JPH08279651A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH08279651A
JPH08279651A JP10791995A JP10791995A JPH08279651A JP H08279651 A JPH08279651 A JP H08279651A JP 10791995 A JP10791995 A JP 10791995A JP 10791995 A JP10791995 A JP 10791995A JP H08279651 A JPH08279651 A JP H08279651A
Authority
JP
Japan
Prior art keywords
diffraction grating
semiconductor laser
resonator
surface side
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10791995A
Other languages
Japanese (ja)
Inventor
Tetsuro Okuda
哲朗 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10791995A priority Critical patent/JPH08279651A/en
Priority to US08/621,946 priority patent/US5802096A/en
Publication of JPH08279651A publication Critical patent/JPH08279651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a method of manufacturing a semiconductor laser which is improved in analog modulation distortion characteristics and auxiliary mode suppression ratio and restrained from deteriorating in signal due to noises. CONSTITUTION: A low-reflectivity film 5 and a high-reflectivity film 6 are provided to the rear and front of a device which forms the resonator of a semiconductor laser respectively, and a diffraction grating 7 is formed on all the surface of the resonator and so set as to make its front region 7b larger than its rear region 7a in coupling coefficient. For instance, the diffraction grating 7 is structured in such a manner that its front side is higher than its rear side. As the diffraction grating 7 is formed on all the surface of the resonator, an auxiliary mode by a composite resonator is restrained. The front region 7b of the diffraction grating 7 is set higher in coupling coefficient than the rear region 7a, whereby an electrical field intensity distribution can be set even along the direction of a resonator, and an analog modulation distortion can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザに関し、特
にアナログ変調歪特性に優れる半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser having excellent analog modulation distortion characteristics.

【0002】[0002]

【従来の技術】サブキャリア多重光伝送方式に用いられ
るアナログ変調用光源には、高効率で相互変調歪の小さ
い単一軸モード半導体レーザが要求されている。例えば
移動通信システム用では3次相互変調歪(third
intermodulation distortio
n;IMD3 )が十分に小さい半導体レーザが要求され
ている。また、光CATVシステムでは複合2次歪(c
omposite second order dis
tortion;CSO)、複合3次歪(compos
ite triple beat distortio
n;CTB)がともに低い素子が要求されている。
2. Description of the Related Art A single-axis mode semiconductor laser with high efficiency and small intermodulation distortion is required for an analog modulation light source used in a subcarrier multiplex optical transmission system. For example, for mobile communication systems, third-order intermodulation distortion (third)
intermodulation distortio
n; IMD 3) is sufficiently small semiconductor laser is required. Also, in the optical CATV system, the complex second-order distortion (c
instant second order dis
CSO, complex third-order distortion (compos)
ite triple beat distortion
An element having a low n; CTB) is required.

【0003】分布帰還型半導体レーザ(DFBレーザ)
は発振の単一モード性に優れ、アナログ変調用光源とし
て用いられているが、従来のDFBレーザでは共振器方
向での電界強度分布の不均一性が大きいために電流−光
出力特性の直線性が不十分で、相互変調歪特性もあまり
優れたものではなかった。これは、DFBレーザでは共
振器方向の電界強度分布の不均一性が大きいほど、電流
注入に伴う電界強度分布の変化が大きく、この変化が電
流−光出力(I−L)特性の非直線性の原因となるため
である。したがって、この電界強度分布の変化を小さく
するためには共振器方向の電界強度分布を均一化する必
要がある。
Distributed feedback semiconductor laser (DFB laser)
Has excellent single mode of oscillation and is used as a light source for analog modulation. However, in the conventional DFB laser, the electric field intensity distribution in the cavity direction is largely non-uniform, and therefore the linearity of the current-optical output characteristics is large. Was insufficient, and the intermodulation distortion characteristics were not so excellent. This is because in a DFB laser, the greater the nonuniformity of the electric field intensity distribution in the cavity direction, the greater the change in the electric field intensity distribution due to current injection, and this change is due to the non-linearity of the current-optical output (IL) characteristic. This is because it causes Therefore, in order to reduce the change in the electric field strength distribution, it is necessary to make the electric field strength distribution in the resonator direction uniform.

【0004】このような問題に対してG.Morthi
erらは、例えばIEEE Photonics Te
chnology Letters vol.2 n
o.6(1990)pp.388−390で、端面付近
で結合係数が高くなるように形成したλ/4位相シフト
型DFBレーザを提案している。この構造によれば、共
振器方向の電界強度分布は均一化され、アナログ変調歪
は低減されると記述されている。しかし、DFBレーザ
のアナログ変調歪の要因には電界強度分布の不均一性の
ほかに緩和振動の影響や漏れ電流の影響も存在する。特
に漏れ電流の影響を抑制するためには、できるだけ低い
電流で動作させる必要がある。一方、λ/4位相シフト
レーザでは両端面を低反射率コーティングする構造のた
め、十分な効率が得られない。したがって、アナログ光
伝送に適用する場合、高い駆動電流が必要となり漏れ電
流に起因する変調歪が顕著になるという問題があった。
For such a problem, G. Morthi
er et al., for example, IEEE Photonics Te
chnology Letters vol. 2 n
o. 6 (1990) pp. 388-390 proposes a λ / 4 phase shift type DFB laser formed so that the coupling coefficient becomes high near the end face. According to this structure, it is described that the electric field strength distribution in the resonator direction is made uniform and analog modulation distortion is reduced. However, in addition to the non-uniformity of the electric field strength distribution, factors of analog modulation distortion of the DFB laser include influence of relaxation oscillation and influence of leakage current. In particular, in order to suppress the influence of leakage current, it is necessary to operate with a current as low as possible. On the other hand, since the λ / 4 phase shift laser has a structure in which both end faces are coated with a low reflectance, sufficient efficiency cannot be obtained. Therefore, when applied to analog optical transmission, there is a problem that a high drive current is required and the modulation distortion due to the leakage current becomes remarkable.

【0005】一方、特開昭62−219684号公報お
よび米国特許公報第5111475号では共振器方向の
一部に回折格子を形成する半導体レーザが提案されてい
る。これらはいずれも、前面に低反射膜、後面に高反射
膜を有し、前面から共振器内部に向かって共振器方向の
一部分に回折格子を形成した構造である。
On the other hand, Japanese Patent Laid-Open No. 62-19684 and US Pat. No. 5,111,475 propose a semiconductor laser in which a diffraction grating is formed in a part of the cavity direction. Each of these structures has a low reflection film on the front surface and a high reflection film on the rear surface, and has a structure in which a diffraction grating is formed in a part of the resonator direction from the front surface toward the inside of the resonator.

【0006】前者の構成は、図3に示すように、基板2
1上に光ガイド層22、活性層23、クラッド層24を
形成し、前面に低光反射膜25、後面に高光反射膜26
を形成し、かつ光ガイド層22と基板21との界面に回
折格子(コルゲーション)27Aを形成したものであ
る。素子長300μmで回折格子の高さを300Å程度
とし、回折格子27Aの形成領域長を前面から50〜1
50μmとした構造で、回折格子27の結合係数(κ)
は約30cm-1と記述されている。
The former structure has a substrate 2 as shown in FIG.
1, a light guide layer 22, an active layer 23, and a clad layer 24 are formed, a low light reflection film 25 on the front surface and a high light reflection film 26 on the rear surface.
And a diffraction grating (corrugation) 27A is formed at the interface between the light guide layer 22 and the substrate 21. The element length is 300 μm, the height of the diffraction grating is about 300 Å, and the length of the area where the diffraction grating 27A is formed is 50 to 1 from the front surface.
With a structure of 50 μm, the coupling coefficient (κ) of the diffraction grating 27
Is described as about 30 cm -1 .

【0007】一方、後者の構成は、図4に示すように、
基板21と光ガイド層22との界面に回折格子27Bを
形成したものであり、素子長250μm、回折格子27
Bの形成領域長を175μmとし、回折格子の結合係数
と回折格子を形成する領域長の積を1.6から2.5の
範囲とすると記述されている。なお、図3と等価な部分
には同一符号を付してある。
On the other hand, the latter configuration, as shown in FIG.
A diffraction grating 27B is formed at the interface between the substrate 21 and the light guide layer 22, and the element length is 250 μm and the diffraction grating 27 is formed.
It is described that the formation region length of B is 175 μm, and the product of the coupling coefficient of the diffraction grating and the region length forming the diffraction grating is in the range of 1.6 to 2.5. The same parts as those in FIG. 3 are designated by the same reference numerals.

【0008】[0008]

【発明が解決しようとする課題】前者の特開昭62−2
19684号公報に記載のものは、DFBレーザの高出
力化を目的としたものであり、結合係数(κ)と素子長
(L)の積をκL≦0.5とするために設計されたもの
である。したがって、この構成の半導体レーザでは、共
振器方向の電界強度分布を考慮したものではないために
アナログ変調歪特性は十分なものではないと考えられ
る。
[Problems to be Solved by the Invention] The former JP-A-62-2
The one described in Japanese Patent Publication No. 196884 is intended to increase the output of a DFB laser, and is designed to set the product of the coupling coefficient (κ) and the element length (L) to κL ≦ 0.5. Is. Therefore, in the semiconductor laser having this structure, the analog modulation distortion characteristic is considered to be insufficient because the electric field strength distribution in the cavity direction is not taken into consideration.

【0009】また、後者の米国特許公報第511147
5号に記載されたものは、スロープ効率が最大となる点
をバイアス点として動作させると2次歪が小さくなるこ
とを前提としており、動作バイアス点をできるだけ高い
バイアス値にするために設計されたものである。しか
し、この発明では共振器方向の電界強度分布を不均一に
する構造であることと、素子長に対して回折格子形成領
域長が長いため、大幅な歩留り改善には至らないと考え
られる。
The latter US Pat. No. 5,111,47
The one described in No. 5 is designed on the assumption that the second-order distortion becomes small when operated at the point where the slope efficiency is maximum as the bias point, and the operating bias point is set to the highest possible bias value. It is a thing. However, in the present invention, it is considered that the yield is not significantly improved because of the structure in which the electric field strength distribution in the cavity direction is made non-uniform and the diffraction grating formation region length is longer than the element length.

【0010】以上のように、従来の半導体レーザでは変
調歪の原因となる共振器方向の電界強度分布について考
慮されていないために、変調歪特性が十分には改善でき
ないと考えられる。
As described above, since the conventional semiconductor laser does not take into consideration the electric field strength distribution in the cavity direction that causes the modulation distortion, it is considered that the modulation distortion characteristics cannot be sufficiently improved.

【0011】このような問題に対して、共振器方向の電
界強度分布を平坦化して変調歪を低減し、かつ歪規格に
対する歩留りを改善するために、共振器方向の一部分の
みに回折格子を形成し、かつこの回折格子の結合係数お
よび回折格子を形成する領域長を適切に設定したものが
考えられている(特願平5−93460号)。この半導
体レーザにより、変調歪の低減と歩留りの改善がなされ
ている。
To solve such a problem, in order to flatten the electric field strength distribution in the resonator direction to reduce the modulation distortion and to improve the yield against the distortion standard, a diffraction grating is formed only in a part of the resonator direction. In addition, it is considered that the coupling coefficient of the diffraction grating and the length of the region forming the diffraction grating are appropriately set (Japanese Patent Application No. 5-93460). With this semiconductor laser, the modulation distortion is reduced and the yield is improved.

【0012】しかしながら、前記した各半導体レーザ
は、いずれも共振器の一部にのみ回折格子を形成したも
のであるために、回折格子を形成する領域と回折格子を
形成しない領域で複合共振器が形成されることになり、
この複合共振器によるモードが発振スペクトルに重畳
し、副モード抑圧比を悪化させる原因となっている。ま
た、このような半導体レーザの単一モード発振の不安定
性は雑音の原因となり、信号の劣化を引き起こすと考え
られる。
However, in each of the above-mentioned semiconductor lasers, since the diffraction grating is formed only in a part of the resonator, the compound resonator is formed in the area where the diffraction grating is formed and the area where the diffraction grating is not formed. Will be formed,
The mode due to this composite resonator is superimposed on the oscillation spectrum, which causes the deterioration of the submode suppression ratio. Further, it is considered that such instability of single-mode oscillation of the semiconductor laser causes noise and causes signal deterioration.

【0013】[0013]

【発明の目的】本発明の目的は、アナログ変調歪特性を
改善し、同時に副モード抑圧比を改善し、雑音による信
号の劣化を抑制した半導体レーザとその製造方法を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor laser which has improved analog modulation distortion characteristics, improved submode suppression ratio, and suppressed signal deterioration due to noise, and a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】本発明の半導体レーザ
は、共振器を構成する素子の前後面のうちの前面に低反
射率膜、後面に高反射率膜をそれぞれ有し、かつ共振器
全長にわたって回折格子を形成するとともに、この回折
格子はその結合係数を後面側よりも前面側の領域で大き
くなるように構成する。
A semiconductor laser of the present invention has a low-reflectivity film on the front surface and a high-reflectance film on the rear surface of the front and rear surfaces of the element that constitutes the resonator, and has the entire resonator length. A diffraction grating is formed over the entire area, and the diffraction grating is configured such that its coupling coefficient is larger in the front surface side region than in the rear surface side.

【0015】例えば、回折格子の高さを、後面側よりも
前面側で高くする。また、素子長を300μmとしたと
き、前面側の略1/2の領域の回折格子の高さが220
Å、後面側の略1/2の領域の回折格子の高さが100
Åとする。
For example, the height of the diffraction grating is made higher on the front surface side than on the rear surface side. Further, when the element length is 300 μm, the height of the diffraction grating in the approximately half area on the front surface side is 220
Å, the height of the diffraction grating is about 100
Å.

【0016】また、本発明の半導体レーザの製造方法
は、基板上に共振器の全長にわたる領域に第1のホトレ
ジストを塗布し、回折格子パターンを露光して第1のパ
ターンマスクを形成する工程と、この第1のパターンマ
スクを用いて前記基板をエッチングして高さの低い回折
格子を形成する工程と、前記第1のパターンマスクを残
したまま、第2のホトレジストを塗布し、前記共振器の
全長の一部の領域を露光して前記一部の領域を覆う第2
のパターンマスクを形成する工程と、前記第1及び第2
のパターンマスクを用いて前記基板をエッチングしてこ
の領域に高さの高い回折格子を形成する工程と、前記第
1及び第2のパターンマスクを除去した後、前記回折格
子上に上層を形成する工程を含んでいる。
The method of manufacturing a semiconductor laser according to the present invention comprises the steps of applying a first photoresist on a region of the substrate over the entire length of the resonator and exposing the diffraction grating pattern to form a first pattern mask. A step of etching the substrate using the first pattern mask to form a diffraction grating having a low height; and applying a second photoresist while leaving the first pattern mask, And exposing a part of the entire length of the
Forming a pattern mask of the above, and the first and second
Etching the substrate using the pattern mask described in 1. to form a high diffraction grating in this region, and removing the first and second pattern masks, and then forming an upper layer on the diffraction grating. Including the process.

【0017】[0017]

【作用】本発明の半導体レーザでは、回折格子を共振器
全長にわたって形成しているために、複合共振器による
副モードが抑制される。また、前面側の回折格子の結合
係数を後面側よりも大きくすることで、共振器方向の電
界強度分布を平坦化でき、アナログ変調歪が低減でき
る。これにより、通常のDFBレーザと同等の発振の単
一モード性を保ったままアナログ変調歪の低減が可能と
なる。
In the semiconductor laser of the present invention, since the diffraction grating is formed over the entire length of the resonator, the secondary mode due to the composite resonator is suppressed. Further, by making the coupling coefficient of the diffraction grating on the front surface side larger than that on the rear surface side, the electric field strength distribution in the resonator direction can be flattened and analog modulation distortion can be reduced. As a result, analog modulation distortion can be reduced while maintaining the single mode characteristic of oscillation equivalent to that of a normal DFB laser.

【0018】[0018]

【実施例】次に、本発明の実施例を図面を参照して説明
する。図1は本発明の半導体レーザの一実施例を示し、
共振器長方向に沿って切断した構造の主要部の断面図で
ある。同図において、n−InP基板1上にn−InG
aAsP光ガイド層2、InGaAsP活性層3、p−
InPクラッド層4を積層している。なお、図示は省略
するが、これら活性層3、クラッド層4はメサ構造とさ
れ、これを覆うように、p−InP電流ブロック層、n
−InP電流ブロック層、p−InPクラッド層、p−
InGaAsPキャップ層が形成され、更に上下面にそ
れぞれ電極が形成されていることは言うまでもない。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the semiconductor laser of the present invention,
FIG. 6 is a cross-sectional view of the main part of the structure cut along the resonator length direction. In the figure, n-InG is formed on the n-InP substrate 1.
aAsP optical guide layer 2, InGaAsP active layer 3, p-
The InP clad layer 4 is laminated. Although not shown, the active layer 3 and the cladding layer 4 have a mesa structure, and the p-InP current blocking layer and the n-type are formed so as to cover the mesa structure.
-InP current blocking layer, p-InP clad layer, p-
It goes without saying that the InGaAsP cap layer is formed, and the electrodes are further formed on the upper and lower surfaces, respectively.

【0019】また、この素子長は300μmとされ、前
面に低反射率膜5、後面に高反射率膜6が形成され、共
振器として構成される。更に、前記基板1と光ガイド層
2との界面には、共振器方向、即ち光の進行方向と直交
する方向の縞状となるように、その界面を微細周期で凹
凸状とした回折格子7が共振器の全長にわたって形成さ
れている。そして、この回折格子7は、前記低反射率膜
5が設けられた前面側の回折格子7aの高さを、高反射
率膜6が設けられた後面側の回折格子7bの高さよりも
大きくなるように構成している。この結果、回折格子7
の結合係数(κ)は、前面側の150μmの領域7aで
大きく、後面側の150μmの領域7bで小さくなるよ
うに構成されることになる。
The element length is set to 300 μm, and the low reflectance film 5 is formed on the front surface and the high reflectance film 6 is formed on the rear surface to form a resonator. Further, the interface between the substrate 1 and the light guide layer 2 has a diffraction grating 7 in which the interface is formed in a concavo-convex pattern with a fine period so as to form a stripe shape in the cavity direction, that is, in the direction orthogonal to the light traveling direction. Are formed over the entire length of the resonator. In the diffraction grating 7, the height of the front side diffraction grating 7a provided with the low reflectance film 5 is larger than the height of the rear side diffraction grating 7b provided with the high reflectance film 6. Is configured as follows. As a result, the diffraction grating 7
The coupling coefficient (κ) of (1) is large in the region 7a of 150 μm on the front surface side and is small in the region 7b of 150 μm on the rear surface side.

【0020】図2は図1に示した半導体レーザの製造方
法を工程順に示す断面図である。なお、この図では複数
個の半導体レーザを形成する場合の一部分のみを示して
いる。先ず、図2(a)に示すように、n−InP基板
1上にネガ型ホトレジスト11を塗布し、二光束干渉露
光法により周期2025Åのレジストパターンを露光
し、かつ現像する。次いで、図2(b)のように、パタ
ーン現像されたホトレジスト11Aをマスクにして基板
1を浅くエッチングし、これにより高さが比較的に低
い、100Å高さの回折格子7bを形成する。
2A to 2D are sectional views showing a method of manufacturing the semiconductor laser shown in FIG. In this figure, only a part of the case where a plurality of semiconductor lasers are formed is shown. First, as shown in FIG. 2A, a negative photoresist 11 is applied on the n-InP substrate 1, a resist pattern having a period of 2025Å is exposed and developed by a two-beam interference exposure method. Next, as shown in FIG. 2B, the substrate 1 is shallowly etched by using the photoresist 11A having the pattern developed as a mask, thereby forming a diffraction grating 7b having a relatively low height and a height of 100Å.

【0021】次いで、図2(b)のように、前記ネガ型
ホトレジスト11Aを残したまま、その上にポジ型ホト
レジスト12を塗布し、最終的に形成する半導体レーザ
の共振器長の1/2の間隔でかつ1/2の長さ領域にわ
たって一部の領域にのみ露光するようなマスクパターン
のマスク13を用いて密着露光し、現像する。これによ
り、図2(d)に示すように、ネガ型とポジ型の各ホト
レジスト11A,12Aが重畳されたレジストパターン
14が形成される。
Then, as shown in FIG. 2 (b), while leaving the negative photoresist 11A, a positive photoresist 12 is applied on the negative photoresist 11A, and half of the cavity length of the semiconductor laser to be finally formed is formed. Contact exposure is performed using a mask 13 having a mask pattern that exposes only a part of the area at an interval of 1/2 and over a half length area, and then developed. As a result, as shown in FIG. 2D, a resist pattern 14 in which the negative and positive photoresists 11A and 12A are superimposed is formed.

【0022】しかる上で、このレジストパターン14を
用いて更に基板11をエッチングし、その後にレジスト
パターン14を除去することにより、図2(e)に示す
ように、高さ100Åの回折格子7の中に前記した1/
2の周期長さで部分的に高さの高い220Å高さの回折
格子7bが形成される。なお、この工程では基板(ウエ
ハ)の端に劈開時の目標となるパターンも同時に形成し
ている。
Then, the resist pattern 14 is used to further etch the substrate 11 and then the resist pattern 14 is removed to form a diffraction grating 7 having a height of 100 Å as shown in FIG. 2 (e). 1 mentioned above
The diffraction grating 7b having a height of 220 Å and a partially high height is formed with a period length of 2. In this step, a target pattern at the time of cleavage is also formed at the edge of the substrate (wafer).

【0023】ついで、前記回折格子7を形成した基板上
に、図1に示したように、n−InGaAsP光ガイド
層2を1000Å、多重量子井戸(MQW)活性層3、
次いでp−InPクラッド層4を約0.5μmの膜厚で
MOVPE法により形成する。
Then, as shown in FIG. 1, an n-InGaAsP optical guide layer 2 of 1000 Å, a multiple quantum well (MQW) active layer 3, and an n-InGaAsP optical guide layer 2 were formed on the substrate on which the diffraction grating 7 was formed.
Next, the p-InP clad layer 4 is formed with a film thickness of about 0.5 μm by the MOVPE method.

【0024】また、図には示されないが、これらの層を
形成後、ポジ型ホトレジストを塗布し、露光、エッチン
グにより活性層メサストライプを形成する。この後、L
PE法によりp−InP電流ブロック層、n−InP電
流ブロック層、p−InPクラッド層、波長1.4μm
組成のp−InGaAsPキャップ層を通常の埋め込み
成長により形成する。次いで上下面に電極を蒸着した
後、劈開により図面と垂直な方向に延びるバーに切り出
す。劈開においては回折格子パターン形成時に設けた目
印の位置で切り出した。次いで、バーの前面に1%、後
面に75%の反射率のコーティングを施した後、チップ
に切り出すことで、主要部が図1のように構成された半
導体レーザが完成される。
Although not shown in the figure, after forming these layers, a positive photoresist is applied, and an active layer mesa stripe is formed by exposure and etching. After this, L
P-InP current blocking layer, n-InP current blocking layer, p-InP cladding layer, wavelength 1.4 μm by PE method
A p-InGaAsP cap layer having a composition is formed by ordinary buried growth. Next, electrodes are vapor-deposited on the upper and lower surfaces, and then cut into bars extending in a direction perpendicular to the drawing by cleavage. In the cleavage, it was cut out at the position of the mark provided when the diffraction grating pattern was formed. Then, after coating the front surface of the bar with a reflectance of 1% and the rear surface with a reflectance of 75%, the bar is cut into chips to complete a semiconductor laser whose main part is configured as shown in FIG.

【0025】この半導体レーザによれば、回折格子7が
共振器の全長にわたって形成されているために、複合共
振器モードに起因する副モード抑圧比の劣化は発生しな
い。また、回折格子7は共振器の前面側の領域7aで高
さを高くしてその結合係数を大きくし、後面側の領域7
bで高さを低くして結合係数を小さくしているので、共
振器方向の電界強度分布を平坦化し、アナログ変調歪が
低減され、かつ歪規格に対する歩留りを改善することが
可能となる。したがって、通常のDFBレーザと同等の
発振の単一モード性を保ったままアナログ変調歪の低減
が可能となる。
According to this semiconductor laser, since the diffraction grating 7 is formed over the entire length of the resonator, deterioration of the submode suppression ratio due to the composite resonator mode does not occur. Further, the diffraction grating 7 has a height increased in the region 7a on the front surface side of the resonator to increase the coupling coefficient thereof, and a region 7a on the rear surface side.
Since the height is reduced at b to reduce the coupling coefficient, it is possible to flatten the electric field intensity distribution in the resonator direction, reduce analog modulation distortion, and improve the yield with respect to the distortion standard. Therefore, analog modulation distortion can be reduced while maintaining the single mode characteristic of oscillation equivalent to that of a normal DFB laser.

【0026】実際に前記した実施例の方法で図1の半導
体素子を製造した結果、半導体レーザ素子のIMD3
−80dBcを満足する素子の割合(歩留り)は25%
であった。また、副モード抑圧比(SMSR)を測定し
たところ40dB以上が得られた。同様にして製造した
従来の半導体レーザの前記の歪規格に対する歩留りは1
2%であり、SMSRは約35dBであった。これによ
り、本発明の半導体レーザにより歩留りと単一軸モード
安定性が改善されたことが確認された。
As a result of actually manufacturing the semiconductor device of FIG. 1 by the method of the embodiment described above, IMD 3
The ratio (yield) of elements that satisfy −80 dBc is 25%
Met. Moreover, when the submode suppression ratio (SMSR) was measured, 40 dB or more was obtained. The yield of the conventional semiconductor laser manufactured in the same manner with respect to the above strain standard is 1
2% and the SMSR was about 35 dB. Thus, it was confirmed that the semiconductor laser of the present invention improved the yield and the single axis mode stability.

【0027】なお、本実施例では多重量子井戸活性層を
用いたが、バルク活性層を用いた場合にでも同様の効果
が得られる。また、1.5μm帯レーザやその波長帯の
レーザの場合でも同様な結果が得られることも言うまで
もない。
Although the multi-quantum well active layer is used in this embodiment, the same effect can be obtained when the bulk active layer is used. Needless to say, the same result can be obtained in the case of a 1.5 μm band laser or a laser of that wavelength band.

【0028】[0028]

【発明の効果】以上説明したように本発明は、共振器を
構成する半導体レーザの前後面のうちの前面に低反射率
膜、後面に高反射率膜をそれぞれ有し、かつ共振器全長
にわたって回折格子を形成するとともに、この回折格子
はその結合係数を後面側よりも前面側の領域で大きくな
るように構成しているので、複合共振器による副モード
が抑制でき、かつ共振器方向の電界強度分布を平坦化し
てアナログ変調歪を低減でき、発振の単一モード性を保
ったままアナログ変調歪の低減を可能とし、かつその歩
留りを改善することができる。
As described above, the present invention has the low reflectance film on the front surface and the high reflectance film on the rear surface of the front and rear surfaces of the semiconductor laser constituting the resonator, and the resonator has the entire length. Since the diffraction grating is formed and the coupling coefficient of the diffraction grating is larger in the region on the front surface side than on the rear surface side, the secondary mode due to the composite resonator can be suppressed and the electric field in the resonator direction can be suppressed. The intensity distribution can be flattened to reduce the analog modulation distortion, and the analog modulation distortion can be reduced while maintaining the single mode of oscillation, and the yield can be improved.

【0029】この場合、回折格子の高さを、後面側より
も前面側で高くすることで、回折格子の結合係数を前面
側で大きくした構成を形成することが可能となる。
In this case, by making the height of the diffraction grating higher on the front surface side than on the rear surface side, it is possible to form a structure in which the coupling coefficient of the diffraction grating is increased on the front surface side.

【0030】また、本発明の製造方法においては、基板
上に共振器の全長にわたる領域に第1のパターンマスク
形成した上で基板をエッチングして高さの低い回折格子
を形成し、その後に共振器の全長の一部の領域に第2の
パターンマスクを形成した上で基板をエッチングして高
さの高い回折格子を形成することで、前記した結合係数
が異なる回折格子を有する半導体レーザの製造が実現で
きる。
In the manufacturing method of the present invention, the first pattern mask is formed on the substrate over the entire length of the resonator, and then the substrate is etched to form a diffraction grating having a low height. Of a semiconductor laser having a diffraction grating having a different coupling coefficient by forming a second pattern mask on a part of the entire length of the container and then etching the substrate to form a diffraction grating having a high height. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの一実施例の主要部の断
面図である。
FIG. 1 is a sectional view of a main part of an embodiment of a semiconductor laser of the present invention.

【図2】図1の半導体レーザを製造する方法を工程順に
示す断面図である。
2A to 2D are cross-sectional views showing a method of manufacturing the semiconductor laser of FIG. 1 in process order.

【図3】従来の半導体レーザの一例の断面図である。FIG. 3 is a sectional view of an example of a conventional semiconductor laser.

【図4】従来の半導体レーザの他の例の断面図である。FIG. 4 is a sectional view of another example of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

1 n−InP基板 2 ガイド層 3 活性層 4 クラッド層 5 低反射率膜 6 高反射率膜 7 回折格子 7a 高さの高い回折格子 7b 高さの低い回折格子 DESCRIPTION OF SYMBOLS 1 n-InP substrate 2 Guide layer 3 Active layer 4 Cladding layer 5 Low reflectance film 6 High reflectance film 7 Diffraction grating 7a High diffraction grating 7b Low height diffraction grating

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光共振器を構成する半導体レーザの素子
の前後面のうち、前面に低反射率膜、後面に高反射率膜
をそれぞれ有し、共振器全長にわたって回折格子を形成
するとともに、この回折格子はその結合係数を後面側よ
りも前面側の領域で大きくなるように構成したことを特
徴とする半導体レーザ。
1. A front and rear surface of a semiconductor laser device forming an optical resonator has a low-reflectance film on the front surface and a high-reflectance film on the rear surface, respectively, to form a diffraction grating over the entire length of the resonator, A semiconductor laser characterized in that this diffraction grating is configured such that its coupling coefficient is larger in the front surface side region than in the rear surface side.
【請求項2】 回折格子の高さを、後面側よりも前面側
で高くしてなる請求項1の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the height of the diffraction grating is higher on the front surface side than on the rear surface side.
【請求項3】 素子長を300μmとしたとき、前面側
の略1/2の領域の回折格子の高さが220Å、後面側
の略1/2の領域の回折格子の高さが100Åである請
求項2の半導体レーザ。
3. When the element length is 300 μm, the height of the diffraction grating in the approximately half area on the front surface side is 220 Å, and the height of the diffraction grating in the approximately half area on the rear surface side is 100 Å. The semiconductor laser according to claim 2.
【請求項4】 基板上に光ガイド層、活性層、クラッド
層を積層形成し、前記基板と光ガイド層の界面に回折格
子を形成してなる請求項1ないし3の半導体レーザ。
4. The semiconductor laser according to claim 1, wherein an optical guide layer, an active layer, and a clad layer are laminated and formed on a substrate, and a diffraction grating is formed at an interface between the substrate and the optical guide layer.
【請求項5】 半導体レーザを形成するための基板上に
共振器の全長にわたる領域に第1のホトレジストを塗布
し、回折格子パターンを露光して第1のパターンマスク
を形成する工程と、この第1のパターンマスクを用いて
前記基板をエッチングして高さの低い回折格子を形成す
る工程と、前記第1のパターンマスクを残したまま、第
2のホトレジストを塗布し、前記共振器の全長の一部の
領域を露光して前記一部の領域を覆う第2のパターンマ
スクを形成する工程と、前記第1及び第2のパターンマ
スクを用いて前記基板をエッチングしてこの領域に高さ
の高い回折格子を形成する工程と、前記第1及び第2の
パターンマスクを除去した後、前記回折格子上に上層を
形成する工程を含むことを特徴とする半導体レーザの製
造方法。
5. A step of forming a first pattern mask by applying a first photoresist on a substrate for forming a semiconductor laser in a region over the entire length of a resonator and exposing a diffraction grating pattern to form a first pattern mask, and The step of etching the substrate using the first pattern mask to form a diffraction grating having a low height, and applying the second photoresist while leaving the first pattern mask, to reduce the total length of the resonator. Exposing a part of the area to form a second pattern mask covering the part of the area; and etching the substrate using the first and second pattern masks to form a height in this area. A method of manufacturing a semiconductor laser, comprising: a step of forming a high diffraction grating; and a step of forming an upper layer on the diffraction grating after removing the first and second pattern masks.
JP10791995A 1995-03-23 1995-04-08 Semiconductor laser and manufacture thereof Pending JPH08279651A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10791995A JPH08279651A (en) 1995-04-08 1995-04-08 Semiconductor laser and manufacture thereof
US08/621,946 US5802096A (en) 1995-03-23 1996-03-25 Distributed feed back laser with a grating structure adjusted for a reduced intermodulation distortion in an analog amplitude modulation and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10791995A JPH08279651A (en) 1995-04-08 1995-04-08 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08279651A true JPH08279651A (en) 1996-10-22

Family

ID=14471379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10791995A Pending JPH08279651A (en) 1995-03-23 1995-04-08 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08279651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191030A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Method for manufacturing distribution feedback type semiconductor laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174791A (en) * 1989-07-15 1991-07-29 Fujitsu Ltd Distribution-feedback-type semiconductor laser, manufacture thereof and variable-wavelength coherent light source
JPH06310806A (en) * 1993-04-21 1994-11-04 Nec Corp Semiconductor laser and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174791A (en) * 1989-07-15 1991-07-29 Fujitsu Ltd Distribution-feedback-type semiconductor laser, manufacture thereof and variable-wavelength coherent light source
JPH06310806A (en) * 1993-04-21 1994-11-04 Nec Corp Semiconductor laser and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191030A (en) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp Method for manufacturing distribution feedback type semiconductor laser

Similar Documents

Publication Publication Date Title
US5982804A (en) Non-regrowth distributed feedback ridge semiconductor laser and method of manufacturing the same
US6292503B1 (en) Ridge type semiconductor laser of laterally-coupled distributed feedback and method of manufacturing the same
JP2619057B2 (en) Manufacturing method of semiconductor laser
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JP3227322B2 (en) Monolithically integrated laser and electroabsorption modulator light source and method of making same
JP2001308451A (en) Semiconductor light emitting element
US5394429A (en) Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
US6301283B1 (en) Distributed feedback semiconductor laser
JP2536390B2 (en) Semiconductor laser and manufacturing method thereof
US5602866A (en) Semiconductor laser
US6678302B2 (en) Semiconductor device and manufacturing method thereof
US6084901A (en) Semiconductor laser device
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
US5802096A (en) Distributed feed back laser with a grating structure adjusted for a reduced intermodulation distortion in an analog amplitude modulation and method for fabricating the same
JPH08279651A (en) Semiconductor laser and manufacture thereof
JPH10223967A (en) Distributed feedback semiconductor laser and its manufacture
JP2004031402A (en) Distributed feedback type semiconductor laser element
JP2827952B2 (en) Semiconductor laser
JPH0770789B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
JP2600490B2 (en) Distributed feedback semiconductor laser
JP2546134B2 (en) Semiconductor laser
JP2669045B2 (en) Manufacturing method of distributed feedback semiconductor laser
JPH07118568B2 (en) Distributed feedback semiconductor laser
JP2001068781A (en) Manufacture of semiconductor laser