JPS6322637B2 - - Google Patents

Info

Publication number
JPS6322637B2
JPS6322637B2 JP56176436A JP17643681A JPS6322637B2 JP S6322637 B2 JPS6322637 B2 JP S6322637B2 JP 56176436 A JP56176436 A JP 56176436A JP 17643681 A JP17643681 A JP 17643681A JP S6322637 B2 JPS6322637 B2 JP S6322637B2
Authority
JP
Japan
Prior art keywords
layer
emitting layer
electrode
light
central region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56176436A
Other languages
Japanese (ja)
Other versions
JPS5878488A (en
Inventor
Shigeyuki Akiba
Katsuyuki Uko
Kazuo Sakai
Juichi Matsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP56176436A priority Critical patent/JPS5878488A/en
Publication of JPS5878488A publication Critical patent/JPS5878488A/en
Publication of JPS6322637B2 publication Critical patent/JPS6322637B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は安定な単一発振波長が得られる分布帰
還形半導体レーザ(以下「DFBレーザ」と称す)
の駆動方法に関するものである。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention provides a distributed feedback semiconductor laser (hereinafter referred to as "DFB laser") that can obtain a stable single oscillation wavelength.
The present invention relates to a driving method.

(従来技術とその問題点) DFB(distributed feed back)レーザは、電流
を注入する部分に周期的な屈折率変化を与えるこ
とにより、分布的な光の帰還を生じさせ発振を得
るものである。第1図は前記周期的な屈折率変化
を模式図的に表したものであるが、DFBレーザ
において得られる発振波長λは図に示す屈折率変
化の周期Λによつて決定される。(一般的にλ=
2neg、neg:導波路の等価的な屈折率。)このた
め、通常の平行平板反射鏡によるレーザと比べる
と発振波長は極めて安定である。
(Prior art and its problems) A DFB (distributed feed back) laser generates oscillation by causing distributed light feedback by giving a periodic refractive index change to a portion into which a current is injected. FIG. 1 schematically shows the periodic refractive index change, and the oscillation wavelength λ obtained in the DFB laser is determined by the period Λ of the refractive index change shown in the figure. (Generally λ=
2n eg , n eg : equivalent refractive index of the waveguide. ) Therefore, the oscillation wavelength is extremely stable compared to a laser using a normal parallel plate reflecting mirror.

しかるに、例えば1976年のIEEEジヤーナルオ
プクオンタムエレクトロニクス、第QE−12巻、
No.9、ページ532〜539には、第1図に示したよう
な周期構造について発振しきい値利得を詳細に検
討すると、第3図の破線で示すように所要の波長
λ0に極めて近い2つの波長λ1、λ2に対して同時に
最低値をとることが述べられている。このことは
単なる周期構造ではこれらのλ1とλ2の2波長で発
振する可能性があり、発振波長の不安定性を招く
ことを意味している。この問題の解決のために、
前記論文には、第2図に示すように、周期構造の
中間にΛ/2の長さの平坦部を設け、周期構造の
中央部分で入射波と反射波の位相をπ/2ずらし
てやると、発振しきい値利得特性は第3図の実線
のようになり、波長λ0においてのみ発振しきい値
利得が最低値となり、かつその利得が第1図の周
期構造に比べて数分の1に改善されることが述べ
られている。従つて、この構造によれば発振しき
い値電流の大幅な低減と極めて安定な単一波長発
振が同時に実現される。
However, for example, 1976 IEEE Journal Op Quantum Electronics, Volume QE-12,
No. 9, pages 532-539, it is stated that when the oscillation threshold gain is examined in detail for the periodic structure shown in Figure 1, it is extremely close to the required wavelength λ 0 as shown by the broken line in Figure 3. It is stated that the two wavelengths λ 1 and λ 2 take the lowest value at the same time. This means that a simple periodic structure may oscillate at these two wavelengths, λ 1 and λ 2 , leading to instability of the oscillation wavelength. To solve this problem,
In the above paper, as shown in Figure 2, a flat part with a length of Λ/2 is provided in the middle of the periodic structure, and the phases of the incident wave and the reflected wave are shifted by π/2 at the center of the periodic structure. , the oscillation threshold gain characteristic is as shown by the solid line in Figure 3, and the oscillation threshold gain is the lowest value only at wavelength λ 0 , and the gain is a fraction of that of the periodic structure in Figure 1. It is stated that this will be improved. Therefore, this structure simultaneously realizes a significant reduction in the oscillation threshold current and extremely stable single wavelength oscillation.

しかし、周期構造はホログラフイーの原理を用
いて大きな面積に亘つて一度に作製されるのが通
常であり、現実的な問題として第2図のように微
小部分だけが変則的な周期構造を有する如く作製
するのは極めて困難であり、上述の原理を適用し
た半導体レーザは実現されるに至つていない。
However, periodic structures are usually fabricated over a large area at once using the principle of holography, and the practical problem is that only minute areas have an irregular periodic structure, as shown in Figure 2. It is extremely difficult to manufacture such a semiconductor laser, and a semiconductor laser to which the above-mentioned principle is applied has not yet been realized.

(発明の目的) 本発明は、半導体レーザに設ける周期構造は従
来から用いられている構造のままとし、活性領域
に注入する電流を制御して活性領域の光の進行方
向に対して新たに実質的な屈折率差を生じさせ、
この屈折率差を利用して入射波と反射波の位相を
π/2ずらせるように注入電流を制御するように
したことを特徴とする分布帰還形半導体レーザの
駆動方法を提供するものである。
(Objective of the Invention) The present invention maintains the periodic structure provided in the semiconductor laser as the structure conventionally used, and controls the current injected into the active region to create a new material with respect to the direction of light propagation in the active region. causing a refractive index difference,
The present invention provides a method for driving a distributed feedback semiconductor laser, characterized in that the injection current is controlled so as to shift the phase of an incident wave and a reflected wave by π/2 using this refractive index difference. .

(発明の構成) 以下図面を用いて本発明を詳細に説明する。(Structure of the invention) The present invention will be explained in detail below using the drawings.

第4図は本発明の実施例であり、aはストライ
プ形半導体レーザの断面図を示し、bは平面図を
示す。図において、1はn形InP基板、2は周期
凹凸構造8を有するn形InGaAsP層、3はn形
InP層、4はInGaAsP発光層、5はInGaAsPバ
ツフア層、6はp形InP層、7はn形InGaAsP
層、9〜12は電極である。このうち、n形InP
層3は周期的凹凸構造8がn形InP基板1に直接
設けられた場合には必要でない。また、
InGaAsPバツフア層5は、InGaAsP発光層4の
上にp形InP層6を成長させる場合の緩衝層であ
り原理的には必須ではない。
FIG. 4 shows an embodiment of the present invention, in which a shows a cross-sectional view of a striped semiconductor laser, and b shows a plan view. In the figure, 1 is an n-type InP substrate, 2 is an n-type InGaAsP layer having a periodic uneven structure 8, and 3 is an n-type
InP layer, 4 is InGaAsP light emitting layer, 5 is InGaAsP buffer layer, 6 is p-type InP layer, 7 is n-type InGaAsP
Layers 9-12 are electrodes. Of these, n-type InP
Layer 3 is not necessary if periodic relief structure 8 is provided directly on n-type InP substrate 1. Also,
The InGaAsP buffer layer 5 is a buffer layer when the p-type InP layer 6 is grown on the InGaAsP light emitting layer 4, and is not essential in principle.

本実施例の構全上の特徴は、原理的には2重ヘ
テロ構造の上にn形の層7を設け、そこにZn等
を図中点々で示した領域に拡散させて電流通路を
形成し、かつこの電流通路に対応して両端部電極
9,10,11を設けかつ電極9及び11が同図
bの如く接続したことにある。ここで、第1領域
の長さをl1、中央領域の長さをl2、第3領域の長
さをl3とすれば、l1l3≫l2である。
The structural feature of this embodiment is that, in principle, an n-type layer 7 is provided on the double heterostructure, and a current path is formed by diffusing Zn, etc. therein into the regions indicated by dots in the figure. Moreover, electrodes 9, 10, and 11 at both ends are provided corresponding to this current path, and the electrodes 9 and 11 are connected as shown in FIG. Here, if the length of the first region is l 1 , the length of the central region is l 2 , and the length of the third region is l 3 , then l 1 l 3 >> l 2 .

以上のような構成のもとで、例えば第1領域及
び第2領域の電極9,11に同等なある電流I1
流し、中央領域の電極10にこれと異なる電流I2
を流すと、キヤリア密度の差が生じ、中央領域の
屈折率が両端部分の第1領域及び第2領域と比べ
て僅かに異なつてくる。従つて、両端領域の電流
9,11と中央領域の電極10との電流を加減し
て、発光層4の中央領域で光の位相がπ/2だけ
異なるようにすれば、第2図の変則周期構造と同
様な効果が得られることになる。この効果が顕著
に現れているかどうかは、電極9,10,11を
共通にした場合とそうでない場合とで発振しきい
値に大なる変化が生じるかどうか観測することに
よつて調べることができる。
Under the above configuration, for example, a certain current I 1 equivalent to the current I 1 is passed through the electrodes 9 and 11 in the first region and the second region, and a different current I 2 is passed through the electrode 10 in the central region.
Flowing therein causes a difference in carrier density, and the refractive index of the central region becomes slightly different from that of the first region and the second region at both end portions. Therefore, if the currents 9 and 11 in both end regions and the currents in the electrode 10 in the central region are adjusted so that the phase of light differs by π/2 in the central region of the light emitting layer 4, the anomaly shown in FIG. 2 can be solved. The same effect as a periodic structure can be obtained. Whether this effect is noticeable or not can be investigated by observing whether there is a large change in the oscillation threshold when the electrodes 9, 10, and 11 are shared and when they are not. .

λ/4シフト条件は、l2(電流I2)部分でl1部分
に比べて屈折率が異なる必要があり、その屈折率
差Δnとl2の関係は Δn・l2=λ/4 (λ:波長) …(1) 一方、電流注入I1、I2によるキヤリア密度N1
N2は、 N1=τsI1/edwl1 N2=τsI2/edwl2 …(2) (e:電子の電荷、d:発光層の深さ、w:スト
ライプ幅、τs:注入キヤリアの寿命時間) このキヤリア密度の変動あるいは差によつて屈
折率が次のように変わる。
The λ/4 shift condition requires that the refractive index of the l 2 (current I 2 ) part is different from that of the l 1 part, and the relationship between the refractive index difference Δn and l 2 is Δn・l 2 = λ/4 ( λ: Wavelength) ...(1) On the other hand, carrier density N 1 due to current injection I 1 and I 2 ,
N 2 is N 1 = τ s I 1 /edwl 1 N 2 = τ s I 2 / edwl 2 …(2) (e: electron charge, d: depth of light emitting layer, w: stripe width, τ s : life time of the injected carrier) The refractive index changes as follows due to this variation or difference in carrier density.

Δn=−1.2×10-26 (N1−N2) …(3) 例えば、第1及び第3領域の長さ(l1、l3)を
それぞれ150μm、中央領域の長さ(l2)を50μm、
InGaAsP発光層の層厚(d)を0.1μm、ストライプ
の幅(w)を1μm、注入キヤリアの寿命時間
(τs)を1nsとすれば、(2)式及び(3)式よりI1=6I2
3.12(mA)の関係が得られる。
Δn=-1.2×10 -26 (N 1 −N 2 ) …(3) For example, the lengths of the first and third regions (l 1 , l 3 ) are each 150 μm, and the length of the central region (l 2 ) 50μm,
If the layer thickness (d) of the InGaAsP light-emitting layer is 0.1 μm, the stripe width (w) is 1 μm, and the lifetime time (τ s ) of the injection carrier is 1 ns, then from equations (2) and (3), I 1 = 6I 2
A relationship of 3.12 (mA) is obtained.

従つて、1例としてI1を20(mA)、I2を3.85
(mA)にすれば、本発明の特徴である低発振し
きい値で、かつ安定な発振波長が得られる。
Therefore, as an example, I 1 is 20 (mA) and I 2 is 3.85.
(mA), a stable oscillation wavelength with a low oscillation threshold, which is a feature of the present invention, can be obtained.

また第4図cのように中央領域の電極10は設
けず中央領域を非励起領域としても、電極9,1
1の電流と長さl1、l2、l3を適当に選ぶことによ
り、同様な効果が期待できる。
Furthermore, as shown in FIG.
A similar effect can be expected by appropriately selecting the current and lengths l 1 , l 2 , and l 3 of 1.

例えば、第1及び第3領域の長さ(l1、l3)を
それぞれ150μm、電流I1を31mAとした場合、中
央領域の長さ(l2)は、(1)式より5μmが得られ
る。
For example, if the lengths (l 1 , l 3 ) of the first and third regions are each 150 μm and the current I 1 is 31 mA, the length (l 2 ) of the central region is 5 μm from equation (1). It will be done.

但し、発光層の層厚(d)等は第4図bと同一条件
にし、発振波長(λ)を1.55μmで求めた。
However, the layer thickness (d) of the light emitting layer, etc. were set to the same conditions as in FIG. 4b, and the oscillation wavelength (λ) was determined at 1.55 μm.

なお、第2図では特にストライプ構造について
は触れなかつたが、平凸導波路形や埋め込み形を
はじめあらゆるストライプ構造に容易に応用でき
る。
Although the striped structure is not particularly mentioned in FIG. 2, it can be easily applied to any striped structure including plano-convex waveguide type and buried type.

(発明の効果) 以上説明したように、本発明の分布帰還形半導
体レーザの注入電流制御方法は、従来の周期的な
凹凸構造を変えることなく、発振しきい値を低減
し、発振波長の安定性も極めて優れたものであ
り、かつ製作上の困難もほとんどないDFBレー
ザを用いることができる。従つて、本発明の注入
電流の制御方法は高性能の単一波長光源用とし
て、低損失光フアイバ通信をはじめ光計測などの
広い分野に適用でき、その効果は極めて大であ
る。
(Effects of the Invention) As explained above, the injection current control method of the distributed feedback semiconductor laser of the present invention reduces the oscillation threshold and stabilizes the oscillation wavelength without changing the conventional periodic uneven structure. It is possible to use a DFB laser, which has extremely excellent properties and has almost no manufacturing difficulties. Therefore, the injection current control method of the present invention can be applied to a wide range of fields such as low-loss optical fiber communication and optical measurement as a high-performance single wavelength light source, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明に用いる一様な周期
的屈折率分布特性図、第2図は本発明の原理説明
に用いるΛ/2の平坦部を有する変則的な周期的
屈折分布特性図、第3図は本発明の原理説明に用
いる発振波長と発振利得をそれぞれ示す特性図、
第4図a,b,cは本発明の一実施例の横断面図
及び平面図である。 1……n形InP基板、2……n形InGaAsP層、
3……n形InP層、4……InGaAsP発光層、5…
…InGaAsPバツフア層、6……p形InP層、7…
…n形InGaAsP層、8……周期的凹凸構造、9,
10,11,12……電極。
Figure 1 is a uniform periodic refractive index distribution characteristic diagram used to explain the principle of the present invention, and Figure 2 is an irregular periodic refractive index distribution characteristic diagram with a flat part of Λ/2 used to explain the principle of the present invention. , FIG. 3 is a characteristic diagram showing the oscillation wavelength and oscillation gain used to explain the principle of the present invention,
Figures 4a, b, and c are a cross-sectional view and a plan view of an embodiment of the present invention. 1... n-type InP substrate, 2... n-type InGaAsP layer,
3... n-type InP layer, 4... InGaAsP light emitting layer, 5...
...InGaAsP buffer layer, 6...p-type InP layer, 7...
... n-type InGaAsP layer, 8 ... periodic uneven structure, 9,
10, 11, 12...electrodes.

Claims (1)

【特許請求の範囲】 1 発光層又は該発光層に近接する層に光の進行
方向に沿う周期的な凹凸構造を備えることによつ
て等価的に周期的な屈折率変化を与えかつ前記発
光層に電極を介して電流を注入することにより発
振せしめるように構成された分布帰還形半導体レ
ーザにおいて、 前記発光層の上にバツフア層、前記発光層の禁
制帯幅よりも大なる禁制帯幅を有する半導体層、
該半導体層の導電型と異なる導電型を有するキヤ
ツプ層が形成され、前記発光層に電流を注入する
該電極が該キヤツプ層の表面の中央領域の一部で
接続されている凹状の形状を有して前記キヤツプ
層に配置され、該凹状の電極の形状に合わせて前
記キヤツプ層を前記半導体層の一部に達するよう
に亜鉛拡散を施して電流通路を形成し、前記周期
的な凹凸構造の中央領域で入射波と反射波の位相
がπ/2だけ異なるように前記凹状の電極と前記
中央領域に配置された他の電極とに注入する電流
を制御するか、または前記中央領域を非励起領域
にして、該非励起領域と前記凹状の電極が配置さ
れた領域の長さとを調整してかつ前記凹状の電極
に注入する電流を制御することを特徴とする分布
帰還形半導体レーザの駆動方法。
[Scope of Claims] 1. A light-emitting layer or a layer close to the light-emitting layer is provided with a periodic uneven structure along the direction of light propagation to impart an equivalent periodic refractive index change, and the light-emitting layer A distributed feedback semiconductor laser configured to oscillate by injecting current through an electrode to the light emitting layer, a buffer layer on the light emitting layer, having a forbidden band width larger than the forbidden band width of the light emitting layer. semiconductor layer,
A cap layer having a conductivity type different from that of the semiconductor layer is formed, and the electrode for injecting current into the light emitting layer has a concave shape connected to a part of the central region of the surface of the cap layer. Zinc is diffused into the cap layer to reach a part of the semiconductor layer in accordance with the shape of the concave electrode to form a current path, and the periodic uneven structure is formed. The current injected into the concave electrode and the other electrode arranged in the central region is controlled so that the phases of the incident wave and the reflected wave differ by π/2 in the central region, or the central region is de-excited. A method for driving a distributed feedback semiconductor laser, comprising adjusting the length of the non-excited region and the region in which the concave electrode is arranged, and controlling the current injected into the concave electrode.
JP56176436A 1981-11-05 1981-11-05 Distributed feedback type semiconductor laser Granted JPS5878488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56176436A JPS5878488A (en) 1981-11-05 1981-11-05 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176436A JPS5878488A (en) 1981-11-05 1981-11-05 Distributed feedback type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5878488A JPS5878488A (en) 1983-05-12
JPS6322637B2 true JPS6322637B2 (en) 1988-05-12

Family

ID=16013667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176436A Granted JPS5878488A (en) 1981-11-05 1981-11-05 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5878488A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178685A (en) * 1984-02-27 1985-09-12 Nippon Telegr & Teleph Corp <Ntt> Single-axial mode semiconductor laser device
GB8406432D0 (en) * 1984-03-12 1984-04-18 British Telecomm Semiconductor devices
JPH0632332B2 (en) * 1984-08-24 1994-04-27 日本電気株式会社 Semiconductor laser device
JPS61255086A (en) * 1985-05-08 1986-11-12 Mitsubishi Electric Corp Semiconductor laser device
EP0205139B1 (en) * 1985-06-10 1992-09-23 Nec Corporation Distributed feedback semiconductor laser device
JPH0642577B2 (en) * 1985-06-19 1994-06-01 日本電信電話株式会社 Driving method of multi-electrode distributed feedback semiconductor laser
JPS62245690A (en) * 1986-04-18 1987-10-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
FR2598862B1 (en) * 1986-05-16 1994-04-08 Bouley Jean Claude SEMICONDUCTOR LASER WITH DISTRIBUTED REACTION AND CONTINUOUSLY TUNABLE WAVELENGTH.
GB2197531B (en) * 1986-11-08 1991-02-06 Stc Plc Distributed feedback laser
JP2700312B2 (en) * 1987-01-07 1998-01-21 シャープ株式会社 Distributed feedback semiconductor laser device
JPH084186B2 (en) * 1987-10-28 1996-01-17 国際電信電話株式会社 Semiconductor laser
JP2533355B2 (en) * 1988-03-11 1996-09-11 国際電信電話株式会社 Distributed feedback semiconductor laser device and current injection method thereof
JP2631716B2 (en) * 1988-09-20 1997-07-16 富士通株式会社 Semiconductor light emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513976Y2 (en) * 1975-01-17 1980-03-29

Also Published As

Publication number Publication date
JPS5878488A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
US4829535A (en) Variable wavelength semiconductor laser
US4689797A (en) High power single spatial mode semiconductor laser
US6107112A (en) Distributed feedback semiconductor laser and method for producing the same
US4803692A (en) Semiconductor laser devices
US5347526A (en) Wavelength-tunable semiconductor laser
EP0300790B1 (en) Semiconductor laser
JPH07105571B2 (en) Individually addressable laser diode array
JP2804838B2 (en) Tunable semiconductor laser
JPS6322637B2 (en)
JPH0194689A (en) Optoelectronic semiconductor element
JPH0732279B2 (en) Semiconductor light emitting element
JPS6332988A (en) Distributed feedback semiconductor laser
JPH09270568A (en) Multiple wavelength oscillation laser
JPH04783A (en) Semiconductor optical element
JP3169202B2 (en) Continuous wavelength tunable semiconductor laser
JPH0139232B2 (en)
JPH0697604A (en) Distributed reflection type semiconductor laser
JP2751558B2 (en) Integrated optical semiconductor device and driving method thereof
JP2839397B2 (en) Tunable semiconductor laser device
JP2666297B2 (en) Tunable semiconductor laser
JPH06177481A (en) Semiconductor laser device
JPH0582888A (en) Distributed feedback semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPH06105817B2 (en) Semiconductor laser with quantum well optical modulator
JP2903322B2 (en) Semiconductor integrated laser