JP2012191030A - Method for manufacturing distribution feedback type semiconductor laser - Google Patents

Method for manufacturing distribution feedback type semiconductor laser Download PDF

Info

Publication number
JP2012191030A
JP2012191030A JP2011053893A JP2011053893A JP2012191030A JP 2012191030 A JP2012191030 A JP 2012191030A JP 2011053893 A JP2011053893 A JP 2011053893A JP 2011053893 A JP2011053893 A JP 2011053893A JP 2012191030 A JP2012191030 A JP 2012191030A
Authority
JP
Japan
Prior art keywords
diffraction grating
ridge
diffraction
resist
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011053893A
Other languages
Japanese (ja)
Other versions
JP5589908B2 (en
Inventor
Naomiki Nakamura
直幹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011053893A priority Critical patent/JP5589908B2/en
Publication of JP2012191030A publication Critical patent/JP2012191030A/en
Application granted granted Critical
Publication of JP5589908B2 publication Critical patent/JP5589908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a distribution feedback type semiconductor laser having a sufficient characteristic by simple technique and process.SOLUTION: Diffraction grating patterns 7a, 7b are exposed to a resist 6 and developed. A diffraction grating layer 5 is etched using the developed resist 6 as a mask, to form diffraction lattices 8a, 8b corresponding to the diffraction grating patterns 7a, 7b. A p-type InP embedded layer 10 is formed on the diffraction lattices 8a, 8b. The p-type InP embedded layer 10 and the diffraction lattices 8a, 8b are etched to form a ridge 11. In a direction perpendicular to a resonator, the diffraction grating pattern 7a is longer than the diffraction grating pattern 7b. Then length of the diffraction lattices 8a, 8b in the ridge 11 perpendicular to the resonator is identical to a width of the ridge 11. In a direction along the resonator, a width of the diffraction lattice 8a in the ridge 11 is narrower than a width of the diffraction lattice 8b in the ridge 11.

Description

本発明は、光通信分野などに用いられる分布帰還型半導体レーザの製造方法に関する。   The present invention relates to a method of manufacturing a distributed feedback semiconductor laser used in the field of optical communications.

分布帰還型半導体レーザの共振器に沿った方向の光結合定数を変化させる方法として、活性層の容積を変化させる方法、活性層と回折格子との距離を変化させる方法、回折格子を構成する高屈折率材料と低屈折率材料の一周期内での比率(デューティ)を変化させる方法などが提案されている。   As a method of changing the optical coupling constant in the direction along the resonator of the distributed feedback semiconductor laser, a method of changing the volume of the active layer, a method of changing the distance between the active layer and the diffraction grating, A method of changing a ratio (duty) within one cycle of a refractive index material and a low refractive index material has been proposed.

活性層の容積を変化させる方法では、活性層成長時に選択マスクによる選択成長法を用いる。活性層の容積は、選択マスクの形状に応じて変化する。活性層の容積が変化すると、共振器内を導波する光の等価屈折率が変化するため、光結合定数も変化する。しかし、選択結晶成長法の確立など、技術的な難易度が高く、またプロセスが複雑である。   In the method of changing the volume of the active layer, a selective growth method using a selection mask is used during active layer growth. The volume of the active layer varies depending on the shape of the selection mask. When the volume of the active layer changes, the equivalent refractive index of the light guided in the resonator changes, so that the optical coupling constant also changes. However, technical difficulty such as establishment of a selective crystal growth method is high, and the process is complicated.

活性層と回折格子との距離を変化させることにより、導波路を導波する光の分布が回折格子に結合する割合が変わり、光結合定数も変化する。そこで、光結合定数を大きくしたい箇所では回折格子と活性層の距離を近くし、光結合定数を小さくしたい箇所では回折格子と活性層の距離を遠ざける。しかし、この方法もプロセスが複雑である。   By changing the distance between the active layer and the diffraction grating, the ratio of the distribution of light guided through the waveguide to the diffraction grating changes, and the optical coupling constant also changes. In view of this, the distance between the diffraction grating and the active layer is made closer to the part where the optical coupling constant is desired to be increased, and the distance between the diffraction grating and the active layer is made closer to the part where the optical coupling constant is desired to be made smaller. However, this method is also complicated in process.

回折格子のデューティを変化させる方法では、まずデューティが一定の回折格子を形成し、回折格子のデューティを変えたい箇所以外をレジストなどにより保護する。その後、曝された回折格子を追加エッチングする。これにより、回折格子のデューティを変化させることができる。保護された回折格子と追加エッチングされた回折格子ではデューティが異なるため、光結合定数も変化する。本手法も追加エッチングなどプロセスが複雑である。   In the method of changing the duty of the diffraction grating, a diffraction grating having a constant duty is first formed, and a part other than the part where the duty of the diffraction grating is to be changed is protected with a resist or the like. Thereafter, the exposed diffraction grating is additionally etched. Thereby, the duty of the diffraction grating can be changed. Since the duty is different between the protected diffraction grating and the additionally etched diffraction grating, the optical coupling constant also changes. This method is also complicated in process such as additional etching.

また、リッジ上で共振器に対して垂直な方向の回折格子の長さを変化させることで、光結合定数を変化させた半導体レーザが提案されている(例えば、特許文献1参照)。   Further, there has been proposed a semiconductor laser in which the optical coupling constant is changed by changing the length of the diffraction grating in the direction perpendicular to the resonator on the ridge (see, for example, Patent Document 1).

特開平10−270789号公報Japanese Patent Laid-Open No. 10-270789

ブラッグ反射に必要な屈折率差を得るために、回折格子とその周りの半導体層は、バンドギャップの異なる材料により構成される。この材料のバンドギャップ差によって回折格子に正孔(ホール)がトラップされやすくなる。従って、活性層を導波する光が活性層外に染み出して回折格子のホールを価電子帯間で励起する価電子帯間吸収が生じる。この価電子帯間吸収によるレーザ光の損失は大きいため、回折格子の体積は小さい方がよい。しかし、特許文献1ではリッジ上で回折格子の長さを変化させるため、回折格子の体積が大きくなり、特性が悪化する可能性がある。   In order to obtain a refractive index difference necessary for Bragg reflection, the diffraction grating and the surrounding semiconductor layer are made of materials having different band gaps. Holes are easily trapped in the diffraction grating due to the band gap difference of this material. Therefore, the light guided through the active layer oozes out of the active layer, causing absorption between valence bands that excites holes of the diffraction grating between valence bands. Since the loss of laser light due to this valence band absorption is large, the volume of the diffraction grating is preferably small. However, in Patent Document 1, since the length of the diffraction grating is changed on the ridge, there is a possibility that the volume of the diffraction grating increases and the characteristics deteriorate.

本発明は、上述のような課題を解決するためになされたもので、その目的は、簡単な技術及びプロセスにより良好な特性を持つ分布帰還型半導体レーザを製造することができる方法を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a method capable of manufacturing a distributed feedback semiconductor laser having good characteristics by a simple technique and process. is there.

本発明に係る分布帰還型半導体レーザの製造方法は、半導体基板上に第1の半導体層、回折格子層、及びレジストを順に形成する工程と、第1及び第2の回折格子パターンを前記レジストに露光し、前記レジストを現像する工程と、現像した前記レジストをマスクとして用いて前記回折格子層をエッチングして、前記第1及び第2の回折格子パターンにそれぞれ対応する第1及び第2の回折格子を形成する工程と、前記第1及び第2の回折格子上に第2の半導体層を形成する工程と、前記第2の半導体層と前記第1及び第2の回折格子をエッチングしてリッジを形成する工程とを備え、共振器に対して垂直な方向において、前記第1の回折格子パターンは前記第2の回折格子パターンよりも長く、前記リッジ内の前記第1及び第2の回折格子の前記共振器に対して垂直な方向の長さは、前記リッジの幅と同じであり、前記共振器に沿った方向において、前記リッジ内の前記第1の回折格子の幅は、前記リッジ内の前記第2の回折格子の幅よりも狭いことを特徴とする。   The method of manufacturing a distributed feedback semiconductor laser according to the present invention includes a step of sequentially forming a first semiconductor layer, a diffraction grating layer, and a resist on a semiconductor substrate, and the first and second diffraction grating patterns on the resist. Exposing and developing the resist, and etching the diffraction grating layer using the developed resist as a mask, so that the first and second diffraction patterns respectively corresponding to the first and second diffraction grating patterns Forming a grating; forming a second semiconductor layer on the first and second diffraction gratings; and etching the second semiconductor layer and the first and second diffraction gratings to form a ridge The first diffraction grating pattern is longer than the second diffraction grating pattern in a direction perpendicular to the resonator, and the first and second diffraction gratings in the ridge The length in the direction perpendicular to the resonator is the same as the width of the ridge, and in the direction along the resonator, the width of the first diffraction grating in the ridge is It is narrower than the width of the second diffraction grating.

本発明により、簡単な技術及びプロセスにより良好な特性を持つ分布帰還型半導体レーザを製造することができる。   According to the present invention, a distributed feedback semiconductor laser having good characteristics can be manufactured by a simple technique and process.

本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回折格子パターンの一部を示す図である。It is a figure which shows a part of diffraction grating pattern which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。It is a top view for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 1 of this invention. 現像後のレジストの残し幅を示す図(上側)と現像後のレジストを示す上面図(下側)である。FIG. 5 is a diagram (upper side) showing a remaining width of a resist after development, and a top view (lower side) showing the resist after development. レジストに描画した回折格子パターンのデューティを示す図である。It is a figure which shows the duty of the diffraction grating pattern drawn on the resist. 光結合係数と回折格子の残し幅の関係を示す図である。It is a figure which shows the relationship between an optical coupling coefficient and the remaining width of a diffraction grating. 本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法の変形例1を説明するための上面図である。It is a top view for demonstrating the modification 1 of the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。It is a top view for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る分布帰還型半導体レーザの製造方法の変形例を説明するための上面図である。It is a top view for demonstrating the modification of the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。It is a top view for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。It is a top view for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る分布帰還型半導体レーザの製造方法の変形例を説明するための上面図である。It is a top view for demonstrating the modification of the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。It is a top view for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る分布帰還型半導体レーザの製造方法の変形例を説明するための上面図である。It is a top view for demonstrating the modification of the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。It is a top view for demonstrating the manufacturing method of the distributed feedback semiconductor laser which concerns on Embodiment 6 of this invention.

本発明の実施の形態に係る分布帰還型半導体レーザの製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A method of manufacturing a distributed feedback semiconductor laser according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.

実施の形態1.
本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法について図面を参照して説明する。図1,3,5,6は本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法を説明するための断面図であり、図4は上面図である。図2は、本発明の実施の形態1に係る回折格子パターンの一部を示す図である。
Embodiment 1 FIG.
A method of manufacturing the distributed feedback semiconductor laser according to the first embodiment of the present invention will be described with reference to the drawings. 1, 3, 5 and 6 are cross-sectional views for explaining the method of manufacturing the distributed feedback semiconductor laser according to the first embodiment of the present invention, and FIG. 4 is a top view. FIG. 2 is a diagram showing a part of the diffraction grating pattern according to Embodiment 1 of the present invention.

まず、図1に示すように、n型InP基板1上に、n型InPクラッド層2、活性層3、p型InPクラッド層4、及びp型InGaAsP回折格子層5を順にエピタキシャル成長させる。p型InGaAsP回折格子層5上にレジスト6を形成する。活性層3は、MQW(Multiple Quantum Well)構造とSCH(Separated Confinement Heterostructure)構造を持つ。レジスト6は、電子線感光型のポジ型レジストである。   First, as shown in FIG. 1, an n-type InP clad layer 2, an active layer 3, a p-type InP clad layer 4, and a p-type InGaAsP diffraction grating layer 5 are epitaxially grown on an n-type InP substrate 1 in this order. A resist 6 is formed on the p-type InGaAsP diffraction grating layer 5. The active layer 3 has an MQW (Multiple Quantum Well) structure and an SCH (Separated Confinement Heterostructure) structure. The resist 6 is an electron beam photosensitive positive resist.

次に、CAD(Computer Aided Design)で作成した図2に示す長方形の回折格子パターン7a,7bをEB(Electron Beam)露光装置によりレジスト6に露光し、レジスト6を現像する。共振器に対して垂直な方向において、回折格子パターン7aは回折格子パターン7bよりも長い。共振器に沿った方向において、回折格子パターン7aと回折格子パターン7bは同じ幅を持つ。   Next, the rectangular diffraction grating patterns 7a and 7b shown in FIG. 2 created by CAD (Computer Aided Design) are exposed to the resist 6 by an EB (Electron Beam) exposure apparatus, and the resist 6 is developed. In a direction perpendicular to the resonator, the diffraction grating pattern 7a is longer than the diffraction grating pattern 7b. In the direction along the resonator, the diffraction grating pattern 7a and the diffraction grating pattern 7b have the same width.

次に、図3及び図4に示すように、現像したレジスト6をマスクとして用いてp型InGaAsP回折格子層5をエッチングして、回折格子パターン7a,7bにそれぞれ対応する回折格子8a,8bを形成する。その後、レジスト6を除去する。なお、回折格子8a,8bの断面形状は、矩形に限らず、三角形や台形などでもよい。回折格子8a,8bの中央付近は、後にリッジとなる領域9に配置されている。   Next, as shown in FIGS. 3 and 4, the developed resist 6 is used as a mask to etch the p-type InGaAsP diffraction grating layer 5 so that the diffraction gratings 8a and 8b respectively corresponding to the diffraction grating patterns 7a and 7b are obtained. Form. Thereafter, the resist 6 is removed. The cross-sectional shape of the diffraction gratings 8a and 8b is not limited to a rectangle, but may be a triangle or a trapezoid. The vicinity of the center of the diffraction gratings 8a and 8b is disposed in a region 9 to be a ridge later.

次に、図5に示すように、回折格子8a,8b上にp型InP埋め込み層10を形成する。この際に、回折格子8a,8bの隙間をp型InP埋め込み層10で埋め込む。   Next, as shown in FIG. 5, a p-type InP buried layer 10 is formed on the diffraction gratings 8a and 8b. At this time, the gap between the diffraction gratings 8 a and 8 b is buried with the p-type InP buried layer 10.

次に、図6に示すように、p型InP埋め込み層10、回折格子8a,8b、p型InPクラッド層4、活性層3、n型InPクラッド層2をエッチングして、光導波路となるリッジ11を形成する。この際に、リッジ11内の回折格子8a,8bのみ残し、それ以外の回折格子8a,8bを除去する。この結果、リッジ11内の回折格子8a,8bの共振器に対して垂直な方向の長さは、リッジ11の幅と同じになる。次に、リッジ11の両側を電流ブロック層12で埋め込む。リッジ11及び電流ブロック層12上にコンタクト層13を形成する。その後、電極の形成や劈開などを行うことで、半導体レーザが製造される。   Next, as shown in FIG. 6, the p-type InP buried layer 10, the diffraction gratings 8a and 8b, the p-type InP cladding layer 4, the active layer 3, and the n-type InP cladding layer 2 are etched to form a ridge that becomes an optical waveguide. 11 is formed. At this time, only the diffraction gratings 8a and 8b in the ridge 11 are left, and the other diffraction gratings 8a and 8b are removed. As a result, the length of the diffraction gratings 8 a and 8 b in the ridge 11 in the direction perpendicular to the resonator is the same as the width of the ridge 11. Next, both sides of the ridge 11 are embedded with the current blocking layer 12. A contact layer 13 is formed on the ridge 11 and the current blocking layer 12. Thereafter, a semiconductor laser is manufactured by forming an electrode or cleaving it.

図7は、現像後のレジストの残し幅を示す図(上側)と現像後のレジストを示す上面図(下側)である。EB露光装置などの露光装置を用いて微細パターンを転写する場合、CADで作成した回折格子パターンとは異なるパターンがレジスト6上に転写される(パターン効果)。特に光通信用の長波長分布帰還型半導体レーザでは、200nm〜250nmの間隔で回折格子パターンが配置されており、隣接パターン形状によるパターン効果が顕著に現れる。   FIG. 7 is a diagram (upper side) showing the remaining width of the resist after development, and a top view (lower side) showing the resist after development. When a fine pattern is transferred using an exposure apparatus such as an EB exposure apparatus, a pattern different from the diffraction grating pattern created by CAD is transferred onto the resist 6 (pattern effect). In particular, in a long wavelength distributed feedback semiconductor laser for optical communication, diffraction grating patterns are arranged at intervals of 200 nm to 250 nm, and the pattern effect due to the adjacent pattern shape appears remarkably.

描画開始点と描画終点よりも外側には回折格子パターン7a,7bが存在しない。従って、描画開始点と描画終点では、回折格子パターンが疎であるため、レジスト6に与えられる積算電子ビームのエネルギーが小さくなり、露光量が不足する。一方、中央付近では、回折格子パターン7a,7bが前後左右に存在して密であるため、レジスト6に与えられる積算電子ビームのエネルギーが大きくなり、露光量が十分になる。この結果、CADで作成した回折格子パターン7a,7bは長方形であるが、描画開始点と描画終点ではレジスト6の残し幅が広くなり、中央付近ではレジスト6の残し幅が狭くなる。   The diffraction grating patterns 7a and 7b do not exist outside the drawing start point and the drawing end point. Therefore, since the diffraction grating pattern is sparse at the drawing start point and the drawing end point, the energy of the integrated electron beam given to the resist 6 becomes small and the exposure amount is insufficient. On the other hand, in the vicinity of the center, the diffraction grating patterns 7a and 7b are present in the front, back, left and right, and are dense, so that the energy of the accumulated electron beam applied to the resist 6 increases, and the exposure amount becomes sufficient. As a result, the diffraction grating patterns 7a and 7b created by CAD are rectangular, but the remaining width of the resist 6 is wide at the drawing start point and the drawing end point, and the remaining width of the resist 6 is narrow near the center.

また、長い回折格子パターン7aでは、中央付近での回折格子パターンが密となる領域が広く、露光量が十分になる。このため、回折格子パターン7aの中央付近では、現像後に残るレジスト6の残し幅が細くなり、その間隔が広くなる。一方、短い回折格子パターン7bでは、中央付近での回折格子パターンが密となる領域が狭く、露光量が不足する。このため、回折格子パターン7bの中央付近では、現像後に残るレジスト6の残し幅が広くなり、その間隔が狭くなる。   Further, in the long diffraction grating pattern 7a, a region where the diffraction grating pattern near the center is dense is wide, and the exposure amount is sufficient. For this reason, in the vicinity of the center of the diffraction grating pattern 7a, the remaining width of the resist 6 remaining after development is narrowed, and the interval is widened. On the other hand, in the short diffraction grating pattern 7b, the region where the diffraction grating pattern near the center is dense is narrow and the exposure amount is insufficient. For this reason, in the vicinity of the center of the diffraction grating pattern 7b, the remaining width of the resist 6 remaining after development is widened, and the interval is narrowed.

この結果、EB露光時のDOSE量を一定にしても、現像後に残るレジスト6の残し幅を1つのチップ内で変化させることができる。従って、回折格子の残し幅を1つのチップ内で変化させることができる。本実施の形態では、共振器に沿った方向において、リッジ11内の回折格子8aの幅は、リッジ11内の回折格子8bの幅よりも狭くなる。   As a result, even if the amount of DOSE during EB exposure is constant, the remaining width of the resist 6 remaining after development can be changed within one chip. Therefore, the remaining width of the diffraction grating can be changed within one chip. In the present embodiment, the width of the diffraction grating 8 a in the ridge 11 is narrower than the width of the diffraction grating 8 b in the ridge 11 in the direction along the resonator.

図8は、レジストに描画した回折格子パターンのデューティを示す図である。EB露光装置により周期200nmの回折格子パターンを距離10um描画させた。レジストはポジ型を使用した。デューティは、回折格子の間隔に対するレジスト残し幅である。描画開始点と終点ではデューティが広くなり、中央はデューティが狭くなる。実験の結果、中央と端でデューティは20〜30%程度変化することが分かった。ただし、この変化量はレジストの感度や使用装置などに依存する。   FIG. 8 is a diagram showing the duty of the diffraction grating pattern drawn on the resist. A diffraction grating pattern with a period of 200 nm was drawn by a distance of 10 μm by an EB exposure apparatus. A positive resist was used. The duty is a resist remaining width with respect to the interval of the diffraction grating. The duty is wide at the drawing start point and the end point, and the duty is narrow at the center. As a result of the experiment, it has been found that the duty changes about 20 to 30% between the center and the end. However, this amount of change depends on the sensitivity of the resist and the device used.

ここで、分布帰還型半導体レーザの特性を決定付けるパラメータの1つに光結合定数がある。光結合定数は、活性層3と回折格子8a,8bとの間の距離に依存するほか、回折格子8a,8bの残し幅にも依存する。   Here, one of the parameters determining the characteristics of the distributed feedback semiconductor laser is an optical coupling constant. The optical coupling constant depends not only on the distance between the active layer 3 and the diffraction gratings 8a and 8b but also on the remaining width of the diffraction gratings 8a and 8b.

図9は、光結合係数と回折格子の残し幅の関係を示す図である。このデータは計算により算出したものである(参照:Dr. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters, Wiley; 2nd revised edition)。縦軸は光結合定数κに共振器長LをかけたκLである。例えば、回折格子の断面が完全な矩形であるとして、回折格子の残し幅がピッチの半分であるデューティ50%となったとき、最大の光結合定数を得ることができる。デューティが50%からずれると、光結合定数は小さくなる。光結合定数は回折格子による屈折率の変動量に依存するため、デューティが50%からずれると、回折格子による屈折率の変動量が実質的に小さくなり、光結合定数は小さくなる。   FIG. 9 is a diagram showing the relationship between the optical coupling coefficient and the remaining width of the diffraction grating. This data was calculated (see Dr. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters, Wiley; 2nd revised edition). The vertical axis represents κL obtained by multiplying the optical coupling constant κ by the resonator length L. For example, assuming that the cross section of the diffraction grating is a perfect rectangle, the maximum optical coupling constant can be obtained when the remaining width of the diffraction grating becomes a duty of 50%, which is half the pitch. When the duty deviates from 50%, the optical coupling constant decreases. Since the optical coupling constant depends on the amount of change in the refractive index due to the diffraction grating, when the duty is shifted from 50%, the amount of fluctuation in the refractive index due to the diffraction grating is substantially reduced, and the optical coupling constant is reduced.

回折格子パターンの中央のデューティを50%とするのか、端のデューティを50%とするのかは、DOSE量により設定できる。前者の場合、中央のデューティを50%となるようにDOSEを設定すれば、端に向かうほどデューティが60%、70%と増加する。後者の場合、端のデューティを50%となるようにDOSEを設定すれば、中央に向かうほどデューティが40%、30%と減少する。本実施の形態では前者の場合を用いる。なお、後者の場合であっても、所望の光結合定数を得るための配置パターン配置は変化するものの、1チップ内で共振器に沿った方向の光結合定数を変えることができる。   Whether the center duty of the diffraction grating pattern is set to 50% or the end duty is set to 50% can be set by the DOSE amount. In the former case, if DOSE is set so that the center duty is 50%, the duty increases to 60% and 70% toward the end. In the latter case, if DOSE is set so that the end duty is 50%, the duty decreases to 40% and 30% toward the center. In the present embodiment, the former case is used. Even in the latter case, although the arrangement pattern arrangement for obtaining a desired optical coupling constant changes, the optical coupling constant in the direction along the resonator can be changed within one chip.

また、本実施の形態では、リッジとなる領域9より回折格子8a,8bを広く形成する。そして、リッジ11を形成する際に、リッジ11内の回折格子8a,8bのみ残し、それ以外の回折格子8a,8bを除去する。これにより、回折格子8a,8bの体積を小さくすることができる。従って、価電子帯間吸収を抑制することができるため、半導体レーザは良好な特性を持つ。   In the present embodiment, the diffraction gratings 8a and 8b are formed wider than the region 9 to be a ridge. Then, when forming the ridge 11, only the diffraction gratings 8a and 8b in the ridge 11 are left, and the other diffraction gratings 8a and 8b are removed. Thereby, the volume of the diffraction gratings 8a and 8b can be reduced. Therefore, since absorption between valence bands can be suppressed, the semiconductor laser has good characteristics.

また、回折格子パターン7a,7bの長さの変更はCAD上で容易に行うことができる。そして、EB露光ではDOSE設定は描画時一定であればよい。従って、ウエハプロセス工数が増加することなく、複雑な工程も無いため、簡単な技術及びプロセスにより半導体レーザを製造することができる。   The length of the diffraction grating patterns 7a and 7b can be easily changed on the CAD. In EB exposure, the DOSE setting may be constant at the time of drawing. Accordingly, since the number of wafer process steps is not increased and there are no complicated processes, a semiconductor laser can be manufactured by a simple technique and process.

また、光結合定数が大きいと、回折格子8a,8bに結合する光量が大きくなるため、外部に取り出せる光量が減少し、スロープ効率が低くなる。しかし、誘導放出に必要な共振器内の光量は増すことから閾値は低下する。一方、光結合定数が小さいと、回折格子8a,8bに結合する光量が減少するため、外部に取り出せる光量が増加し、スロープ効率が高くなる。そこで、本実施の形態では、残し幅が狭い回折格子8aを前端面14a側に配置し、残し幅が広い回折格子8bを後端面14b側に配置する。これにより、前端面14a側の光結合定数が小さくなるため、高いスロープ効率を得ることができる。また、後端面14b側の光結合定数が大きくなるため、閾値を低く抑えることができる。なお、回折格子8bの方が回折格子8aよりも光結合定数が小さい場合は、回折格子8bを前端面14a側に配置する。   Also, if the optical coupling constant is large, the amount of light coupled to the diffraction gratings 8a and 8b increases, so the amount of light that can be extracted to the outside decreases and the slope efficiency decreases. However, since the amount of light in the resonator necessary for stimulated emission increases, the threshold value decreases. On the other hand, when the optical coupling constant is small, the amount of light coupled to the diffraction gratings 8a and 8b decreases, so the amount of light that can be extracted to the outside increases and the slope efficiency increases. Therefore, in the present embodiment, the diffraction grating 8a having a narrow remaining width is disposed on the front end face 14a side, and the diffraction grating 8b having a large remaining width is disposed on the rear end face 14b side. Thereby, since the optical coupling constant on the front end face 14a side becomes small, high slope efficiency can be obtained. Further, since the optical coupling constant on the rear end face 14b side is increased, the threshold value can be kept low. When the diffraction grating 8b has a smaller optical coupling constant than the diffraction grating 8a, the diffraction grating 8b is disposed on the front end face 14a side.

図10は、本発明の実施の形態1に係る分布帰還型半導体レーザの製造方法の変形例1を説明するための上面図である。この変形例1では、回折格子パターン7bの長さを段階的に変化させることで、回折格子8bの残し幅を段階的に変化させる。これにより、光結合定数を段階的に変化させることができる。   FIG. 10 is a top view for explaining the first modification of the method for manufacturing the distributed feedback semiconductor laser according to the first embodiment of the present invention. In the first modification, the remaining width of the diffraction grating 8b is changed stepwise by changing the length of the diffraction grating pattern 7b stepwise. Thereby, an optical coupling constant can be changed in steps.

実施の形態2.
図11は、本発明の実施の形態2に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。この半導体レーザは位相シフト領域型分布帰還型半導体レーザである。この図は、回折格子8a,8bを形成した後、リッジ11を形成する前の状態を示している。
Embodiment 2. FIG.
FIG. 11 is a top view for explaining the method for manufacturing the distributed feedback semiconductor laser according to the second embodiment of the present invention. This semiconductor laser is a phase shift region type distributed feedback semiconductor laser. This figure shows a state before the ridge 11 is formed after the diffraction gratings 8a and 8b are formed.

位相シフト領域15では光電界強度が極大となる。このような光電界強度の増大は更なる誘導放出を起こし、電子正孔キャリアの消費が増大し、局所的にキャリアが減少するホールバーニングが生じる。即ち、フリーキャリアプラズマ効果により、局所的な屈折率の変化が位相シフト領域15で生じる。このような共振器に沿った方向における局所的な屈折率変化は、導波するモードを不安定にし、モードホップなど通信用レーザとして望ましくない現象を引き起こす。   In the phase shift region 15, the optical electric field intensity becomes maximum. Such an increase in the optical electric field intensity causes further stimulated emission, increasing the consumption of electron-hole carriers and causing hole burning in which carriers are locally reduced. That is, a local refractive index change occurs in the phase shift region 15 due to the free carrier plasma effect. Such a local refractive index change in the direction along the resonator makes the guided mode unstable and causes a phenomenon undesirable as a communication laser such as a mode hop.

そこで、本実施の形態では、長い回折格子パターン7aを位相シフト領域15に配置することで、残し幅が狭い回折格子8aを位相シフト領域15に形成する。これにより、位相シフト領域15において光結合定数を小さくすることができる。従って、位相シフト領域15での光電界強度の増大が抑制され、ホールバーニングが抑制され、屈折率の局所的な変化も抑制される。この結果、安定した発振が可能となる。なお、回折格子8bの方が回折格子8aよりも光結合定数が小さい場合は、回折格子8bを位相シフト領域15に配置する。   Therefore, in the present embodiment, a long diffraction grating pattern 7 a is arranged in the phase shift region 15, thereby forming a diffraction grating 8 a having a narrow remaining width in the phase shift region 15. Thereby, the optical coupling constant can be reduced in the phase shift region 15. Therefore, an increase in the optical electric field intensity in the phase shift region 15 is suppressed, hole burning is suppressed, and a local change in refractive index is also suppressed. As a result, stable oscillation is possible. When the diffraction grating 8b has a smaller optical coupling constant than the diffraction grating 8a, the diffraction grating 8b is disposed in the phase shift region 15.

図12は、本発明の実施の形態2に係る分布帰還型半導体レーザの製造方法の変形例を説明するための上面図である。この変形例では、回折格子パターン8aの長さを位相シフト領域15で最も長くし、位相シフト領域15から遠ざかるほど段階的に短くする。これにより、最も光電界強度の高い位相シフト領域15において光結合定数を最も小さくし、そこから遠ざかるに従って光結合定数を段階的に増加させることができる。   FIG. 12 is a top view for explaining a modification of the method for manufacturing the distributed feedback semiconductor laser according to the second embodiment of the present invention. In this modification, the length of the diffraction grating pattern 8 a is the longest in the phase shift region 15, and is shortened stepwise as the distance from the phase shift region 15 increases. Thereby, the optical coupling constant can be made the smallest in the phase shift region 15 with the highest optical electric field strength, and the optical coupling constant can be increased stepwise as the distance from the phase coupling region 15 increases.

実施の形態3.
図13は、本発明の実施の形態3に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。この図は、回折格子8a,8bを形成した後、リッジ11を形成する前の状態を示している。後の工程で低反射コート16を前端面14aに設け、に高反射コート17を後端面14b設ける。高反射コート17は、低反射コート16よりも高い反射率を持つ。
Embodiment 3 FIG.
FIG. 13 is a top view for explaining the method for manufacturing the distributed feedback semiconductor laser according to the third embodiment of the present invention. This figure shows a state before the ridge 11 is formed after the diffraction gratings 8a and 8b are formed. In a later step, the low reflection coating 16 is provided on the front end surface 14a, and the high reflection coating 17 is provided on the rear end surface 14b. The high reflection coat 17 has a higher reflectance than the low reflection coat 16.

高反射コート17が設けられた後端面14bでは光電界強度が極大となる。そこで、本実施の形態では、長い回折格子8aを後端面14bの近傍に配置する。これにより、後端面14bの近傍での光結合定数が小さくなり、後端面14bでの光電界強度が緩和されるため、光破壊による劣化を抑制することができる。   On the rear end face 14b provided with the high reflection coating 17, the optical electric field intensity becomes maximum. Therefore, in the present embodiment, the long diffraction grating 8a is disposed in the vicinity of the rear end face 14b. As a result, the optical coupling constant in the vicinity of the rear end surface 14b is reduced, and the optical electric field strength at the rear end surface 14b is relaxed, so that deterioration due to optical breakdown can be suppressed.

なお、回折格子8bの方が回折格子8aよりも光結合定数が小さい場合は、回折格子8bを後端面14bの近傍に配置する。回折格子パターン8aの長さを後端面14bで最も長くし、位相シフト領域15から遠ざかるほど段階的に短くしてもよい。   When the diffraction grating 8b has a smaller optical coupling constant than the diffraction grating 8a, the diffraction grating 8b is disposed in the vicinity of the rear end face 14b. The length of the diffraction grating pattern 8 a may be the longest at the rear end face 14 b and may be shortened stepwise as the distance from the phase shift region 15 increases.

実施の形態4.
図14は、本発明の実施の形態4に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。この図は、回折格子8a,8bを形成した後、リッジ11を形成する前の状態を示している。
Embodiment 4 FIG.
FIG. 14 is a top view for explaining the method for manufacturing the distributed feedback semiconductor laser according to the fourth embodiment of the present invention. This figure shows a state before the ridge 11 is formed after the diffraction gratings 8a and 8b are formed.

共振器に対して垂直な方向において、回折格子パターン7aの中央付近が、リッジとなる領域9に配置されている。回折格子パターン7bは回折格子パターン7aに対してずれて配置され、回折格子パターン7bの端部がリッジとなる領域9に配置されている。回折格子パターン7aと回折格子パターン7bの長さは同じである。   In the direction perpendicular to the resonator, the vicinity of the center of the diffraction grating pattern 7a is disposed in a region 9 serving as a ridge. The diffraction grating pattern 7b is arranged so as to be shifted from the diffraction grating pattern 7a, and the end of the diffraction grating pattern 7b is arranged in a region 9 that becomes a ridge. The lengths of the diffraction grating pattern 7a and the diffraction grating pattern 7b are the same.

上記のように、回折格子パターン7a,7bの端部ではレジスト6の残し幅が広く、中央部ではレジスト6の残し幅は狭くなる。このため、リッジ11内の回折格子8aの幅は、リッジ11内の回折格子8bの幅よりも狭くなる。よって、1チップ内で共振器に沿った方向の光結合定数を変えることができる。   As described above, the remaining width of the resist 6 is wide at the ends of the diffraction grating patterns 7a and 7b, and the remaining width of the resist 6 is narrow at the center. For this reason, the width of the diffraction grating 8 a in the ridge 11 is narrower than the width of the diffraction grating 8 b in the ridge 11. Therefore, the optical coupling constant in the direction along the resonator can be changed within one chip.

また、本実施の形態では、回折格子8a,8bをリッジとなる領域9より広く形成する。そして、リッジ11を形成する際に、リッジ11内の回折格子8a,8bのみ残し、それ以外の回折格子8a,8bを除去する。これにより、回折格子8a,8bの体積を小さくすることができる。従って、価電子帯間吸収を抑制することができるため、半導体レーザは良好な特性を持つ。   In the present embodiment, the diffraction gratings 8a and 8b are formed wider than the region 9 to be a ridge. Then, when forming the ridge 11, only the diffraction gratings 8a and 8b in the ridge 11 are left, and the other diffraction gratings 8a and 8b are removed. Thereby, the volume of the diffraction gratings 8a and 8b can be reduced. Therefore, since absorption between valence bands can be suppressed, the semiconductor laser has good characteristics.

また、回折格子パターン7a,7bの配置をずらすのはCAD上で容易に行うことができる。そして、EB露光ではDOSE設定は描画時一定であればよい。従って、ウエハプロセス工数が増加することなく、複雑な工程も無いため、簡単な技術及びプロセスにより半導体レーザを製造することができる。   Further, it is possible to easily shift the arrangement of the diffraction grating patterns 7a and 7b on the CAD. In EB exposure, the DOSE setting may be constant at the time of drawing. Accordingly, since the number of wafer process steps is not increased and there are no complicated processes, a semiconductor laser can be manufactured by a simple technique and process.

また、残し幅が狭い回折格子8aを前端面14a側に配置し、残し幅が広い回折格子8bを後端面14b側に配置する。これにより、前端面14a側の光結合定数が小さくなるため、高いスロープ効率を得ることができる。また、後端面14b側の光結合定数が大きくなるため、閾値を低く抑えることができる。なお、回折格子8bの方が回折格子8aよりも光結合定数が小さい場合は、回折格子8bを前端面14a側に配置する。   Further, the diffraction grating 8a having a narrow remaining width is disposed on the front end face 14a side, and the diffraction grating 8b having a large remaining width is disposed on the rear end face 14b side. Thereby, since the optical coupling constant on the front end face 14a side becomes small, high slope efficiency can be obtained. Further, since the optical coupling constant on the rear end face 14b side is increased, the threshold value can be kept low. When the diffraction grating 8b has a smaller optical coupling constant than the diffraction grating 8a, the diffraction grating 8b is disposed on the front end face 14a side.

図15は、本発明の実施の形態4に係る分布帰還型半導体レーザの製造方法の変形例を説明するための上面図である。この変形例では、回折格子パターン7bの配置を段階的に変化させることで、回折格子8bの残し幅を段階的に変化させる。これにより、光結合定数を段階的に変化させることができる。   FIG. 15 is a top view for explaining a modification of the method for manufacturing the distributed feedback semiconductor laser according to the fourth embodiment of the present invention. In this modification, the remaining width of the diffraction grating 8b is changed stepwise by changing the arrangement of the diffraction grating pattern 7b stepwise. Thereby, an optical coupling constant can be changed in steps.

実施の形態5.
図16は、本発明の実施の形態5に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。この図は、回折格子8a,8bを形成した後、リッジ11を形成する前の状態を示している。この半導体レーザは位相シフト領域型分布帰還型半導体レーザである。
Embodiment 5 FIG.
FIG. 16 is a top view for explaining the method of manufacturing the distributed feedback semiconductor laser according to the fifth embodiment of the present invention. This figure shows a state before the ridge 11 is formed after the diffraction gratings 8a and 8b are formed. This semiconductor laser is a phase shift region type distributed feedback semiconductor laser.

本実施の形態では、リッジとなる領域9に中央付近が配置された回折格子パターン7aを位相シフト領域15に配置することで、残し幅が狭い回折格子8aの中央付近を位相シフト領域15に形成する。これにより、位相シフト領域15において光結合定数を小さくすることができる。従って、位相シフト領域15での光電界強度の増大が抑制され、ホールバーニングが抑制され、屈折率の局所的な変化も抑制される。この結果、安定した発振が可能となる。なお、回折格子8bの方が回折格子8aよりも光結合定数が小さい場合は、回折格子8bを位相シフト領域15に配置する。   In the present embodiment, the diffraction grating pattern 7a in which the vicinity of the center is disposed in the region 9 serving as the ridge is disposed in the phase shift region 15, so that the vicinity of the center of the diffraction grating 8a having a narrow remaining width is formed in the phase shift region 15. To do. Thereby, the optical coupling constant can be reduced in the phase shift region 15. Therefore, an increase in the optical electric field intensity in the phase shift region 15 is suppressed, hole burning is suppressed, and a local change in refractive index is also suppressed. As a result, stable oscillation is possible. When the diffraction grating 8b has a smaller optical coupling constant than the diffraction grating 8a, the diffraction grating 8b is disposed in the phase shift region 15.

図17は、本発明の実施の形態5に係る分布帰還型半導体レーザの製造方法の変形例を説明するための上面図である。この変形例では、位相シフト領域15において領域9に回折格子パターン7aの中央付近を配置し、位相シフト領域15から遠ざかるにつれて段階的に回折格子パターン7aの配置をずらす。これにより、最も光電界強度の高い位相シフト領域15において光結合定数を最も小さくすることができる。位相シフト領域15から遠ざかるに従って光電界強度が低下し、それに従って光結合定数を段階的に増加させることができる。   FIG. 17 is a top view for explaining a modification of the manufacturing method of the distributed feedback semiconductor laser according to the fifth embodiment of the present invention. In this modification, the vicinity of the center of the diffraction grating pattern 7 a is arranged in the region 9 in the phase shift region 15, and the arrangement of the diffraction grating pattern 7 a is shifted step by step as the distance from the phase shift region 15 increases. Thereby, the optical coupling constant can be minimized in the phase shift region 15 having the highest optical electric field strength. As the distance from the phase shift region 15 increases, the optical electric field strength decreases, and the optical coupling constant can be increased stepwise.

実施の形態6.
図18は、本発明の実施の形態6に係る分布帰還型半導体レーザの製造方法を説明するための上面図である。この図は、回折格子8a,8bを形成した後、リッジ11を形成する前の状態を示している。後の工程で低反射コート16を前端面14aに設け、に高反射コート17を後端面14b設ける。高反射コート17は、低反射コート16よりも高い反射率を持つ。
Embodiment 6 FIG.
FIG. 18 is a top view for explaining the method for manufacturing the distributed feedback semiconductor laser according to the sixth embodiment of the present invention. This figure shows a state before the ridge 11 is formed after the diffraction gratings 8a and 8b are formed. In a later step, the low reflection coating 16 is provided on the front end surface 14a, and the high reflection coating 17 is provided on the rear end surface 14b. The high reflection coat 17 has a higher reflectance than the low reflection coat 16.

高反射コート17が設けられた後端面14bでは光電界強度が極大となる。そこで、本実施の形態では、リッジとなる領域9に中央付近が配置された回折格子8aを後端面14bの近傍に配置する。これにより、後端面14bの近傍での光結合定数が小さくなり、後端面14bでの光電界強度が緩和されるため、光破壊による劣化を抑制することができる。   On the rear end face 14b provided with the high reflection coating 17, the optical electric field intensity becomes maximum. Therefore, in the present embodiment, the diffraction grating 8a in which the vicinity of the center is disposed in the ridge region 9 is disposed in the vicinity of the rear end face 14b. As a result, the optical coupling constant in the vicinity of the rear end surface 14b is reduced, and the optical electric field strength at the rear end surface 14b is relaxed, so that deterioration due to optical breakdown can be suppressed.

なお、回折格子8bの方が回折格子8aよりも光結合定数が小さい場合は、回折格子8bを後端面14bの近傍に配置する。また、後端面14bで領域9に回折格子パターン7aの中央付近を配置し、後端面14bから遠ざかるにつれて段階的に回折格子パターン7aの配置をずらしてもよい。   When the diffraction grating 8b has a smaller optical coupling constant than the diffraction grating 8a, the diffraction grating 8b is disposed in the vicinity of the rear end face 14b. Alternatively, the vicinity of the center of the diffraction grating pattern 7a may be arranged in the region 9 on the rear end face 14b, and the arrangement of the diffraction grating pattern 7a may be gradually shifted as the distance from the rear end face 14b increases.

上記の実施の形態ではポジ型レジストを用いたが、ネガ型レジストを用いても同様の効果を得ることができる。ネガ型レジストを使用した場合は、図7の下図の回折格子パターンの鳥瞰図の抜きパターンと残しパターンが反転する。従って、描画開始点、描画終点では、レジスト残し幅は狭く、中央付近ではレジスト残し幅は広くなる。   Although the positive resist is used in the above embodiment, the same effect can be obtained even if a negative resist is used. When a negative resist is used, the extracted pattern and the remaining pattern in the bird's-eye view of the diffraction grating pattern in the lower diagram of FIG. 7 are reversed. Therefore, the resist remaining width is narrow at the drawing start point and the drawing end point, and the resist remaining width is wide near the center.

また、上記の実施の形態ではEB露光装置を用いたが、これに限らずステッパなど他の露光装置を用いてもよい。特に、ステッパでは1ショットで露光量の変更が不可能であるが、上記の実施の形態により現像後に残るレジスト6の残し幅を変化させることができるため、チップ内において光結合定数を変化させることができる。   In the above embodiment, the EB exposure apparatus is used. However, the present invention is not limited to this, and another exposure apparatus such as a stepper may be used. In particular, the stepper cannot change the exposure amount in one shot, but the remaining width of the resist 6 remaining after development can be changed according to the above embodiment, so that the optical coupling constant can be changed in the chip. Can do.

また、上記の実施の形態では、リッジ11の両側が電流ブロック層12で埋め込まれた埋め込み型分布帰還型半導体レーザを示したが、これに限らずリッジ型の分布帰還型半導体レーザでも同様の効果を得ることができる。また、回折格子8a,8bの位置は活性層3の上側でも下側でもよい。また、回折格子層の屈折率が周囲の材料の屈折率より大きい場合でも小さい場合でも、同様の効果を得ることができる。   In the above embodiment, the embedded distributed feedback semiconductor laser in which both sides of the ridge 11 are embedded with the current blocking layer 12 is shown. However, the present invention is not limited to this, and the same effect can be obtained with a ridge distributed feedback semiconductor laser. Can be obtained. The positions of the diffraction gratings 8a and 8b may be on the upper side or the lower side of the active layer 3. The same effect can be obtained regardless of whether the refractive index of the diffraction grating layer is larger or smaller than the refractive index of the surrounding material.

また、実施の形態1と実施の形態4を複合させて、回折格子パターンの長さを変え、かつ回折格子パターンの配置をずらしてもよい。これにより、共振器に沿った方向の回折格子の幅を変化させることができるため、実施の形態1,4と同等の効果を得ることができる。   Further, the lengths of the diffraction grating patterns may be changed and the arrangement of the diffraction grating patterns may be shifted by combining the first embodiment and the fourth embodiment. Thereby, since the width of the diffraction grating in the direction along the resonator can be changed, the same effect as in the first and fourth embodiments can be obtained.

また、実施形態2,5では単一位相シフト領域構造について説明したが、これに限らずマルチ位相シフト領域型分布帰還型半導体レーザにも同様に本発明を適用することができる。また、位相シフト領域15を中心に対称に回折格子8a,8bを配置してもよいし、光電界強度分布を反映した配置としてもよい。   In the second and fifth embodiments, the single phase shift region structure has been described. However, the present invention is not limited to this, and the present invention can also be applied to a multi-phase shift region type distributed feedback semiconductor laser. Further, the diffraction gratings 8a and 8b may be arranged symmetrically with respect to the phase shift region 15, or may be arranged reflecting the optical electric field intensity distribution.

1 n型InP基板(半導体基板)
2 n型InPクラッド層(第1の半導体層)
3 活性層(第1の半導体層)
4 p型InPクラッド層(第1の半導体層)
5 p型InGaAsP回折格子層(回折格子層)
6 レジスト
7a 回折格子パターン(第1の回折格子パターン)
7b 回折格子パターン(第2の回折格子パターン)
8a 回折格子(第1の回折格子)
8b 回折格子(第2の回折格子)
9 リッジとなる領域
10 p型InP埋め込み層(第2の半導体層)
11 リッジ
14a 前端面
14b 後端面
15 位相シフト領域
17 高反射コート
1 n-type InP substrate (semiconductor substrate)
2 n-type InP cladding layer (first semiconductor layer)
3 Active layer (first semiconductor layer)
4 p-type InP cladding layer (first semiconductor layer)
5 p-type InGaAsP diffraction grating layer (diffraction grating layer)
6 resist 7a diffraction grating pattern (first diffraction grating pattern)
7b Diffraction grating pattern (second diffraction grating pattern)
8a Diffraction grating (first diffraction grating)
8b Diffraction grating (second diffraction grating)
9 Region to be a ridge 10 p-type InP buried layer (second semiconductor layer)
11 Ridge 14a Front end face 14b Rear end face 15 Phase shift area 17 High reflection coating

Claims (5)

半導体基板上に第1の半導体層、回折格子層、及びレジストを順に形成する工程と、
第1及び第2の回折格子パターンを前記レジストに露光し、前記レジストを現像する工程と、
現像した前記レジストをマスクとして用いて前記回折格子層をエッチングして、前記第1及び第2の回折格子パターンにそれぞれ対応する第1及び第2の回折格子を形成する工程と、
前記第1及び第2の回折格子上に第2の半導体層を形成する工程と、
前記第2の半導体層と前記第1及び第2の回折格子をエッチングしてリッジを形成する工程とを備え、
共振器に対して垂直な方向において、前記第1の回折格子パターンは前記第2の回折格子パターンよりも長く、
前記リッジ内の前記第1及び第2の回折格子の前記共振器に対して垂直な方向の長さは、前記リッジの幅と同じであり、
前記共振器に沿った方向において、前記リッジ内の前記第1の回折格子の幅は、前記リッジ内の前記第2の回折格子の幅よりも狭いことを特徴とする分布帰還型半導体レーザの製造方法。
Forming a first semiconductor layer, a diffraction grating layer, and a resist in order on a semiconductor substrate;
Exposing the resist to first and second diffraction grating patterns and developing the resist;
Etching the diffraction grating layer using the developed resist as a mask to form first and second diffraction gratings respectively corresponding to the first and second diffraction grating patterns;
Forming a second semiconductor layer on the first and second diffraction gratings;
Etching the second semiconductor layer and the first and second diffraction gratings to form a ridge,
In a direction perpendicular to the resonator, the first diffraction grating pattern is longer than the second diffraction grating pattern,
The length of the first and second diffraction gratings in the ridge in the direction perpendicular to the resonator is the same as the width of the ridge,
In the direction along the resonator, the width of the first diffraction grating in the ridge is narrower than the width of the second diffraction grating in the ridge. Method.
半導体基板上に第1の半導体層、回折格子層、及びレジストを順に形成する工程と、
第1及び第2の回折格子パターンを前記レジストに露光し、前記レジストを現像する工程と、
現像した前記レジストをマスクとして用いて前記回折格子層をエッチングして、前記第1及び第2の回折格子パターンにそれぞれ対応する第1及び第2の回折格子を形成する工程と、
前記第1及び第2の回折格子上に第2の半導体層を形成する工程と、
前記第2の半導体層と前記第1及び第2の回折格子をエッチングしてリッジを形成する工程とを備え、
共振器に対して垂直な方向において、前記第1の回折格子パターンの中央付近は前記リッジが形成される領域に配置され、前記第2の回折格子パターンは前記第1の回折格子パターンに対してずれて配置され、
前記リッジ内の前記第1及び第2の回折格子の前記共振器に対して垂直な方向の長さは、前記リッジの幅と同じであり、
前記共振器に沿った方向において、前記リッジ内の前記第1の回折格子の幅は、前記リッジ内の前記第2の回折格子の幅よりも狭いことを特徴とする分布帰還型半導体レーザの製造方法。
Forming a first semiconductor layer, a diffraction grating layer, and a resist in order on a semiconductor substrate;
Exposing the resist to first and second diffraction grating patterns and developing the resist;
Etching the diffraction grating layer using the developed resist as a mask to form first and second diffraction gratings respectively corresponding to the first and second diffraction grating patterns;
Forming a second semiconductor layer on the first and second diffraction gratings;
Etching the second semiconductor layer and the first and second diffraction gratings to form a ridge,
In the direction perpendicular to the resonator, the vicinity of the center of the first diffraction grating pattern is disposed in a region where the ridge is formed, and the second diffraction grating pattern is located with respect to the first diffraction grating pattern. Shifted,
The length of the first and second diffraction gratings in the ridge in the direction perpendicular to the resonator is the same as the width of the ridge,
In the direction along the resonator, the width of the first diffraction grating in the ridge is narrower than the width of the second diffraction grating in the ridge. Method.
前記第1の回折格子と前記第2の回折格子のうち光結合定数が小さい方が、前端面側に配置されていることを特徴とする請求項1又は2に記載の分布帰還型半導体レーザの製造方法。   3. The distributed feedback semiconductor laser according to claim 1, wherein one of the first diffraction grating and the second diffraction grating having the smaller optical coupling constant is disposed on the front end face side. 4. Production method. 前記第1の回折格子と前記第2の回折格子のうち光結合定数が小さい方が、位相シフト領域に配置されていることを特徴とする請求項1又は2に記載の分布帰還型半導体レーザの製造方法。   3. The distributed feedback semiconductor laser according to claim 1, wherein one of the first diffraction grating and the second diffraction grating having a smaller optical coupling constant is arranged in a phase shift region. 4. Production method. 低反射コートを前端面に設け、前記低反射コートよりも高い反射率を持つ高反射コートを後端面に設ける工程を更に備え、
前記第1の回折格子と前記第2の回折格子のうち光結合定数が小さい方が、前記後端面の近傍に配置されていることを特徴とする請求項1又は2に記載の分布帰還型半導体レーザの製造方法。
A step of providing a low-reflection coating on the front end surface, and further providing a high-reflection coating having a higher reflectance than the low reflection coating on the rear end surface;
3. The distributed feedback semiconductor according to claim 1, wherein one of the first diffraction grating and the second diffraction grating having the smaller optical coupling constant is disposed in the vicinity of the rear end face. Laser manufacturing method.
JP2011053893A 2011-03-11 2011-03-11 Manufacturing method of distributed feedback semiconductor laser Active JP5589908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011053893A JP5589908B2 (en) 2011-03-11 2011-03-11 Manufacturing method of distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053893A JP5589908B2 (en) 2011-03-11 2011-03-11 Manufacturing method of distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JP2012191030A true JP2012191030A (en) 2012-10-04
JP5589908B2 JP5589908B2 (en) 2014-09-17

Family

ID=47083867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053893A Active JP5589908B2 (en) 2011-03-11 2011-03-11 Manufacturing method of distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP5589908B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135323A (en) * 2013-01-08 2014-07-24 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor optical element
JP2016154203A (en) * 2014-04-25 2016-08-25 住友電工デバイス・イノベーション株式会社 Semiconductor laser element and semiconductor laser element manufacturing method
CN106249333A (en) * 2016-09-21 2016-12-21 安徽大学 A kind of narrow-band band-elimination wave filter
US20180076596A1 (en) 2014-04-25 2018-03-15 Sumitomo Electric Device Innovations, Inc. Semiconductor laser device and manufacturing method of the same
CN111370995A (en) * 2020-03-12 2020-07-03 中国科学院半导体研究所 Surface grating semiconductor laser and manufacturing method thereof
WO2023012925A1 (en) * 2021-08-04 2023-02-09 日本電信電話株式会社 Semiconductor optical device and method for producing same
DE112013007730B4 (en) 2013-12-27 2023-12-28 Intel Corporation Asymmetric optical waveguide grating resonators and DBR lasers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281681A (en) * 1989-04-21 1990-11-19 Mitsubishi Electric Corp Semiconductor laser
JPH03110885A (en) * 1989-09-26 1991-05-10 Nippon Telegr & Teleph Corp <Ntt> Distributed feedback semiconductor laser
EP0645797A1 (en) * 1993-09-27 1995-03-29 Koninklijke Philips Electronics N.V. Electron beam lithography with background exposure in a neighbouring region
JPH08279651A (en) * 1995-04-08 1996-10-22 Nec Corp Semiconductor laser and manufacture thereof
US5802096A (en) * 1995-03-23 1998-09-01 Nec Corporation Distributed feed back laser with a grating structure adjusted for a reduced intermodulation distortion in an analog amplitude modulation and method for fabricating the same
JPH11163457A (en) * 1997-11-26 1999-06-18 Mitsubishi Electric Corp Method of manufacturing diffraction grating for semiconductor laser
JP2001036192A (en) * 1999-07-22 2001-02-09 Nec Corp Distribution feedback type semiconductor laser and manufacture thereof
JP2007110087A (en) * 2005-09-13 2007-04-26 Hitachi High-Technologies Corp Electron beam device and method for creating electron beam irradiation pattern

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281681A (en) * 1989-04-21 1990-11-19 Mitsubishi Electric Corp Semiconductor laser
JPH03110885A (en) * 1989-09-26 1991-05-10 Nippon Telegr & Teleph Corp <Ntt> Distributed feedback semiconductor laser
EP0645797A1 (en) * 1993-09-27 1995-03-29 Koninklijke Philips Electronics N.V. Electron beam lithography with background exposure in a neighbouring region
JPH07176474A (en) * 1993-09-27 1995-07-14 Philips Electron Nv Formation of pattern
US5802096A (en) * 1995-03-23 1998-09-01 Nec Corporation Distributed feed back laser with a grating structure adjusted for a reduced intermodulation distortion in an analog amplitude modulation and method for fabricating the same
JPH08279651A (en) * 1995-04-08 1996-10-22 Nec Corp Semiconductor laser and manufacture thereof
JPH11163457A (en) * 1997-11-26 1999-06-18 Mitsubishi Electric Corp Method of manufacturing diffraction grating for semiconductor laser
JP2001036192A (en) * 1999-07-22 2001-02-09 Nec Corp Distribution feedback type semiconductor laser and manufacture thereof
US6577660B1 (en) * 1999-07-22 2003-06-10 Nec Corporation Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JP2007110087A (en) * 2005-09-13 2007-04-26 Hitachi High-Technologies Corp Electron beam device and method for creating electron beam irradiation pattern

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135323A (en) * 2013-01-08 2014-07-24 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor optical element
DE112013007730B4 (en) 2013-12-27 2023-12-28 Intel Corporation Asymmetric optical waveguide grating resonators and DBR lasers
JP2016154203A (en) * 2014-04-25 2016-08-25 住友電工デバイス・イノベーション株式会社 Semiconductor laser element and semiconductor laser element manufacturing method
US20180076596A1 (en) 2014-04-25 2018-03-15 Sumitomo Electric Device Innovations, Inc. Semiconductor laser device and manufacturing method of the same
US10326257B2 (en) 2014-04-25 2019-06-18 Sumitomo Electric Device Innovations, Inc. Semiconductor laser device and manufacturing method of the same
CN106249333A (en) * 2016-09-21 2016-12-21 安徽大学 A kind of narrow-band band-elimination wave filter
CN106249333B (en) * 2016-09-21 2019-06-21 安徽大学 A kind of narrow-band band-elimination filter
CN111370995A (en) * 2020-03-12 2020-07-03 中国科学院半导体研究所 Surface grating semiconductor laser and manufacturing method thereof
CN111370995B (en) * 2020-03-12 2021-05-18 中国科学院半导体研究所 Surface grating semiconductor laser and manufacturing method thereof
WO2023012925A1 (en) * 2021-08-04 2023-02-09 日本電信電話株式会社 Semiconductor optical device and method for producing same

Also Published As

Publication number Publication date
JP5589908B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5589908B2 (en) Manufacturing method of distributed feedback semiconductor laser
US8477819B2 (en) Semiconductor laser diode device and method of fabrication thereof
JP3983933B2 (en) Semiconductor laser and manufacturing method of semiconductor laser
JP5177285B2 (en) Optical element and manufacturing method thereof
JP2619057B2 (en) Manufacturing method of semiconductor laser
CN107230931B (en) Distributed feedback semiconductor laser chip, preparation method thereof and optical module
JP2016051807A (en) Semiconductor laser
US6301283B1 (en) Distributed feedback semiconductor laser
CN115548873B (en) Photonic crystal laser and preparation method thereof
JP5892534B2 (en) Semiconductor laser element
WO2001078206A1 (en) Flared and tapered rib waveguide semiconductor laser and method for making same
JP2006165309A (en) Semiconductor laser element
JP5929571B2 (en) Semiconductor laser
JPH0582889A (en) Semiconductor laser and its manufacture
JP2005322849A (en) Semiconductor laser and manufacturing method thereof
JP2010045102A (en) Semiconductor laser and method of manufacturing semiconductor laser
JP6588858B2 (en) Semiconductor laser
US9800021B2 (en) Semiconductor laser device and manufacturing method of the same
US10326257B2 (en) Semiconductor laser device and manufacturing method of the same
JP2005116728A (en) Semiconductor laser
JP2010199169A (en) Semiconductor optical element
JP3773880B2 (en) Distributed feedback semiconductor laser
JP3762342B2 (en) Manufacturing method of distributed feedback semiconductor laser
JP2004128372A (en) Distribution feedback semiconductor laser device
JP2009064838A (en) Optical semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250