded growth mask layer 192 is removed. If the semiconductor surface is slightly uneven, it may be further planarized by slightly regrowing the semiconductor layer after removing the buried growth mask layer 192 .
 次に、例えばSiのイオン注入によって一部の半導体層162_1、162_2をn型化し、また例えばZnの熱拡散によって別の一部の半導体161_1、161_2をp型化する。このように、電流注入層161_1、161_2、162_1、162_2を形成する。更に、p型半導体層161_1、161_2およびn型半導体層162_1、162_2に接するように電極17_1、17_2を形成することで、電気的駆動を可能とする(工程S5)。なお、p型半導体層と電極の間やn型半導体層と電極の間に、オーミックな電流電圧特性を得るためのコンタクト半導体層を形成してもよい。 Next, some of the semiconductor layers 162_1 and 162_2 are made n-type by, for example, Si ion implantation, and some of the semiconductor layers 161_1 and 161_2 are made to be p-type by, for example, Zn thermal diffusion. Thus, current injection layers 161_1, 161_2, 162_1, and 162_2 are formed. Furthermore, by forming electrodes 17_1 and 17_2 so as to be in contact with the p-type semiconductor layers 161_1 and 161_2 and the n-type semiconductor layers 162_1 and 162_2, electrical driving is enabled (step S5). A contact semiconductor layer for obtaining ohmic current-voltage characteristics may be formed between the p-type semiconductor layer and the electrode or between the n-type semiconductor layer and the electrode.
 次に、第1の上部クラッド層143_1、143_2の上面を部分的にエッチングすることで、光の導波方向(導波路構造の端面に垂直な方向)に回折格子18_1、18_2を形成する(工程S6)。または、第1の上部クラッド層の上部にSiO、SiO、SiN、SiON、Alなどからなる第3の上部クラッド層を形成した後、これらを部分的にエッチングすることで、回折格子(構造体)181_1、181_2を形成する。 Next, by partially etching the upper surfaces of the first upper clad layers 143_1 and 143_2, diffraction gratings 18_1 and 18_2 are formed in the light guiding direction (the direction perpendicular to the end surface of the waveguide structure) (step S6). Alternatively, after forming a third upper cladding layer made of SiO 2 , SiO x , SiN, SiON, Al 2 O 3 or the like on top of the first upper cladding layer, by partially etching them, diffraction Gratings (structures) 181_1 and 181_2 are formed.
 ここで、回折格子18_1、18_2(または181_1、181_2)において、一方のスラブ層(薄いスラブ層)14_1のデューティ比を大きくして、他方の導波路構造(スラブ層が厚い方の導波路構造)14_2のデューティ比を小さくすることにより、それぞれのスラブ層の14_1、14_2の結合係数が略同等に設定される。 Here, in the diffraction gratings 18_1 and 18_2 (or 181_1 and 181_2), the duty ratio of one slab layer (thin slab layer) 14_1 is increased, and the other waveguide structure (the waveguide structure with the thicker slab layer) By reducing the duty ratio of 14_2, the coupling coefficients of 14_1 and 14_2 of the respective slab layers are set substantially equal.
 最後に、半導体よりも屈折率の小さい第2の上部クラッド層15_1、15_2を形成する(工程S7)。 Finally, second upper clad layers 15_1 and 15_2 having a refractive index smaller than that of the semiconductor are formed (step S7).
 本実施の形態では、2本の膜厚の異なる活性層およびスラブ層を有する導波路構造を同一基板上に備える例を示したが、これに限らず、3本以上の複数の導波路構造を備えてもよい。例えば、8波長のWDMに応用する場合は、8本の膜厚の異なる活性層およびスラブ層を有し、それぞれに対応する適切なデューティ比の回折格子を有する導波路構造を備えればよい。また、p型半導体層とn型半導体層の配置は左右反転していても問題なく、全チャネル向きが揃っている必要もない。 In this embodiment, an example is shown in which two waveguide structures each having an active layer and a slab layer with different film thicknesses are provided on the same substrate. You may prepare. For example, in the case of application to 8-wavelength WDM, a waveguide structure having 8 active layers and slab layers with different film thicknesses and diffraction gratings with appropriate duty ratios corresponding to each should be provided. Further, there is no problem even if the arrangement of the p-type semiconductor layer and the n-type semiconductor layer is horizontally reversed, and it is not necessary that the directions of all the channels are the same.
 また、本実施の形態では、スラブ層の上部に回折格子を形成する例を示したが、導波モードの存在する範囲内であれば他の領域に回折格子を形成してもよい。例えば、図8A、Bに示すように、導波路構造13_3、13_4の側部(側面)に回折格子を形成してもよい。図8Aにデューティ比が大きい回折格子を示し、図8Bにデューティ比が小さい回折格子を示す。 Also, in this embodiment, an example in which the diffraction grating is formed above the slab layer is shown, but the diffraction grating may be formed in another region as long as the waveguide mode exists. For example, as shown in FIGS. 8A and 8B, diffraction gratings may be formed on the side portions (side surfaces) of waveguide structures 13_3 and 13_4. FIG. 8A shows a diffraction grating with a large duty ratio, and FIG. 8B shows a diffraction grating with a small duty ratio.
 この場合、上述の埋め込み半導体を形成する工程(工程S4)の直前の工程で、導波路構造の側部に回折格子を形成すればよい。活性層の回折格子形成用マスクは、フォトリソグラフィーや電子線リソグラフィーを用いることにより、任意かつ複数の異なる形状を同一の基板上で容易に形成でき、一度のエッチングで異なるデューティ比の回折格子を形成できる。ここで、回折格子形成用マスクは、第1の上部クラッド層に形成され、このマスクを用いてエッチングにより、導波路構造13_3、13_4の側部(側面)に回折格子を形成できる。その後、回折格子形成用マスクをそのまま用いて、埋め込み成長をしてもよい。 In this case, the diffraction grating may be formed on the side portion of the waveguide structure in the step immediately before the step of forming the buried semiconductor (step S4). By using photolithography or electron beam lithography, the mask for forming the diffraction grating of the active layer can be easily formed in any number of different shapes on the same substrate, forming diffraction gratings with different duty ratios in a single etching. can. Here, the diffraction grating forming mask is formed on the first upper clad layer, and the diffraction gratings can be formed on the side portions (side surfaces) of the waveguide structures 13_3 and 13_4 by etching using this mask. After that, the mask for forming the diffraction grating may be used as it is to carry out burying growth.
 また、回折格子は、導波路構造の側部(側面)の一部に形成されればよく、第1の下部クラッド層と、活性層と、第1の上部クラッド層と、第2の上部クラッド層との側部(側面)の一部に形成されればよい。 Moreover, the diffraction grating may be formed on a part of the side portion (side surface) of the waveguide structure, and includes the first lower clad layer, the active layer, the first upper clad layer, and the second upper clad layer. It may be formed on a part of the side portion (side surface) with the layer.
<効果>
 本実施の形態に係る半導体光デバイスの効果について、図9、10を参照に説明する。
<effect>
Effects of the semiconductor optical device according to this embodiment will be described with reference to FIGS.
 図9に、κのスラブ厚依存性の計算結果を示す。ここでは、一例として、深さ20nm、デューティ比が0.5、0.4、0.3、0.25である回折格子を形成したときのκを示す。 Fig. 9 shows the calculation results of the slab thickness dependence of κ. Here, as an example, κ is shown when a diffraction grating having a depth of 20 nm and duty ratios of 0.5, 0.4, 0.3, and 0.25 is formed.
 計算はトランスファーマトリックス法で行った。また、計算は、上部InPクラッド層とInGaAlAs-MQW活性層と下部InPクラッド層からなるスラブ層と、スラブ層の上下にSiO層とを備える導波路層構造について行った。回折格子は矩形形状であり、光の断面モードフィールドに対して十分広い幅を有すると仮定した。また、スラブ厚は240nmから340nmまで変化させた。このとき、活性層の層厚はスラブ厚と比例して変化させた。 Calculations were performed by the transfer matrix method. The calculations were also performed for a waveguide layer structure comprising a slab layer consisting of an upper InP cladding layer, an InGaAlAs-MQW active layer and a lower InP cladding layer, and SiO 2 layers above and below the slab layer. The grating was assumed to be rectangular in shape and sufficiently wide for the cross-sectional mode field of the light. Also, the slab thickness was varied from 240 nm to 340 nm. At this time, the layer thickness of the active layer was changed in proportion to the slab thickness.
 デューティ比0.5の回折格子を形成すると、κは約670cm-1から400cm-1まで変化する(図中、白丸実線)。一方、デューティ比0.25の回折格子を形成すると、κは約370cm-1から220cm-1まで変化する(図中、黒丸一点鎖線)。 When forming a diffraction grating with a duty ratio of 0.5, κ changes from about 670 cm −1 to 400 cm −1 (solid line with white circles in the figure). On the other hand, when a diffraction grating with a duty ratio of 0.25 is formed, κ changes from approximately 370 cm −1 to 220 cm −1 (in the figure, dashed-dotted black circle line).
 したがって、例えば、すべての膜厚(スラブ厚)に対して400cm-1程度のκの回折格子を、回折格子のデューティ比を0.25~0.5程度の範囲で膜厚(スラブ厚)に応じた値に設定することにより、容易に形成できる。詳細には、膜厚(スラブ厚)の増加に伴い、回折格子のデューティ比を増加させることにより、回折格子の結合係数κを一定にできる。 Therefore, for example, a diffraction grating with a κ of about 400 cm −1 for all film thicknesses (slab thickness), and a duty ratio of the diffraction grating in the range of about 0.25 to 0.5 for the film thickness (slab thickness). It can be easily formed by setting appropriate values. Specifically, the coupling coefficient κ of the diffraction grating can be made constant by increasing the duty ratio of the diffraction grating as the film thickness (slab thickness) increases.
 次に、本実施の形態に係る半導体光デバイスのしきい値利得に関する効果を説明する。 Next, the effect of the threshold gain of the semiconductor optical device according to this embodiment will be described.
 図10に、本実施の形態に係る半導体光デバイスにおけるしきい値利得の膜厚依存性を示す。ここでは、回折格子結合係数κが一定になるように、スラブ厚に応じて回折格子形状を変化させる。 FIG. 10 shows the film thickness dependence of the threshold gain in the semiconductor optical device according to this embodiment. Here, the diffraction grating shape is changed according to the slab thickness so that the diffraction grating coupling coefficient κ is constant.
 比較のために、従来の半導体光デバイス(従来構造)におけるしきい値利得の膜厚依存性も示す。従来構造では、スラブ厚に依らず同一の回折格子形状を設定する。 For comparison, the film thickness dependence of the threshold gain in a conventional semiconductor optical device (conventional structure) is also shown. In the conventional structure, the same diffraction grating shape is set regardless of the slab thickness.
 計算はトランスファーマトリックス法を用いて行った。 Calculations were performed using the transfer matrix method.
 計算に用いた導波路構造は、上述(図17における計算)と同様である。スラブ厚は240nm~340nmで変化させた。共振器は、活性層長さ100μmのDFB領域と、長さ200μmのDBRミラーとからなるDRレーザを仮定し、それぞれのブラッグ波長デチューニングは2nmとした。 The waveguide structure used for calculation is the same as described above (calculation in FIG. 17). The slab thickness was varied from 240 nm to 340 nm. The cavity is assumed to be a DR laser consisting of a DFB region with an active layer length of 100 μm and a DBR mirror with a length of 200 μm, and the Bragg wavelength detuning of each is set to 2 nm.
 従来構造における回折格子深さは20nm、デューティ比は0.5であり、回折格子の幅は断面モードフィールドの幅に対して十分に広いと仮定した。 It was assumed that the diffraction grating depth in the conventional structure was 20 nm, the duty ratio was 0.5, and the width of the diffraction grating was sufficiently wide relative to the width of the cross-sectional mode field.
 一方、本実施の形態に係る半導体光デバイスにおいて、各導波路構造で、κ=400cm-1で一定と仮定して計算を行った。 On the other hand, in the semiconductor optical device according to the present embodiment, the calculation was performed assuming that κ=400 cm −1 is constant in each waveguide structure.
 図10に示すように、従来構造で、膜厚の異なるスラブ層に対してデューティ比0.5の回折格子を形成する場合、しきい値利得は約14.4cm-1から30.1cm-1まで、およそ2倍以上変化する(図中、黒四角破線)。 As shown in FIG. 10, the threshold gain is about 14.4 cm −1 to 30.1 cm −1 when forming a diffraction grating with a duty ratio of 0.5 for slab layers with different film thicknesses in the conventional structure. up to about twice or more (broken black square line in the figure).
 一方、本実施の形態に係る半導体光デバイスにおいて、膜厚の異なるスラブ層に対して、κ=400cm-1で一定となるように回折格子を形成する場合、膜厚に依らずほぼ一定のしきい値利得を得られる(図中、白丸実線)。 On the other hand, in the semiconductor optical device according to the present embodiment, when forming the diffraction grating so that κ=400 cm −1 is constant for slab layers with different film thicknesses, it is almost constant regardless of the film thickness. A threshold gain can be obtained (solid line with white circles in the figure).
 ここで、膜厚の異なるスラブ層に対して、κが略同等になるように回折格子が形成されればよい。略同等とは、完全同等を含み、±30%程度の差を含む範囲も含み、各導波路構造においてシングルモード、高光出力・低しきい値でレーザ動作する範囲を含む。 Here, the diffraction gratings should be formed so that κ is approximately the same for slab layers with different film thicknesses. The term "substantially equivalent" includes a complete equivalent, a range including a difference of about ±30%, and a range in which a laser operates in a single mode with a high optical output and a low threshold in each waveguide structure.
 このように、本実施の形態に係る半導体光デバイスおよびその製造方法によれば、選択成長によって作製されたスラブ厚や活性層組成の異なる複数の導波路構造において、回折格子の結合係数κが略同等になるように回折格子のデューティ比を設定することにより、それぞれの導波路構造で精密に制御された異なる波長で、均一な特性(低しきい値)を有するレーザ発振を実現できる。 As described above, according to the semiconductor optical device and the manufacturing method thereof according to the present embodiment, in a plurality of waveguide structures having different slab thicknesses and active layer compositions produced by selective growth, the coupling coefficient κ of the diffraction grating is approximately By setting the duty ratios of the diffraction gratings to be equivalent, laser oscillation with uniform characteristics (low threshold) can be realized at different wavelengths that are precisely controlled in each waveguide structure.
 また、複数の広い波長範囲において、シングルモード、高光出力・低しきい値で多波長レーザ動作する半導体光デバイスを実現でき、WDM光通信システムにおける多波長レーザなどに適用できる。 In addition, it is possible to realize a semiconductor optical device that operates as a multi-wavelength laser with a single mode, high optical output and low threshold in a plurality of wide wavelength ranges, and can be applied to multi-wavelength lasers in WDM optical communication systems.
<第2の実施の形態>
 本発明の第2の実施の形態に係る半導体光デバイスについて、図11A、Bを参照して説明する。
<Second Embodiment>
A semiconductor optical device according to a second embodiment of the present invention will be described with reference to FIGS. 11A and 11B.
<半導体光デバイスの構成>
 本実施の形態に係る半導体光デバイス20は、第1の実施の形態と回折格子の回折格子結合係数κの変化の態様が異なる。その他の構成は、第1の実施の形態と略同様である。
<Structure of semiconductor optical device>
The semiconductor optical device 20 according to the present embodiment differs from the first embodiment in the mode of change of the diffraction grating coupling coefficient κ of the diffraction grating. Other configurations are substantially the same as those of the first embodiment.
 第1の実施の形態では、各導波路構造におけるスラブ層厚および活性層の組成の変化に応じて回折格子のデューティ比を変化させることにより、回折格子結合係数κを適切に設定する形態を示した。 In the first embodiment, the diffraction grating coupling coefficient κ is appropriately set by changing the duty ratio of the diffraction grating according to changes in the slab layer thickness and active layer composition in each waveguide structure. rice field.
 本実施の形態では、デューティ比を一定としたまま、回折格子の幅を変化させることにより同様の効果を得ることができる。ここで、回折格子の幅は、導波路構造の水平面において光の導波方向に垂直な方向の長さである。 In this embodiment, a similar effect can be obtained by changing the width of the diffraction grating while keeping the duty ratio constant. Here, the width of the diffraction grating is the length in the direction perpendicular to the waveguide direction of light on the horizontal plane of the waveguide structure.
 ここで、第1の実施の形態と同様に、他方の導波路構造23_2のスラブ層24_2が、一方の導波路構造23_1のスラブ層24_1よりも厚い。また、他方の導波路構造23_2の活性層242_2の組成波長が、一方の導波路構造23_1の活性層242_1の組成波長より長い。 Here, as in the first embodiment, the slab layer 24_2 of the other waveguide structure 23_2 is thicker than the slab layer 24_1 of the one waveguide structure 23_1. Also, the composition wavelength of the active layer 242_2 of the other waveguide structure 23_2 is longer than the composition wavelength of the active layer 242_1 of the one waveguide structure 23_1.
 半導体光デバイス20は、図11A、Bに示すように、活性層上部に形成された第1の上部クラッド層243_1、243_2の上部に形成する第2の上部クラッド層25_1、25_2の幅を、光の導波方向に周期的に変化させる。 In the semiconductor optical device 20, as shown in FIGS. 11A and 11B, the width of the second upper clad layers 25_1 and 25_2 formed above the first upper clad layers 243_1 and 243_2 formed above the active layer is set to the optical is changed periodically in the waveguide direction.
 詳細には、第1の上部クラッド層243_1、243_2の幅は一定である(図11A、B中、点線)。 Specifically, the widths of the first upper clad layers 243_1 and 243_2 are constant (dotted lines in FIGS. 11A and 11B).
 一方、第2の上部クラッド層25_1、25_2それぞれの幅が、第1の幅W1_1、W1_2と第2の幅2_1、W2_2とからなる周期で変化する。 On the other hand, the widths of the second upper cladding layers 25_1 and 25_2 change in a cycle consisting of the first widths W1_1 and W1_2 and the second widths 2_1 and W2_2.
 第1の幅W1_1、W1_2は、第1の上部クラッド層243_1、243_2の幅と同等である。第2の幅W2_1、W2_2は、第1の上部クラッド層243_1、243_2の幅より広く、第2の上部クラッド層25_1、25_2それぞれで異なる。 The first widths W1_1 and W1_2 are equivalent to the widths of the first upper clad layers 243_1 and 243_2. The second widths W2_1, W2_2 are wider than the widths of the first upper cladding layers 243_1, 243_2 and are different for the second upper cladding layers 25_1, 25_2.
 一方の導波路23_1における第2の上部クラッド層25_1の第2の幅W2_1は、他方の導波路23_2における第2の上部クラッド層25_2の第2の幅W2_2より広い。また、それぞれの導波路構造23_1、23_2で、デューティ比は一定である。 The second width W2_1 of the second upper clad layer 25_1 in one waveguide 23_1 is wider than the second width W2_2 of the second upper clad layer 25_2 in the other waveguide 23_2. Further, the duty ratio is constant in each of the waveguide structures 23_1 and 23_2.
 ここで、第1の幅W1_1、W1_2と第2の幅W2_1、W2_2とは、500nm~3μmの範囲で設定すればよい。 Here, the first widths W1_1, W1_2 and the second widths W2_1, W2_2 may be set within the range of 500 nm to 3 μm.
 この構成により、それぞれの導波路構造で、スラブ層厚および活性層の組成の変化に応じて回折格子の結合係数を変化させることができる。 With this configuration, in each waveguide structure, the coupling coefficient of the diffraction grating can be changed according to changes in the slab layer thickness and the composition of the active layer.
 本実施の形態では、第1の上部クラッド層の凹凸構造の幅は一定で、その上の第2の上部クラッド層の幅を変化させる例を示したが、これに限らない。第1の上部クラッド層の凹凸構造の幅を変化させ、その上の第2の上部クラッド層の幅を一定としてもよい。 In the present embodiment, an example is shown in which the width of the uneven structure of the first upper clad layer is constant and the width of the second upper clad layer thereon is varied, but the present invention is not limited to this. The width of the concave-convex structure of the first upper clad layer may be changed, and the width of the second upper clad layer thereon may be kept constant.
 また、第1の幅は、第1の上部クラッド層と同等でなくてもよい。 Also, the first width may not be the same as that of the first upper clad layer.
<第3の実施の形態>
 本発明の第3の実施の形態に係る半導体光デバイスについて、図12を参照して説明する。
<Third Embodiment>
A semiconductor optical device according to a third embodiment of the present invention will be described with reference to FIG.
<半導体光デバイスの構成>
 本実施の形態に係る半導体光デバイスは、縦型pin構造の構成を有する点で、第1および第2の実施の形態における横型pin構造と異なる。他の構成は、第1および第2の実施の形態と略同様である。
<Structure of semiconductor optical device>
The semiconductor optical device according to this embodiment differs from the horizontal pin structure in the first and second embodiments in that it has a vertical pin structure. Other configurations are substantially the same as those of the first and second embodiments.
 半導体光デバイスでは、図12に示すように、第1の上部クラッド層343_1、343_2がp型InPであり、埋め込み層361_1、361_2の上部まで延長する。その結果、埋め込み層361_1、361_2上にp型InP343_1、343_2が配置され、p型InP343_1、343_2上に電極37_1、37_2が配置される。ここで、埋め込み層361_1、361_2は半絶縁性InPである。 In the semiconductor optical device, as shown in FIG. 12, the first upper clad layers 343_1 and 343_2 are p-type InP and extend to the top of the buried layers 361_1 and 361_2. As a result, p-type InPs 343_1 and 343_2 are arranged on the buried layers 361_1 and 361_2, and electrodes 37_1 and 37_2 are arranged on the p-type InPs 343_1 and 343_2. Here, the buried layers 361_1 and 361_2 are semi-insulating InP.
 一方、第1の下部クラッド層341_1、341_2がn型InPであり、埋め込み層362_1、362_2の下部まで延長する。その結果、埋め込み層362_1、362_2の下にn型InP341_1、341_2が配置され、n型InP341_1、341_2に電極37_1、37_2が配置される。ここで、埋め込み層362_1、362_2は半絶縁性InPである。 On the other hand, the first lower clad layers 341_1 and 341_2 are n-type InP and extend to the bottom of the buried layers 362_1 and 362_2. As a result, n-type InPs 341_1 and 341_2 are arranged under the buried layers 362_1 and 362_2, and electrodes 37_1 and 37_2 are arranged on the n-type InPs 341_1 and 341_2. Here, the buried layers 362_1 and 362_2 are semi-insulating InP.
 このように、半導体光デバイス30では、活性層の上部のp型InP(第1の上部クラッド層)と、活性層と、活性層の下部のn型InP(第1の下部クラッド層)とによりpin構造が構成され、p型InPからn型InPに電流が注入され、いわゆる縦型電流注入型レーザが構成される。 Thus, in the semiconductor optical device 30, the p-type InP (first upper clad layer) above the active layer, the active layer, and the n-type InP (first lower clad layer) below the active layer A pin structure is formed, current is injected from p-type InP to n-type InP, and a so-called vertical current injection laser is formed.
 また、回折格子18_1、18_2は、第1の上部クラッド層343_1、343_2の表面に形成され、第2の上部クラッド層15_1、15_2で埋め込まれる。 Also, the diffraction gratings 18_1 and 18_2 are formed on the surfaces of the first upper clad layers 343_1 and 343_2 and are embedded with the second upper clad layers 15_1 and 15_2.
 本実施の形態に係る半導体光デバイスによれば、第1および第2の実施の形態と同様の効果を奏する。 According to the semiconductor optical device according to this embodiment, the same effects as those of the first and second embodiments are obtained.
 また、本実施の形態と第1および第2の実施の形態とを組み合わせてもよい。例えば、第1の上部クラッド層(p型InP)の表面に、誘電体(例えばSiO)などからなる矩形形状の周期構造を形成した後、第1の上部クラッド層とは屈折率の異なる層(例えばSiN)を形成してもよい。 Also, the present embodiment may be combined with the first and second embodiments. For example, after forming a rectangular periodic structure made of a dielectric (e.g., SiO 2 ) on the surface of the first upper clad layer (p-type InP), a layer having a refractive index different from that of the first upper clad layer (eg, SiN) may be formed.
 また、本実施の形態では、上部クラッド層から下部クラッド層に向けて、順に、p型、i型、n型半導体となる構造を示したが、逆に、n型、i型、p型半導体となる構造でもよい。 In addition, in the present embodiment, a structure in which p-type, i-type, and n-type semiconductors are formed in order from the upper clad layer to the lower clad layer is shown. A structure that becomes
<第4の実施の形態>
 本発明の第4の実施の形態に係る半導体光デバイスについて、図13を参照して説明する。
<Fourth Embodiment>
A semiconductor optical device according to a fourth embodiment of the present invention will be described with reference to FIG.
<半導体光デバイスの構成>
 本実施の形態に係る半導体光デバイス40は、図13に示すように、共通下部クラッド層(第2の下部クラッド層)12におけるスラブ層14_1、14_2の下方にコア49を備える。コア49にはSiを用いる。その他、InP等の半導体でもよい。
<Structure of semiconductor optical device>
The semiconductor optical device 40 according to the present embodiment includes a core 49 below the slab layers 14_1 and 14_2 in the common lower clad layer (second lower clad layer) 12, as shown in FIG. Si is used for the core 49 . In addition, a semiconductor such as InP may be used.
 本実施の形態に係る半導体光デバイスによれば、第1または第2の実施の形態と同様の効果を奏するとともに、活性層142_1、142_2で発光(発振した)レーザ光をコア49で導波することができる。 According to the semiconductor optical device of the present embodiment, the same effects as those of the first or second embodiment are obtained, and the laser light emitted (oscillated) in the active layers 142_1 and 142_2 is guided by the core 49. be able to.
 コア49は、第2の上部クラッド層15_1、15_2内に配置されてもよい。コア49は、活性層142_1、142_2で発光(発振した)レーザ光が結合できる範囲で配置されればよい。 The core 49 may be arranged in the second upper clad layers 15_1 and 15_2. The core 49 may be arranged within a range where the laser light emitted (oscillated) in the active layers 142_1 and 142_2 can be coupled.
 また、本実施の形態では、孤立したコアの外周が埋め込まれたチャネル型の導波路を用いる例を示したが、リブ型であってもよい。 Also, in this embodiment, an example of using a channel-type waveguide in which the outer periphery of an isolated core is embedded is shown, but a rib-type waveguide may be used.
 また、第3の実施の形態と組み合わせて、縦型pin構造を有する活性層近傍に第2コアを配置してもよい。 Also, in combination with the third embodiment, the second core may be arranged near the active layer having the vertical pin structure.
 また、本実施の形態では、スラブ層の上部に回折格子を形成する例を示したが、第2コアに回折格子を形成してもよい。ここで、第2コアにおけるコア上部、コア底部、コア側部のいずれに、回折格子を形成してもよい。 Also, in this embodiment, an example in which the diffraction grating is formed on the upper portion of the slab layer is shown, but the diffraction grating may be formed on the second core. Here, the diffraction grating may be formed on any of the core upper portion, the core bottom portion, and the core side portion of the second core.
 本発明の実施の形態では、半導体光デバイスの構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。半導体光デバイスの機能を発揮し効果を奏するものであればよい。 In the embodiment of the present invention, an example of the structure, dimensions, materials, etc. of each component is shown in the structure, manufacturing method, etc. of the semiconductor optical device, but the present invention is not limited to this. Any material may be used as long as it exhibits the function of a semiconductor optical device and produces an effect.
 本発明は、波長多重(WDM)光通信システムにおける多波長レーザに適用することができる。 The present invention can be applied to multi-wavelength lasers in wavelength division multiplexing (WDM) optical communication systems.
10 半導体光デバイス
11 基板
12 第2の下部クラッド層
13_1、13_2 導波路構造
141_1、141_2 第1の下部クラッド層
142_1、142_2 活性層
143_1、143_2 第1の上部クラッド層
15_1、15_2 第2の上部クラッド層
18_1、18_2 回折格子
10 semiconductor optical device 11 substrate 12 second lower clad layers 13_1, 13_2 waveguide structures 141_1, 141_2 first lower clad layers 142_1, 142_2 active layers 143_1, 143_2 first upper clad layers 15_1, 15_2 second upper clad Layers 18_1, 18_2 diffraction grating

Claims (8)

  1.  同一基板上の第2の下部クラッド層の上に、複数の導波路構造を備え、
     前記導波路構造が、順に、
     第1の下部クラッド層と、
     活性層と、
     第1の上部クラッド層と、
     第2の上部クラッド層と
     を備え、
     前記導波路構造が、回折格子を備え、
     それぞれの前記導波路構造において、前記第1の下部クラッド層と、前記活性層と、前記第1の上部クラッド層それぞれの厚さが異なり、
     前記回折格子の結合係数が略同等である
     ことを特徴とする半導体光デバイス。
    a plurality of waveguide structures over a second lower cladding layer on the same substrate;
    The waveguide structure, in turn,
    a first lower cladding layer;
    an active layer;
    a first upper cladding layer;
    a second upper cladding layer;
    the waveguide structure comprises a diffraction grating,
    In each of the waveguide structures, the thicknesses of the first lower clad layer, the active layer, and the first upper clad layer are different,
    A semiconductor optical device, wherein the coupling coefficients of the diffraction gratings are substantially the same.
  2.  前記回折格子が、前記第1の上部クラッド層の前記第2の上部クラッド層側の面における導波方向に周期的な凹凸構造である
     ことを特徴とする請求項1に記載の半導体光デバイス。
    2. The semiconductor optical device according to claim 1, wherein the diffraction grating is a concave-convex structure that is periodic in the waveguide direction on the surface of the first upper clad layer on the side of the second upper clad layer.
  3.  前記回折格子が、前記第1の上部クラッド層と、前記第2の上部クラッド層との間に、導波方向に周期的に配置される構造体を備える
     ことを特徴とする請求項1に記載の半導体光デバイス。
    2. The diffraction grating according to claim 1, wherein the diffraction grating comprises structures arranged periodically in the waveguide direction between the first upper clad layer and the second upper clad layer. semiconductor optical devices.
  4.  前記回折格子が、前記第1の下部クラッド層と、前記活性層と、前記第1の上部クラッド層と、前記第2の上部クラッド層との側面の一部における導波方向に周期的な凹凸構造である
     ことを特徴とする請求項1に記載の半導体光デバイス。
    The diffraction grating has periodic irregularities in the waveguide direction on part of side surfaces of the first lower clad layer, the active layer, the first upper clad layer, and the second upper clad layer. 2. The semiconductor optical device of claim 1, wherein the structure is a structure.
  5.  それぞれの前記導波路構造において、前記回折格子のデューティ比が異なる
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の半導体光デバイス。
    5. The semiconductor optical device according to claim 1, wherein the diffraction grating has a different duty ratio in each waveguide structure.
  6.  前記第1の上部クラッド層と前記第2の上部クラッド層とのいずれかの幅が、第1の幅と第2の幅とからなる所定の周期で導波方向に変化し、
     それぞれの前記導波路構造において、前記第1の幅が同等であり、前記第2の幅が異なる
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の半導体光デバイス。
    the width of either the first upper cladding layer or the second upper cladding layer changes in the waveguide direction at a predetermined period consisting of a first width and a second width;
    4. The semiconductor optical device according to any one of claims 1 to 3, wherein the first widths are the same and the second widths are different in each of the waveguide structures.
  7.  前記第2の下部クラッド層における前記活性層の下方と、前記第2の上部クラッド層における前記活性層の上方との少なくともいずれか一方にコアを備える
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の半導体光デバイス。
    7. A core is provided in at least one of the second lower cladding layer below the active layer and the second upper cladding layer above the active layer. The semiconductor optical device according to any one of Claims 1 to 3.
  8.  同一基板上の第2の下部クラッド層の上に、半導体層を結晶成長させる工程と、
     前記半導体層に、複数のマスクと複数の開口部とを有する選択成長用マスク層を形成する工程と、
     前記開口部に、第1の下部クラッド層と活性層と第1の上部クラッド層とを有する選択成長層を結晶成長する工程と、
     前記選択成長層をメサ構造に加工する工程と、
     前記メサ構造の側方に電流注入層を形成する工程と、
     前記第1の上部クラッド層の上面に回折格子を形成する工程と、
     前記回折格子を有する前記第1の上部クラッド層の上面に第2のクラッド層を形成する工程と
     を備え、
     前記選択成長用マスク層において、前記マスクの面積と前記開口部の面積との少なくともいずれかが変化し、
     前記複数の開口部に結晶成長される前記第1の上部クラッド層の上面に形成される回折格子それぞれの結合係数が略同等である
     ことを特徴とする半導体光デバイスの製造方法。
     
     
    crystal-growing a semiconductor layer on the second lower clad layer on the same substrate;
    forming a selective growth mask layer having a plurality of masks and a plurality of openings on the semiconductor layer;
    crystal-growing a selective growth layer having a first lower clad layer, an active layer and a first upper clad layer in the opening;
    processing the selectively grown layer into a mesa structure;
    forming a current injection layer on the side of the mesa structure;
    forming a diffraction grating on the top surface of the first upper cladding layer;
    forming a second clad layer on the upper surface of the first upper clad layer having the diffraction grating;
    In the selective growth mask layer, at least one of the area of the mask and the area of the opening changes,
    A method of manufacturing a semiconductor optical device, wherein coupling coefficients of diffraction gratings formed on the upper surface of the first upper clad layer crystal-grown in the plurality of openings are substantially equal to each other.

PCT/JP2021/028920 2021-08-04 2021-08-04 Semiconductor optical device and method for producing same WO2023012925A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/028920 WO2023012925A1 (en) 2021-08-04 2021-08-04 Semiconductor optical device and method for producing same
JP2023539443A JPWO2023012925A1 (en) 2021-08-04 2021-08-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028920 WO2023012925A1 (en) 2021-08-04 2021-08-04 Semiconductor optical device and method for producing same

Publications (1)

Publication Number Publication Date
WO2023012925A1 true WO2023012925A1 (en) 2023-02-09

Family

ID=85154342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028920 WO2023012925A1 (en) 2021-08-04 2021-08-04 Semiconductor optical device and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2023012925A1 (en)
WO (1) WO2023012925A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189522A (en) * 1999-12-28 2001-07-10 Nec Corp Optical semiconductor device and its manufacturing method
WO2009055894A1 (en) * 2007-10-31 2009-05-07 Onechip Photonics Inc. Enhanced efficiency laterally-coupled distributed feedback laser
JP2012191030A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Method for manufacturing distribution feedback type semiconductor laser
WO2021144949A1 (en) * 2020-01-17 2021-07-22 日本電信電話株式会社 Method of manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189522A (en) * 1999-12-28 2001-07-10 Nec Corp Optical semiconductor device and its manufacturing method
WO2009055894A1 (en) * 2007-10-31 2009-05-07 Onechip Photonics Inc. Enhanced efficiency laterally-coupled distributed feedback laser
JP2012191030A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Method for manufacturing distribution feedback type semiconductor laser
WO2021144949A1 (en) * 2020-01-17 2021-07-22 日本電信電話株式会社 Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPWO2023012925A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US4318058A (en) Semiconductor diode laser array
US7941024B2 (en) Buried heterostructure device having integrated waveguide grating fabricated by single step MOCVD
WO2011096040A1 (en) Semiconductor laser element, method of manufacturing semiconductor laser element, and optical module
JP2000312054A (en) Semiconductor element and manufacture thereof
US20200335940A1 (en) High-order bragg grating single-mode laser array
US20010041379A1 (en) Fabricating method of optical semiconductor device
WO2011121678A1 (en) Semiconductor laser array and method for manufacturing semiconductor laser array
JP4006729B2 (en) Semiconductor light-emitting device using self-assembled quantum dots
US12027818B2 (en) Semiconductor laser
JP5149146B2 (en) Optical semiconductor device and integrated device
US20230021415A1 (en) Manufacturing Method for Semiconductor Device
US6552358B2 (en) High power single mode laser and method of fabrication
WO2023012925A1 (en) Semiconductor optical device and method for producing same
US20050185909A1 (en) Buried heterostructure device fabricated by single step MOCVD
Sakamoto et al. Multiple-wavelength membrane BH-DFB laser arrays
JPH06152059A (en) Semiconductor optical integrated element
WO2020139197A1 (en) Improvements in or relating to a distributed feedback laser device for photonics integrated circuit and a method of manufacture
JP2007165599A (en) Semiconductor light emitting element, and manufacturing method thereof
EP3407122A1 (en) Method for manufacturing an electro-absorption modulator
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JP2022015037A (en) Semiconductor optical element
JP2022015036A (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JP2947702B2 (en) Tunable laser device and manufacturing method thereof
JPH02252284A (en) Semiconductor laser array and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539443

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21952752

Country of ref document: EP

Kind code of ref document: A1