JP2600490B2 - Distributed feedback semiconductor laser - Google Patents

Distributed feedback semiconductor laser

Info

Publication number
JP2600490B2
JP2600490B2 JP5001501A JP150193A JP2600490B2 JP 2600490 B2 JP2600490 B2 JP 2600490B2 JP 5001501 A JP5001501 A JP 5001501A JP 150193 A JP150193 A JP 150193A JP 2600490 B2 JP2600490 B2 JP 2600490B2
Authority
JP
Japan
Prior art keywords
reflectance
diffraction grating
distributed feedback
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5001501A
Other languages
Japanese (ja)
Other versions
JPH06204607A (en
Inventor
哲朗 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP5001501A priority Critical patent/JP2600490B2/en
Application filed by NEC Corp filed Critical NEC Corp
Priority to EP94100190A priority patent/EP0606092A3/en
Priority to CA002210008A priority patent/CA2210008C/en
Priority to EP96115482A priority patent/EP0753914B1/en
Priority to US08/178,859 priority patent/US5469459A/en
Priority to CA002113027A priority patent/CA2113027C/en
Priority to DE69425835T priority patent/DE69425835T2/en
Publication of JPH06204607A publication Critical patent/JPH06204607A/en
Priority to US08/463,635 priority patent/US5568505A/en
Application granted granted Critical
Publication of JP2600490B2 publication Critical patent/JP2600490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分布帰還型半導体レー
ザに関し、特に相互変調歪特性に優れるアナログ変調用
分布帰還型半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed feedback semiconductor laser, and more particularly to a distributed feedback semiconductor laser for analog modulation having excellent intermodulation distortion characteristics.

【0002】[0002]

【従来の技術】サブキャリア多重光伝送方式などに用い
られるアナログ変調用光源には、高効率で相互変調歪の
小さい分布帰還型半導体(DFB)レーザが要求されて
いる。例えば移動通信システム用では3次相互変調歪
(3rd intermodulation dist
ortion;IMD3 )が充分に小さい素子が要求さ
れている。
2. Description of the Related Art A distributed feedback semiconductor (DFB) laser with high efficiency and small intermodulation distortion is required for a light source for analog modulation used in a subcarrier multiplexing optical transmission system or the like. For example, for a mobile communication system, third-order intermodulation distortion (3rd intermodulation dist)
An element having a sufficiently small orientation (IMD 3 ) is required.

【0003】DFBレーザの相互変調歪はレーザの電流
−光出力(I−L)特性の線形性に大きく関係し、I−
L特性の線形性を改善するためには結合係数や端面反射
率を最適化する必要がある。
[0003] The intermodulation distortion of a DFB laser is greatly related to the linearity of the current-optical output (IL) characteristic of the laser.
In order to improve the linearity of the L characteristic, it is necessary to optimize the coupling coefficient and the end face reflectivity.

【0004】DFBレーザの最適化設計には従来様々な
検討がなされている。例えば、特開平2−90688号
公報,特開平2−20087号公報ではκLや端面反射
率を最適化した位相シフトDFBレーザが提案されてい
る。また、特開平1−155677号公報ではκLと端
面反射率を最適化した均一な回折格子を持つDFBレー
ザが提案されている。
Various studies have been made on the optimization design of the DFB laser. For example, JP-A-2-90688 and JP-A-2-20087 propose a phase shift DFB laser in which κL and end face reflectivity are optimized. Also, Japanese Patent Application Laid-Open No. 1-155677 proposes a DFB laser having a uniform diffraction grating in which κL and end face reflectance are optimized.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のDFB
レーザはアナログ変調を目的としたものではなく、相互
変調歪特性については何ら保障されていなかった。
However, the conventional DFB
The laser was not intended for analog modulation, and no intermodulation distortion characteristics were guaranteed.

【0006】本発明の目的は、DFBレーザのアナログ
変調歪特性と単一モード性を含めた歩留りおよび効率を
改善し、低価格の低歪アナログ変調用DFBレーザを実
現することにある。
An object of the present invention is to improve the yield and efficiency including the analog modulation distortion characteristic and the single mode property of a DFB laser, and to realize a low-cost low distortion analog modulation DFB laser.

【0007】[0007]

【課題を解決するための手段】本願発明の分布帰還型半
導体レーザは共振器方向に均一な回折格子と活性層を有
し、前面の反射率が1%以下でかつ、活性層と回折格子
との結合係数κと共振器長Lの積が0.4≦κL≦1.
0であることを特徴とする。
According to the present invention, a distributed feedback type half is provided.
Conductor lasers have a uniform diffraction grating and active layer in the cavity direction.
And the active layer and the diffraction grating have a reflectance of 1% or less on the front surface.
The product of the coupling coefficient κ and the cavity length L is 0.4 ≦ κL ≦ 1.
It is characterized by being 0.

【0008】または、共振器方向に均一な回折格子と活
性層を有し、前面の反射率が1%以下でかつ、活性層と
回折格子との結合係数κと共振器長Lの積が0.5≦κ
L≦0.7であることを特徴とする。
Alternatively , a diffraction grating and an active element which are uniform in the resonator direction can be used.
Having a reflective layer having a front surface reflectance of 1% or less and an active layer.
The product of the coupling coefficient κ with the diffraction grating and the resonator length L is 0.5 ≦ κ
It is characterized in that L ≦ 0.7.

【0009】または上記の分布帰還型半導体レーザにお
いて後面の反射率が50%以上であることを特徴とす
る。または後面の反射率が90%以上であることを特徴
とする。
Alternatively, the distributed feedback semiconductor laser described above
And the reflectance of the rear surface is 50% or more.
You. Alternatively, the rear surface has a reflectance of 90% or more.
And

【0010】または、共振器方向に均一な回折格子と活
性層を有し、前面の反射率が5%未満であり、後面の反
射率が50%以上であり、かつ活性層と回折格子との結
合係数κと共振器長Lの積が0.4≦κL≦1.0であ
ることを特徴とする。
[0010] Alternatively, a diffraction grating and an active element that are uniform in the resonator direction can be used.
With a reflective layer having a front surface reflectance of less than 5% and a rear surface
The emissivity is 50% or more, and the connection between the active layer and the diffraction grating is
The product of the integration coefficient κ and the resonator length L is 0.4 ≦ κL ≦ 1.0
It is characterized by that.

【0011】または、共振器方向に均一な回折格子と活
性層を有し、前面の反射率が5%未満であり、後面の反
射率が50%以上であり、かつ活性層と回折格子との結
合係数κと共振器長Lの積が0.5≦κL≦0.7であ
ることを特徴とする。
Alternatively , a diffraction grating and an active element which are uniform in the resonator direction can be used.
Having a reflective layer having a front surface reflectance of less than 5% and a rear surface having a reflectance of less than 5%.
The emissivity is 50% or more, and the connection between the active layer and the diffraction grating is
The product of the integration coefficient κ and the resonator length L is 0.5 ≦ κL ≦ 0.7
It is characterized by that.

【0012】[0012]

【作用】図1,図2,図3を用いて本発明の原理を説明
する。
The principle of the present invention will be described with reference to FIGS.

【0013】図1は端面反射率が前面で1%、後面で7
5%の均一な回折格子を持つDFBレーザについて、結
合係数と共振器長の積κLに対する歩留りを計算した結
果である。ここでは、規格化反射鏡損失が0.05以上
で、平均光出力8mW、変調度20%でIMD3 ≦−8
0dBcを満足する素子の割合を歩留りとしている。こ
れは共振器方向の電界強度分布を考慮したI−L特性を
求め、その線形性から歪率を計算した結果に基づいてい
る。これからκLが0.4〜1.0の範囲で歩留りが5
%より高くなり、0.5〜0.7の範囲で歩留りが10
%より高くなることが分かる。
FIG. 1 shows that the end face reflectivity is 1% on the front face and 7% on the back face.
This is the result of calculating the yield with respect to the product κL of the coupling coefficient and the cavity length for a DFB laser having a uniform diffraction grating of 5%. Here, IMD 3 ≦ −8 at a normalized reflector loss of 0.05 or more, an average optical output of 8 mW, and a modulation factor of 20%.
The ratio of the element satisfying 0 dBc is defined as the yield. This is based on the result of obtaining the IL characteristic in consideration of the electric field strength distribution in the resonator direction and calculating the distortion factor from the linearity. From now on, the yield is 5 when κL is in the range of 0.4 to 1.0.
%, And the yield is 10 in the range of 0.5 to 0.7.
%.

【0014】図2は歩留りの前面および後面の端面反射
率依存性を同じ方法で計算した結果である。図2(a)
はκL=0.7で後面反射率が75%の場合についての
歩留りの前面反射率依存性を示したものである。これか
ら前面反射率を5%未満にすることにより歩留りを少な
くとも10%以上にできる。また、前面反射率が3%付
近で歩留りの極小値が存在するが、前面反射率を1%以
下にすることで歩留りは少なくとも12%以上にするこ
とが可能となる。図2(b)はκL=0.7で前面後面
反射率が1%の場合についての歩留りの後面反射率依存
性である。これから後面反射率が約50%以上で歩留り
が10%より高くなることが分かる。
FIG. 2 shows the results of calculating the dependence of the yield on the front and rear end faces by the same method. FIG. 2 (a)
Shows the dependency of the yield on the front surface reflectance when κL = 0.7 and the rear surface reflectance is 75%. From this, the yield can be made at least 10% or more by setting the front surface reflectance to less than 5%. Further, although the yield has a local minimum value when the front surface reflectance is around 3%, the yield can be made at least 12% or more by setting the front surface reflectance to 1% or less. FIG. 2B shows the dependency of the yield on the rear surface reflectance when κL = 0.7 and the front rear surface reflectance is 1%. From this, it can be seen that the yield is higher than 10% when the rear surface reflectance is about 50% or more.

【0015】図3は、比較的高い歩留りの得られるκL
=0.7の場合について各反射率における平均的な効率
を、前面反射率1%、後面反射率75%の場合の平均効
率で規格化して示したものである。図3(a)より前面
反射率については反射率が1%以下では効率はほぼ一定
で、1%を越えると効率が徐々に低下することが分か
る。また図3(b)より後面反射率が高くなるに伴い効
率は直線的に上昇することが分かる。したがって、後面
反射率を90%以上にすることによりさらに効率が改善
され、反射率100%の時に効率は最大となる。なお、
後面からの光出力モニターを必要とする場合は、反射率
を98%以下に留める必要がある。
FIG. 3 shows κL at which a relatively high yield can be obtained.
The average efficiency at each reflectance in the case of = 0.7 is normalized by the average efficiency at the front reflectance of 1% and the rear reflectance of 75%. From FIG. 3 (a), it can be seen that the efficiency is almost constant when the reflectance is 1% or less, and the efficiency gradually decreases when the reflectance exceeds 1%. FIG. 3B shows that the efficiency increases linearly as the rear surface reflectance increases. Therefore, the efficiency is further improved by setting the rear surface reflectance to 90% or more, and the efficiency becomes maximum when the reflectance is 100%. In addition,
If a light output monitor from the rear side is required, the reflectance must be kept at 98% or less.

【0016】[0016]

【実施例】以下に、本発明の1.3μm帯DFBレーザ
における実施例を図面を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a 1.3 μm band DFB laser according to the present invention will be described below with reference to the drawings.

【0017】図4に本発明のDFBレーザの製造工程を
示す。図4(a)のように、光干渉露光法によりn型I
nP基板10上に周期2025オングストローム,深さ
250オングストロームの回折格子11を形成する。こ
の回折格子上に、図4(b)のように、n−InGaA
sP光ガイド層12を1000オングストローム、多重
量子井戸(MQW)活性層13、p−InPクラッド層
14を約0.5μmの膜厚でMOVPE法により形成す
る。
FIG. 4 shows a manufacturing process of the DFB laser of the present invention. As shown in FIG. 4A, the n-type I
A diffraction grating 11 having a period of 2025 Å and a depth of 250 Å is formed on the nP substrate 10. On this diffraction grating, as shown in FIG.
The sP light guide layer 12 is formed to a thickness of 1000 angstroms, the multiple quantum well (MQW) active layer 13 and the p-InP cladding layer 14 are formed to a thickness of about 0.5 μm by MOVPE.

【0018】MQW活性層について図5を用いて説明す
る。図5は、本発明のMQWのバンド構造の一例を示し
たものである。このバンド構造は、井戸層30が1.4
μm波長組成,厚さ57オングストロームで、障壁層3
1が1.13μm波長組成,厚さ100オングストロー
ムで、これを5周期繰り返し、両側に1.13μm波長
組成のSCH層32,33を、p層側,n層側にそれぞ
れ600オングストローム,300オングストロームの
厚さで設けた構造である。
The MQW active layer will be described with reference to FIG. FIG. 5 shows an example of the MQW band structure of the present invention. In this band structure, the well layer 30 has a thickness of 1.4.
μm wavelength composition, thickness of 57 Å, barrier layer 3
1 is a 1.13 μm wavelength composition and a thickness of 100 angstroms, and this is repeated for 5 periods, and SCH layers 32 and 33 of a 1.13 μm wavelength composition are provided on both sides, and 600 angstroms and 300 angstroms of a p layer side and an n layer side are respectively provided. This is a structure provided with a thickness.

【0019】これらの層の形成後、ポジ型ホトレジスト
を塗布し、露光,エッチングにより図4(c)のように
ストライプを形成する。
After these layers are formed, a positive photoresist is applied, and a stripe is formed by exposure and etching as shown in FIG.

【0020】この後、LPE法によりp−InP電流ブ
ロック層15、n−InP電流ブロック層16、p−I
nPクラッド層17、波長1,4μm組成のp−InG
aAsPキャップ層18を形成する。次いで電極19,
20を蒸着し、劈開し、端面にSiN膜による反射率1
%と75%のコーティングを施し、チップに切り出す。
Thereafter, the p-InP current blocking layer 15, the n-InP current blocking layer 16, the p-I
nP cladding layer 17, p-InG having a composition of wavelength 1,4 μm
An aAsP cap layer 18 is formed. Then the electrodes 19,
20 was deposited and cleaved, and the end face had a reflectance of 1 with a SiN film.
% And 75% coating and cut into chips.

【0021】この素子は1.31μmで発振し、効率を
測定した結果、約0.4W/Aであり、非常に良好であ
った。またκLは測定の結果、約0.9であった。試作
した素子をモジュール化し、2信号で3次相互変調歪を
測定した結果、平均ファイバー出力4mW、変調度20
%でIMD3 <−85dBcと非常に良好な歪特性を得
ることができた。
This device oscillated at 1.31 μm, and the efficiency was measured. As a result, it was about 0.4 W / A, which was very good. As a result of measurement, κL was about 0.9. As a result of modularizing the prototype device and measuring the third-order intermodulation distortion with two signals, the average fiber output was 4 mW and the modulation factor was 20
%, A very good distortion characteristic of IMD 3 <−85 dBc was obtained.

【0022】この場合、IMD3 <−85dBcを満足
する素子は全体の約4%程度であった。したがって、歩
留りを向上させるために回折格子の深さを200オング
ストロームとして、同様に素子を作製したところ、κL
は約0.7となり、歩留りは約12%となった。さら
に、前面の反射率を0.1%としたところ歩留りはさら
に向上し約16%となった。また、後面反射率を90%
にすると、効率が約0.43W/Aとなった。
In this case, about 4% of the devices satisfy IMD 3 <−85 dBc. Therefore, in order to improve the yield, the depth of the diffraction grating was set to 200 angstroms, and the device was similarly manufactured.
Was about 0.7, and the yield was about 12%. Further, when the reflectance on the front surface was set to 0.1%, the yield was further improved to about 16%. Also, the rear surface reflectance is 90%.
Then, the efficiency was about 0.43 W / A.

【0023】なお、本実施例では多重量子井戸活性層を
用いたが、バルク活性層を用いた場合にでも同様の効果
が得られることは容易に推測される。
Although the multiple quantum well active layer is used in this embodiment, it is easily presumed that the same effect can be obtained even when a bulk active layer is used.

【0024】[0024]

【発明の効果】本発明によるDFBレーザによれば、高
効率でI−L特性の直線性のよい低歪アナログ光伝送用
DFBレーザを高歩留りで得ることが可能となる。
According to the DFB laser of the present invention, it is possible to obtain a high-efficiency DFB laser for low distortion analog optical transmission having high linearity and IL characteristics at a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明の原理を示す図である。FIG. 2 is a diagram illustrating the principle of the present invention.

【図3】本発明の原理を示す図である。FIG. 3 is a diagram showing the principle of the present invention.

【図4】本発明の製造工程を説明するための図である。FIG. 4 is a view for explaining a manufacturing process of the present invention.

【図5】本発明の一実施例を説明するための図である。FIG. 5 is a diagram for explaining one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 n型InP基板 11 回折格子 12 n−InGaAsP光ガイド層 13 多重量子井戸(MQW)活性層 14 p−InPクラッド層 15 p−InP電流ブロック層 16 n−InP電流ブロック層 17 p−InPクラッド層 18 p−InGaAsPキャップ層 19,20 電極 30 井戸層 31 障壁層 32,33 SCH層 Reference Signs List 10 n-type InP substrate 11 diffraction grating 12 n-InGaAsP optical guide layer 13 multiple quantum well (MQW) active layer 14 p-InP cladding layer 15 p-InP current blocking layer 16 n-InP current blocking layer 17 p-InP cladding layer 18 p-InGaAsP cap layer 19, 20 electrode 30 well layer 31 barrier layer 32, 33 SCH layer

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】共振器方向に均一な回折格子と活性層を有
し、前面の反射率が1%以下でかつ、活性層と回折格子
との結合係数κと共振器長Lの積が0.4≦κL≦1.
0であることを特徴とする分布帰還型半導体レーザ。
An active layer having a uniform diffraction grating in the direction of the resonator is provided.
And the active layer and the diffraction grating have a reflectance of 1% or less on the front surface.
The product of the coupling coefficient κ and the cavity length L is 0.4 ≦ κL ≦ 1.
0. A distributed feedback semiconductor laser characterized by being zero.
【請求項2】共振器方向に均一な回折格子と活性層を有2. A semiconductor device having a uniform diffraction grating and an active layer in the resonator direction.
し、前面の反射率が1%以下でかつ、活性層と回折格子And the active layer and the diffraction grating have a reflectance of 1% or less on the front surface.
との結合係数κと共振器長Lの積が0.5≦κL≦0.The product of the coupling coefficient κ and the cavity length L is 0.5 ≦ κL ≦ 0.
7であることを特徴とする分布帰還型半導体レーザ。7. A distributed feedback semiconductor laser, wherein
【請求項3】請求項1〜2のいずれかに記載の分布帰還
型半導体レーザにおいて、後面の反射率が50%以上で
あることを特徴とする分布帰還型半導体レーザ。
3. The distributed feedback according to claim 1,
Type semiconductor laser with a rear surface reflectance of 50% or more
A distributed feedback semiconductor laser characterized by the following.
【請求項4】請求項1〜2のいずれかに記載の分布帰還
型半導体レーザにおいて、後面の反射率が90%以上で
あることを特徴とする分布帰還型半導体レーザ。
4. The distributed feedback according to claim 1,
Type semiconductor laser with a back surface reflectance of 90% or more
A distributed feedback semiconductor laser characterized by the following.
【請求項5】共振器方向に均一な回析格子と活性層を有
し、前面の反射率が5%未満であり、後面の反射率が5
0%以上であり、かつ活性層と回折格子との結合係数κ
と共振器長Lの積が0.4≦κL≦1.0であることを
特徴とする分布帰還型半導体レーザ。
5. A semiconductor device having a uniform diffraction grating and an active layer in the resonator direction.
The reflectance of the front surface is less than 5%, and the reflectance of the rear surface is less than 5%.
0% or more, and the coupling coefficient κ between the active layer and the diffraction grating
And the resonator length L is 0.4 ≦ κL ≦ 1.0.
Characteristic distributed feedback semiconductor laser.
【請求項6】共振器方向に均一な回析格子と活性層を有
し、前面の反射率が5%未満であり、後面の反射率が5
0%以上であり、かつ活性層と回折格子との結合係数κ
と共振器長Lの積が0.5≦κL≦0.7であることを
特徴とする分布帰還型半導体レーザ。
6. It has a uniform diffraction grating and an active layer in the resonator direction.
The reflectance of the front surface is less than 5%, and the reflectance of the rear surface is less than 5%.
0% or more, and the coupling coefficient κ between the active layer and the diffraction grating
And the product of the resonator length L is 0.5 ≦ κL ≦ 0.7.
Characteristic distributed feedback semiconductor laser.
JP5001501A 1993-01-08 1993-01-08 Distributed feedback semiconductor laser Expired - Lifetime JP2600490B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5001501A JP2600490B2 (en) 1993-01-08 1993-01-08 Distributed feedback semiconductor laser
CA002210008A CA2210008C (en) 1993-01-08 1994-01-07 Laser diode element with excellent intermodulation distortion characteristic
EP96115482A EP0753914B1 (en) 1993-01-08 1994-01-07 Laser diode element with excellent intermodulation distortion characteristic
US08/178,859 US5469459A (en) 1993-01-08 1994-01-07 Laser diode element with excellent intermodulation distortion characteristic
EP94100190A EP0606092A3 (en) 1993-01-08 1994-01-07 Laser diode element.
CA002113027A CA2113027C (en) 1993-01-08 1994-01-07 Laser diode element with excellent intermodulation distortion characteristic
DE69425835T DE69425835T2 (en) 1993-01-08 1994-01-07 Laser diode element with excellent intermodulation distortion characteristics
US08/463,635 US5568505A (en) 1993-01-08 1995-06-06 Laser diode element with excellent intermodulation distortion characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001501A JP2600490B2 (en) 1993-01-08 1993-01-08 Distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06204607A JPH06204607A (en) 1994-07-22
JP2600490B2 true JP2600490B2 (en) 1997-04-16

Family

ID=11503218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001501A Expired - Lifetime JP2600490B2 (en) 1993-01-08 1993-01-08 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP2600490B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788725B2 (en) 2001-11-14 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155677A (en) * 1987-12-11 1989-06-19 Toshiba Corp Distributed feedback type semiconductor laser element
JPH0220087A (en) * 1988-07-08 1990-01-23 Toshiba Corp Distributed feedback type semiconductor laser element
JPH03283483A (en) * 1990-03-29 1991-12-13 Mitsubishi Electric Corp Semiconductor laser device
JP2751558B2 (en) * 1990-04-13 1998-05-18 日本電気株式会社 Integrated optical semiconductor device and driving method thereof

Also Published As

Publication number Publication date
JPH06204607A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
US5953359A (en) Laser diode array and fabrication method thereof
JP2001308451A (en) Semiconductor light emitting element
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JP2536390B2 (en) Semiconductor laser and manufacturing method thereof
US5666455A (en) Waveguide device
JP2772204B2 (en) High power distributed feedback semiconductor laser with excellent light output linearity
US20020037024A1 (en) Distributed feedback semiconductor laser
JPH11163464A (en) Distribution feedback type semiconductor laser
JP3173582B2 (en) Distributed feedback semiconductor laser
US6788725B2 (en) Semiconductor laser device
JP3354106B2 (en) Semiconductor laser device and method of manufacturing the same
JP2950302B2 (en) Semiconductor laser
JP2600490B2 (en) Distributed feedback semiconductor laser
JP2871635B2 (en) Semiconductor laser and method of manufacturing the same
US20050025210A1 (en) Semiconductor laser device
JPH09509535A (en) Semiconductor diode laser amplifier and manufacturing method thereof
JP5024474B2 (en) Method for designing coating film of optical semiconductor element
JP2546134B2 (en) Semiconductor laser
JP2002057405A (en) Semiconductor laser device and its manufacturing method
JP2004031402A (en) Distributed feedback type semiconductor laser element
JP3166236B2 (en) Semiconductor laser and method of manufacturing the same
JPH07118568B2 (en) Distributed feedback semiconductor laser
JP3239387B2 (en) Semiconductor laser and method of manufacturing the same
JPH0770789B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
JP2827952B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961119