JP2751558B2 - Integrated optical semiconductor device and driving method thereof - Google Patents

Integrated optical semiconductor device and driving method thereof

Info

Publication number
JP2751558B2
JP2751558B2 JP2098095A JP9809590A JP2751558B2 JP 2751558 B2 JP2751558 B2 JP 2751558B2 JP 2098095 A JP2098095 A JP 2098095A JP 9809590 A JP9809590 A JP 9809590A JP 2751558 B2 JP2751558 B2 JP 2751558B2
Authority
JP
Japan
Prior art keywords
electrode
reflection film
semiconductor device
integrated optical
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2098095A
Other languages
Japanese (ja)
Other versions
JPH03295289A (en
Inventor
光弘 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2098095A priority Critical patent/JP2751558B2/en
Publication of JPH03295289A publication Critical patent/JPH03295289A/en
Application granted granted Critical
Publication of JP2751558B2 publication Critical patent/JP2751558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、集積型光半導体装置およびその駆動方法に
関する。
Description: TECHNICAL FIELD The present invention relates to an integrated optical semiconductor device and a driving method thereof.

(従来の技術と解決すべき課題) 光通信技術は近年急速な進展を示し、数Gb/sの高速
で、100kmを超す長距離、大容量のシステムが報告され
るようになってきた。その中で、分布帰還型半導体レー
ザ(DFB−LD)や分布ブラッグ反射型半導体レーザ(DBR
−LD)は直接検波系のみならず、例えばFSKコヒーレン
トシステム等への応用上でもキーデバイスとして用いら
れている。単体のDFBレーザを例えばFSKコヒーレントシ
ステムの送信光源に用いる場合、低周波領域では熱効果
により変調電流増加で発信周波数が長波長に周波数偏移
するレッドシフトFMとなる。高周波領域ではキャリア効
果によって変調電流増加で短波長に周波数偏移するブル
ーシフトFMとなりその交点となるディップ周波数が数百
kHzで発生する。そこで位相が反転することから伝送上
の波形劣化が生ずるという問題がある。そのような位相
反転を除去する目的で小滝氏らは1989年発行のエレクト
ロニクスレターズ誌(Electronics Letterts)、第25
巻、990ページから991ページに報告しているような3電
極構造のλ/4シフトDFBレーザを開発した。そのような
素子を用いて、注入電流の分配比を調節することによ
り、20mW光出力時に19Åの波長可変範囲、900kHz以下の
スペクトル線幅、および位相反転のないFM応答特性を実
現した。しかしながら、同素子ではGHzレベルでのFM変
調効率は0.5GHz/mA程度であり、高速のFSK変調にはより
高いFM変調効率が望まれていた。さらに光出力も局発光
源としては大きければ大きいほど望ましい。
(Prior Art and Issues to be Solved) Optical communication technology has shown rapid progress in recent years, and high-speed systems of several Gb / s and long-distance and large-capacity systems exceeding 100 km have been reported. Among them, distributed feedback semiconductor laser (DFB-LD) and distributed Bragg reflection semiconductor laser (DBR
−LD) is used as a key device not only in a direct detection system but also in an application to, for example, an FSK coherent system. When a single DFB laser is used as a transmission light source of, for example, an FSK coherent system, a red shift FM in which a transmission frequency shifts to a longer wavelength due to an increase in modulation current due to a thermal effect in a low frequency region. In the high frequency region, the carrier effect causes a blue shift FM that shifts to a short wavelength due to an increase in the modulation current, and the dip frequency at the intersection is several hundred.
Occurs at kHz. Therefore, there is a problem that the waveform is deteriorated in transmission due to the phase inversion. Kotaki et al., Published in 1989, Electronics Letters, No. 25, aimed at eliminating such phase reversals.
Volume, pages 990 to 991, a λ / 4 shift DFB laser with a three-electrode structure was developed. By adjusting the injection current distribution ratio using such an element, a 19-mm wavelength tunable range, a spectral line width of 900 kHz or less, and an FM response characteristic without phase inversion at 20 mW optical output were realized. However, the FM modulation efficiency at the GHz level is about 0.5 GHz / mA, and higher FM modulation efficiency has been desired for high-speed FSK modulation. Further, it is desirable that the light output be as large as the local light source.

本発明の目的は上述の観点に立って、FM変調効率が高
く、かつ光出力の大きな集積型単一波長半導体レーザ素
子を提供することにある。
An object of the present invention is to provide an integrated single-wavelength semiconductor laser device having a high FM modulation efficiency and a large optical output based on the above-described viewpoint.

(課題を解決するための手段) 本発明の集積型光半導体装置は、半導体基板上に活性
層、導波層、回折格子を少なくとも有する集積型光半導
体装置において、対向する2つの端面に高反射膜、低反
射膜が形成され、レーザ光共振方向に独立して低反射膜
側に直流電流を印加する電極と、高反射膜側に直流電流
と変調電流とを印加する電極とを有し、前記高反射膜側
の電極の長さは低反射膜側の電極の長さよりも短いこと
を特徴とする。
(Means for Solving the Problems) In an integrated optical semiconductor device according to the present invention, in an integrated optical semiconductor device having at least an active layer, a waveguide layer and a diffraction grating on a semiconductor substrate, two opposing end faces have high reflection. A film, a low-reflection film is formed, an electrode that applies a DC current to the low-reflection film side independently of the laser light resonance direction, and an electrode that applies a DC current and a modulation current to the high-reflection film side, The length of the electrode on the high reflection film side is shorter than the length of the electrode on the low reflection film side.

また本発明の集積型光半導体装置の駆動方法は、半導
体基板上に活性層、導波層、回折格子を少なくとも有す
る集積型光半導体装置において、対向する2つの端面に
高反射膜、低反射膜が形成され、レーザ光共振方向に2
つの独立した電極が形成され、前記2つの電極のうち、
低反射端面膜側電極に直流電流を印加し、高反射端面側
電極に直流電流と変調電流とを印加することを特徴とす
る。高反射端面側の電極の長さは低反射端面側の電極の
長さよりも短いことを特徴とする。
Further, according to the method of driving an integrated optical semiconductor device of the present invention, in an integrated optical semiconductor device having at least an active layer, a waveguide layer and a diffraction grating on a semiconductor substrate, a high reflection film and a low reflection film are provided on two opposing end faces. Are formed in the laser light resonance direction.
Two independent electrodes are formed, of the two electrodes
A DC current is applied to the low-reflection end face side electrode, and a DC current and a modulation current are applied to the high-reflection end face side electrode. The length of the electrode on the high reflection end face side is shorter than the length of the electrode on the low reflection end face side.

(作用) 本発明の集積素子の動作原理を以下に示す。第1図
(a)にその素子の断面構造図を示すように低反射、高
反射端面構造のDFBレーザが2つの領域に分割され、そ
れぞれに独立した電極が形成されている。第1図
(b)、(c)にそれぞれ光の電界分布およびキャリア
密度分布を模式的に示す。均一に電流を注入してレーザ
発振させると高反射端面側で光密度が強くなるためにキ
ャリアが多く消費され、空間的ホールバーニングの効果
により、そこでキャリア密度が減少する。その様子を図
中に破線で示す。本発明のように電極分割構造として高
反射端面側により多くの電流を流してホールバーニング
を抑制することにより、実線で示した様に平坦なキャリ
ア密度分布にすることができる。共振器全体でのキャリ
ア密度の平均値はホールバーニングによって不均一にな
った場合の方が高いのでブラッグ波長は、キャリア密度
が均一な場合と比べて短くなる。高反射端面側に流す電
流を調整することによってホールバーニングの程度、し
たがって発振波長、スペクトル線幅等を制御することが
できる。さらに高反射端面側に変調電流を加えることに
よりレッドシフトのFM応答特性を実現できる。この動作
原理は小滝氏らによる3電極構造のDFBレーザと同様で
あるが、本発明の素子では3電極構造素子を中央部で分
割し、反射鏡を形成した構造になっているので、同じ周
波数変化を生じさせるための変調電流値が半分、すなわ
ちFM変調効率が2倍になることが期待される。FM応答特
性は第2図に示すように熱効果とキャリア効果の重ねあ
わせとなるが、高周波領域でのキャリア効果によるFM変
調効率が高くなることにより、従来例と比べてより広い
変調周波数範囲で平坦なFM応答特性が得られる。さらに
低反射、高反射端面構造であることを反映して大幅な光
出力の改善が期待できる。
(Operation) The operation principle of the integrated device of the present invention will be described below. As shown in FIG. 1 (a), a DFB laser having a low-reflection and high-reflection end face structure is divided into two regions, and independent electrodes are formed on the respective regions. FIGS. 1B and 1C schematically show the electric field distribution and the carrier density distribution of light, respectively. When a laser is oscillated by injecting a current uniformly, a large amount of carriers are consumed because the light density is high on the high reflection end face side, and the carrier density is reduced there by the effect of spatial hole burning. This is indicated by broken lines in the figure. As in the present invention, by applying a larger amount of current to the high reflection end face side as an electrode division structure to suppress hole burning, a flat carrier density distribution can be obtained as shown by a solid line. Since the average value of the carrier density in the entire resonator is higher when the carrier density is non-uniform due to hole burning, the Bragg wavelength is shorter than when the carrier density is uniform. The degree of hole burning, that is, the oscillation wavelength, the spectral line width, and the like can be controlled by adjusting the current flowing to the high reflection end face side. Further, by applying a modulation current to the high reflection end face side, FM response characteristics of red shift can be realized. The principle of operation is the same as that of the three-electrode DFB laser by Kotaki et al. However, in the device of the present invention, the three-electrode structure device is divided at the center and a reflecting mirror is formed. It is expected that the modulation current value for causing the change is half, that is, the FM modulation efficiency is doubled. As shown in Fig. 2, the FM response characteristic is a superposition of the thermal effect and the carrier effect. However, the FM modulation efficiency due to the carrier effect in the high-frequency region increases, so that the FM response efficiency can be increased over a wider modulation frequency range compared to the conventional example. A flat FM response characteristic is obtained. Further, a significant improvement in light output can be expected, reflecting the low reflection and high reflection end face structures.

(実施例) 以下に実施例の図面を参照して本発明をより詳細に説
明する。第1図(a)は本発明の一実施例である集積型
光半導体装置の断面模式図である。このような素子を得
るには、回折格子2を形成した基板1上に発光波長1.3
μm相当のInGaAsPガイド層3、多重量子井戸(MQW)構
造の活性層4、クラッド層5を順次成長する。回折格子
2は周期2400A、ガイド層3は厚さ0.2μm、MQW活性層
4は70A厚のInGaAs層4層、100A厚の1.3μm組成InGaAs
Pバリア層よりなる。通常のプロセスで埋め込み成長を
行なった後、分割電極6を形成し、個々の素子に切り出
して、両端面に低反射膜、高反射膜を形成した。端面反
射率はそれぞれ0%、95%とした。結合係数20cm-1、素
子全長1mm、低反射端面側領域長600μm、分離溝8を25
μm、高反射端面領域長375μmとして特性を評価し
た。そのような素子において50mW光出力時に20Åの波長
可変範囲、1MHz以下のスペクトル線幅動作を得た。FM変
調効率は注入電流条件によって異なるが、注入電流密度
の比を低反射、高反射側で1:0.8とした場合に1.3GHz/mA
と高い値が得られ、変調周波数1kHzから15GHzの範囲に
わたって変動量2dB以内と極めて平坦なFM応答特性が得
られた。
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings of the example. FIG. 1A is a schematic sectional view of an integrated optical semiconductor device according to one embodiment of the present invention. In order to obtain such an element, an emission wavelength of 1.3 nm is formed on the substrate 1 on which the diffraction grating 2 is formed.
An InGaAsP guide layer 3 corresponding to μm, an active layer 4 having a multiple quantum well (MQW) structure, and a cladding layer 5 are sequentially grown. The diffraction grating 2 has a period of 2400 A, the guide layer 3 has a thickness of 0.2 μm, the MQW active layer 4 has four 70-A thick InGaAs layers, and a 100-A thick 1.3-μm composition InGaAs.
Consists of a P barrier layer. After buried growth was performed by a normal process, a divided electrode 6 was formed, cut into individual elements, and a low reflection film and a high reflection film were formed on both end surfaces. The end face reflectivities were 0% and 95%, respectively. Coupling coefficient 20 cm -1 , element length 1 mm, low reflection end face side area length 600 μm, 25 separation grooves 8
The characteristics were evaluated with a μm and a high reflection end face region length of 375 μm. In such a device, a wavelength tunable range of 20 ° and a spectral line width operation of 1 MHz or less were obtained at a light output of 50 mW. FM modulation efficiency varies depending on injection current conditions, but 1.3GHz / mA when the injection current density ratio is 1: 0.8 on the low reflection and high reflection side
, And a very flat FM response with a variation of 2 dB or less over the modulation frequency range of 1 kHz to 15 GHz.

なお実施例においてはInPを基板とする波長1μm帯
の素子について述べたが、用いる材料系はこれに限るも
のでなく、GaAs系等、他の材料を用いてなんら差し支え
ない。
In the embodiment, an element having a wavelength of 1 μm using InP as a substrate has been described. However, the material used is not limited to this, and other materials such as GaAs may be used.

(発明の効果) 本発明の特徴は低反射、高反射端面構造DFBレーザを
共振器方向に2分割したことであり、それによって高光
出力での波長可変動作、高効率かつ平坦なFM応答特性を
実現できた。Gb/sレベルのFSKコヒーレントシステムに
特に有効に用いられる。
(Effects of the Invention) The feature of the present invention is that the DFB laser having a low reflection and high reflection end facet structure is divided into two in the direction of the cavity, thereby achieving a wavelength tunable operation at a high optical output, a high efficiency and a flat FM response characteristic. I realized it. Particularly effective for Gb / s level FSK coherent systems.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明の一実施例である集積素子の断面
図、第1図(b)、(c)はそれぞれ共振器方向の光強
度分布、キャリア密度分布を示す模式図、第2図はFM応
答特性の一例を示す図である。 1:基板、2:回折格子、3:導波層、4:活性層、5:クラッド
層、6、7:電極、8:分離溝、9:低反射膜、10:高反射
膜。
FIG. 1A is a sectional view of an integrated device according to an embodiment of the present invention, and FIGS. 1B and 1C are schematic diagrams showing a light intensity distribution and a carrier density distribution in a resonator direction, respectively. FIG. 2 shows an example of the FM response characteristic. 1: substrate, 2: diffraction grating, 3: waveguide layer, 4: active layer, 5: cladding layer, 6, 7: electrode, 8: separation groove, 9: low reflection film, 10: high reflection film.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に活性層、導波層、回折格子
を少なくとも有する集積型光半導体装置において、対向
する2つの端面に高反射膜、低反射膜が形成され、レー
ザ光共振方向に独立して低反射膜側に直流電流を印加す
る電極と、高反射膜側に直流電流と変調電流とを印加す
る電極とを有し、前記高反射膜側の電極の長さは低反射
膜側の電極の長さよりも短いことを特徴とする集積型光
半導体装置。
An integrated optical semiconductor device having at least an active layer, a waveguide layer, and a diffraction grating on a semiconductor substrate, a high reflection film and a low reflection film are formed on two opposing end faces, and are formed in a laser light resonance direction. An electrode for applying a direct current to the low reflection film side independently, and an electrode for applying a direct current and a modulation current to the high reflection film side, and the length of the electrode on the high reflection film side is low reflection film. An integrated optical semiconductor device, wherein the length is shorter than the length of the electrode on the side.
【請求項2】半導体基板上に活性層、導波層、回折格子
を少なくとも有する集積型光半導体装置において、対向
する2つの端面に高反射膜、低反射膜が形成され、レー
ザ光共振方向に2つの独立した電極が形成され、前記2
つの電極のうち、低反射端面膜側電極に直流電流を印加
し、高反射端面側電極に直流電流と変調電流とを印加す
ることを特徴とする集積型光半導体装置の駆動方法。
2. An integrated optical semiconductor device having at least an active layer, a waveguide layer and a diffraction grating on a semiconductor substrate, wherein a high reflection film and a low reflection film are formed on two opposing end faces, and Two independent electrodes are formed,
A method for driving an integrated optical semiconductor device, characterized in that a DC current is applied to a low-reflection end-face-side electrode and a DC current and a modulation current are applied to a high-reflection end-face side electrode.
【請求項3】前記高反射端面側の電極の長さは低反射端
面側の電極の長さよりも短いことを特徴とする請求項2
記載の集積型光半導体装置の駆動方法。
3. The length of the electrode on the high reflection end face side is shorter than the length of the electrode on the low reflection end face side.
A driving method of the integrated optical semiconductor device according to the above.
JP2098095A 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof Expired - Fee Related JP2751558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098095A JP2751558B2 (en) 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098095A JP2751558B2 (en) 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH03295289A JPH03295289A (en) 1991-12-26
JP2751558B2 true JP2751558B2 (en) 1998-05-18

Family

ID=14210784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098095A Expired - Fee Related JP2751558B2 (en) 1990-04-13 1990-04-13 Integrated optical semiconductor device and driving method thereof

Country Status (1)

Country Link
JP (1) JP2751558B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298667B2 (en) * 1992-08-31 2002-07-02 富士通株式会社 Manufacturing method of semiconductor laser
JP2600490B2 (en) * 1993-01-08 1997-04-16 日本電気株式会社 Distributed feedback semiconductor laser
JP3453406B2 (en) * 1993-07-23 2003-10-06 三菱電機株式会社 Light modulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642577B2 (en) * 1985-06-19 1994-06-01 日本電信電話株式会社 Driving method of multi-electrode distributed feedback semiconductor laser
JP2533355B2 (en) * 1988-03-11 1996-09-11 国際電信電話株式会社 Distributed feedback semiconductor laser device and current injection method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
平成2年応物学会予稿集春季 30a−SA−16 P.963
平成元年応物学会予稿集春季 2P−ZC−16 P.917

Also Published As

Publication number Publication date
JPH03295289A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US5568311A (en) Wavelength tunable semiconductor laser device
JPH0770791B2 (en) Semiconductor laser and manufacturing method thereof
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
Shim et al. Lasing characteristics of 1.5 mu m GaInAsP-InP SCH-BIG-DR lasers
JPH0632332B2 (en) Semiconductor laser device
Lee et al. Wavelength-tunable and single-frequency semiconductor lasers for photonic communications networks
JP2804838B2 (en) Tunable semiconductor laser
JP3198338B2 (en) Semiconductor light emitting device
EP1258955A1 (en) Integrated tunable laser
US4794608A (en) Semiconductor laser device
US6108362A (en) Broadband tunable semiconductor laser source
JPH0732279B2 (en) Semiconductor light emitting element
JPS6322637B2 (en)
US20020064203A1 (en) Strip-loaded tunable distributed feedback laser
JPH01319986A (en) Semiconductor laser device
CA1252188A (en) Single mode injection laser structure
JP2751558B2 (en) Integrated optical semiconductor device and driving method thereof
Okai et al. Complex-coupled/spl lambda//4-shifted DFB lasers with a flat FM response
WO2021148121A1 (en) Dfb laser with angled central waveguide section
WO2021148120A1 (en) Single-mode dfb laser
Tanbun-Ek et al. Tunable electroabsorption modulated laser integrated with a bent waveguide distributed-feedback laser
US20230035055A1 (en) Electroabsorption Modulated Laser
JP2776381B2 (en) Semiconductor laser device
JP2924433B2 (en) Semiconductor laser and method of manufacturing the same
JP3450573B2 (en) Semiconductor laser device, driving method thereof, and optical communication system using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees