JPH0732279B2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0732279B2
JPH0732279B2 JP60009703A JP970385A JPH0732279B2 JP H0732279 B2 JPH0732279 B2 JP H0732279B2 JP 60009703 A JP60009703 A JP 60009703A JP 970385 A JP970385 A JP 970385A JP H0732279 B2 JPH0732279 B2 JP H0732279B2
Authority
JP
Japan
Prior art keywords
laser
modulator
quantum well
modulation
well structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60009703A
Other languages
Japanese (ja)
Other versions
JPS61168980A (en
Inventor
裕三 吉国
紘一 脇田
裕一 河村
淳一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60009703A priority Critical patent/JPH0732279B2/en
Publication of JPS61168980A publication Critical patent/JPS61168980A/en
Publication of JPH0732279B2 publication Critical patent/JPH0732279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、数Gb/s以上の超高速変調が可能で、しかも変
調時でも発振線幅が広がらない半導体発光素子に関する
ものである。
TECHNICAL FIELD The present invention relates to a semiconductor light emitting device capable of ultra-high speed modulation of several Gb / s or more and having an oscillation line width not widened during modulation.

〔従来の技術〕 長距離大容量光通信用光源として、高速変調時において
も、発振線幅が広がらない半導体発光装置が必要とされ
ている。これまでに、レーザ内部に回折格子を持つた分
布帰還(DFB)・分布反射(DBR)型レーザ等の単一縦モ
ードレーザが開発され、変調時の線幅が通常の多縦モー
ドレーザの数十分の一になることが確認されている。し
かし、これらの単一縦モードレーザでも、Gb/s以上の直
接変調を行なつた場合には、活性層の屈折率変化による
発振周波数変化(Chirping)がおこり、発振線幅が数Å
以上広がつてしまう。そのため、1.5μm帯の光通信用
光源として用いた場合には、光フアイバーの波長分散に
より伝送特性の劣化をもたらしていた。
[Prior Art] As a light source for long-distance, large-capacity optical communication, a semiconductor light-emitting device that does not widen the oscillation line width even during high-speed modulation is required. So far, single longitudinal mode lasers such as distributed feedback (DFB) / distributed reflection (DBR) type lasers with a diffraction grating inside the laser have been developed, and the line width during modulation is the number of ordinary multi-longitudinal mode lasers. It has been confirmed to be one tenth. However, even with these single longitudinal mode lasers, when direct modulation of Gb / s or more is performed, oscillation frequency change (Chirping) occurs due to the change in refractive index of the active layer, and the oscillation line width is several Å
It becomes wider than that. Therefore, when used as a light source for optical communication in the 1.5 μm band, the wavelength characteristics of the optical fiber deteriorate the transmission characteristics.

又、半導体レーザを直接変調した場合には、キヤリアと
光子の寿命できまる共鳴周波数があり、これによつて変
調周波数の上限がおさえられてしまう。パルス変調の場
合には、これによる共鳴効果のために、変調パターンに
よつて変調特性が変わる現象(パターン効果)があり、
伝送特性の劣化をもたらしていた。
Further, when the semiconductor laser is directly modulated, there is a resonance frequency at which the carriers and the photons have a lifetime, which limits the upper limit of the modulation frequency. In the case of pulse modulation, there is a phenomenon (pattern effect) in which the modulation characteristic changes depending on the modulation pattern due to the resonance effect due to this.
This caused deterioration of transmission characteristics.

これまでに、この問題を解決するために、第2図のよう
に分布帰還型レーザと光吸収変調器を集積化した素子が
提案されている。この素子は、半導体基板22上に形成さ
れた分布帰還型レーザと、そのレーザと共通な光導波路
層25及び活性層23で結ばれた、電気的絶縁領域及び電流
注入型光変調器より形成される集積型光素子であり、該
変調器への電流注入によつて、光吸収を減少させ、光出
力を変調するものである。なお、図において、21は共通
電極,26はクラツド層,27は変調電極,29はレーザ電極で
ある。
In order to solve this problem, an element in which a distributed feedback laser and an optical absorption modulator are integrated has been proposed as shown in FIG. This element is formed of a distributed feedback laser formed on a semiconductor substrate 22, an electrically insulating region and a current injection type optical modulator connected by an optical waveguide layer 25 and an active layer 23 common to the laser. Is an integrated optical device that reduces optical absorption and modulates optical output by injecting current into the modulator. In the figure, 21 is a common electrode, 26 is a cladding layer, 27 is a modulation electrode, and 29 is a laser electrode.

この構成によれば半導体レーザに分布帰還型構造を採用
しているので、反射端面が不用となり、レーザと変調器
を導波路で直接結合でき、これにより両者の結合損失を
ほとんど0にすることができる。
According to this structure, since the distributed feedback structure is adopted for the semiconductor laser, the reflection end face is unnecessary, and the laser and the modulator can be directly coupled by the waveguide, and thereby the coupling loss between the two can be almost zero. it can.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし,上記従来の素子の構成では、高速変調用光源と
しては、以下のような欠点があつた。
However, the above conventional element structure has the following drawbacks as a high-speed modulation light source.

電気的絶縁領域がレーザ部分と同じ活性層を含むため
に、導波路としての損失が大きい。すなわち、活性層は
通常のDH構造であるため、電流が注入されない電気的絶
縁領域は強い光吸収を示す。そのため、電気的絶縁を十
分確保できず、変調器からレーザへの電流の回り込みに
よるチヤーピング(Chirping;光の強度変調をかけると
発振周波数が変動してしまう現象)がおこつてしまう。
Since the electrically insulating region includes the same active layer as the laser portion, the loss as a waveguide is large. That is, since the active layer has a normal DH structure, the electrically insulating region where no current is injected exhibits strong light absorption. Therefore, electrical insulation cannot be sufficiently secured, and chirping (a phenomenon in which the oscillation frequency changes when light intensity modulation is applied) occurs due to the current flowing from the modulator to the laser.

変調器が順方向バイアスによるキヤリア注入型の素子
(電流注入による光吸収の変化を利用している)である
ため、キヤリア蓄積効果のために変調周波数帯域が狭
く、Gb/s領域での変調はむずかしい。400Mb/s程度まで
しか変調できていない。
Since the modulator is a carrier injection type device (using the change in light absorption due to current injection) due to forward bias, the modulation frequency band is narrow due to the carrier accumulation effect, and modulation in the Gb / s region is not possible. It's difficult. It can only modulate up to about 400 Mb / s.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、量子井戸構造の
活性層を有する回折格子帰還型レーザと、該レーザの共
振器の外側に量子井戸構造を有する電気光吸収変調器
と、両者を光学的に結合すると共に電気的に分離する電
気的絶縁領域とが半導体基板上に備えられ、前記電気光
吸収変調器及び電気的絶縁領域は、前記回折格子帰還型
レーザの量子井戸構造の活性層と共通な量子井戸構造の
活性層で結合していることを特徴とし、半導体基板上に
回折格子帰還型レーザと、該レーザと共通な量子井戸構
造の活性層で結ばれた電気的絶縁領域及び電気光吸収変
調器とを集積化せしめている。
In order to solve the conventional problems, the present invention provides a diffraction grating feedback laser having an active layer of a quantum well structure, an electro-optical absorption modulator having a quantum well structure outside the resonator of the laser, and an optical absorption modulator And an electrically insulating region electrically coupled to each other and electrically isolated from each other are provided on the semiconductor substrate, and the electro-optical absorption modulator and the electrically insulating region are an active layer of a quantum well structure of the diffraction grating feedback laser. Characterized in that they are coupled by an active layer having a common quantum well structure, a diffraction grating feedback laser on a semiconductor substrate, and an electrically insulating region and an electric field connected by the active layer having a quantum well structure common to the laser. The optical absorption modulator is integrated.

〔実施例〕〔Example〕

以下、第1図の本発明の実施例の素子を説明する。 The element of the embodiment of the present invention shown in FIG. 1 will be described below.

第1図において、n型InP半導体基板2上に、量子井戸
層4を含むInAlAs活性層3,InAlAs光導波路層5,p型InPク
ラツド層6の各成長層が形成されている。8はエツチン
グによりクラツド層の一部を除去して形成した電気的絶
縁領域,10は光導波路の一部に形成された回折格子,11は
SiN反射防止膜である。またn型InP基板2には共通電極
1が、また電気的絶縁領域8の左右のクラツド層6上に
レーザ電極9及び変調電極7が形成されている。
In FIG. 1, growth layers of an InAlAs active layer 3 including a quantum well layer 4, an InAlAs optical waveguide layer 5, and a p-type InP cladding layer 6 are formed on an n-type InP semiconductor substrate 2. 8 is an electrically insulating region formed by removing a part of the cladding layer by etching, 10 is a diffraction grating formed in a part of the optical waveguide, and 11 is
It is a SiN antireflection film. A common electrode 1 is formed on the n-type InP substrate 2, and a laser electrode 9 and a modulation electrode 7 are formed on the cladding layers 6 on the left and right of the electrically insulating region 8.

この素子を動作させるには、レーザ電極9に順方向
(正)電圧を加えて電流注入を行なう。これによつて,
本素子の回折格子10を形成された部分は分布帰還型レー
ザとして動作し発振する。一方変調電極7に逆方向バイ
アスを加え、それに変調電圧を加えることにより電極7
の下の部分は電気光吸収変調器として動作する。分布帰
還型レーザの発振光は、変調器による電気光吸収を受け
る。電気光吸収の強さは、変調電圧によつて変化するた
め変調器を通つた光出力は変調を受ける。反射防止膜11
は、変調器を通つた光が端面で反射され、分布帰還型レ
ーザに影響を与えるのを防止するために設けられてい
る。
To operate this element, a forward (positive) voltage is applied to the laser electrode 9 to inject current. By this,
The portion of the present element where the diffraction grating 10 is formed operates as a distributed feedback laser and oscillates. On the other hand, by applying a reverse bias to the modulation electrode 7 and applying a modulation voltage thereto, the electrode 7
The lower part acts as an electro-optic absorption modulator. The oscillation light of the distributed feedback laser receives electric light absorption by the modulator. Since the intensity of electro-optical absorption changes depending on the modulation voltage, the light output through the modulator is modulated. Antireflection film 11
Is provided to prevent the light passing through the modulator from being reflected by the end face and affecting the distributed feedback laser.

本素子は、半導体レーザと光変調器を集積化した素子の
一種であるが、以上の様な構成とすることにより以下の
ような効果がえられる。
This device is a kind of device in which a semiconductor laser and an optical modulator are integrated, and the following effects can be obtained by the above configuration.

活性層を量子井戸構造にすることにより、導波路の低損
失化及び変調器の電気光吸収効果の増大が可能になる。
量子井戸レーザでは、その発振波長は電流注入を行なわ
ない場合の吸収帯に比べて長波長側にシフトすることが
知られている。このため、本素子で電気的絶縁領域及び
変調器で用いている導波路は、レーザ領域からのレーザ
光に対してはほぼ透明であり、低損失の導波路となつて
いる。
By making the active layer a quantum well structure, it is possible to reduce the loss of the waveguide and increase the electro-optical absorption effect of the modulator.
It is known that in a quantum well laser, its oscillation wavelength shifts to the long wavelength side compared to the absorption band when current injection is not performed. Therefore, the waveguide used in the electrically insulating region and the modulator in this device is almost transparent to the laser light from the laser region, and is a low-loss waveguide.

本素子は、レーザと変調器をこの低損失の導波路でつな
いでいるため、損失を増大させずにレーザと変調器を離
すことができ、電気的絶縁を完全にすることができる。
これによつて、レーザと変調器との電気的な干渉を除去
でき、本素子のようにレーザを順にバイアス、変調器を
逆バイアスで動作させることが可能になる。
In this device, since the laser and the modulator are connected by this low-loss waveguide, the laser and the modulator can be separated from each other without increasing the loss, and the electrical insulation can be perfected.
As a result, electrical interference between the laser and the modulator can be eliminated, and it becomes possible to operate the laser sequentially with the bias and the modulator with the reverse bias as in this element.

又、量子井戸構造では室温でも励起子吸収が観測でき、
そのために電気光吸収効果が通常の半導体に比べて十倍
以上大きいことが知られている。そのため量子井戸構造
の活性層を電気光吸収変調器として利用することによ
り、104V/cm程度の電場によつて十分な変調度を得るこ
とが可能である。電気光吸収による変調器は、キヤリア
密度の変動を伴わないため高速変調が可能であり、10Gb
/sでの変調結果も報告されている。しかし、通常の半導
体では105V/cm程度の高電界を必要とするため実用化さ
れた例は少ない。本素子では、量子井戸構造を利用する
ことにより数Vの電圧で動作する変調器を実現してい
る。
Also, in the quantum well structure, exciton absorption can be observed even at room temperature,
Therefore, it is known that the electro-optical absorption effect is ten times or more larger than that of a normal semiconductor. Therefore, by using the active layer of the quantum well structure as an electro-optical absorption modulator, it is possible to obtain a sufficient modulation degree by an electric field of about 10 4 V / cm. The modulator based on electro-optical absorption is capable of high-speed modulation because carrier density does not fluctuate.
Modulation results at / s are also reported. However, few semiconductors have been put into practical use because ordinary semiconductors require a high electric field of about 10 5 V / cm. In this device, a modulator that operates at a voltage of several V is realized by using a quantum well structure.

なお、本実施例においても半導体レーザに分布帰還型構
造を採用することにより、反射端面が不要になり、レー
ザと変調器を導波路で直接結合でき、これにより、レー
ザと変調器間の結合損失をほとんど0にすることができ
るという第2図の素子と共通する効果を保有する。
In the present embodiment as well, by adopting the distributed feedback structure for the semiconductor laser, the reflection end face is not necessary, and the laser and the modulator can be directly coupled by the waveguide, which results in the coupling loss between the laser and the modulator. Has the same effect as that of the device shown in FIG.

以上に示した実施例では、レーザを分布帰還型としてい
るが、分布反射型(DBR)レーザを用いてもよい。又、
電気的絶縁層はクラツド層の一部をエツチングにより除
去して形成しているが、H2,Fe等のイオン注入による絶
縁化を用いてもよい。活性層は、量子井戸構造であれ
ば、単一量子井戸(SQW)でも多重量子井戸(MQW)でも
よい。又、上記実施例ではレーザ部分の端面はヘキ開面
のままとなつているが高出力化のために、金等の高反射
膜をコーテイグしてもよく、あるいはさらに導波路を接
続して光出力モニタ等に結合してもよい。又、レーザ部
分に関しては高性能化のため、位相シフト回折格子型レ
ーザ等を用いてもよい。
In the embodiments described above, the laser is of the distributed feedback type, but a distributed reflection (DBR) laser may be used. or,
The electrically insulating layer is formed by removing a part of the cladding layer by etching, but insulation by ion implantation of H 2 , Fe or the like may be used. The active layer may be a single quantum well (SQW) or a multiple quantum well (MQW) as long as it has a quantum well structure. Further, in the above-mentioned embodiment, the end face of the laser portion is left as a cleaved surface, but a high reflection film such as gold may be coated for higher output, or a waveguide may be further connected to the optical portion. It may be combined with an output monitor or the like. Further, in order to improve the performance of the laser portion, a phase shift diffraction grating type laser or the like may be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の素子は高速変調が可能な
電気光吸収変調器と安定な単一縦モードで発振する分布
帰還型レーザ等を集積したものであるから、以下のよう
な効果が期待できる。
As described above, since the device of the present invention integrates an electro-optical absorption modulator capable of high-speed modulation and a distributed feedback laser that oscillates in a stable single longitudinal mode, it has the following effects. Can be expected.

電気光吸収変調器は、キヤリアの蓄積効果がないため
に、数10Gb/sの高速変調が可能である。又、半導体レー
ザの直接変調とちがい共鳴効果がないため、パルスパタ
ーンによる変調特性の変化(パターン効果)もおこらな
いため、超大容量光通信用光源として利用できる。
Since the electro-optic absorption modulator has no carrier accumulation effect, it can perform high-speed modulation of several tens of Gb / s. Further, since there is no resonance effect, which is different from the direct modulation of the semiconductor laser, and the change of the modulation characteristic due to the pulse pattern (pattern effect) does not occur, it can be used as a light source for ultra large capacity optical communication.

本発明の素子では、半導体レーザは一定出力の連続動
作をしているから、変調時でも“chirping"による発振
線幅の広がりはなく、光通信用光源に用いた場合、フア
イバーの分散効果をさけることができる。
In the device of the present invention, since the semiconductor laser continuously operates with a constant output, there is no spread of the oscillation line width due to "chirping" even during modulation, and when used as a light source for optical communication, the fiber dispersion effect is avoided. be able to.

本発明の素子では、レーザは常に発振状態にあるた
め、外部からの反射光の影響を受けにくい。反射光の影
響の大きさは、反射光の強さとレーザ共振器内の光強度
の比で決まる。直接変調の場合には、発振時の強い光の
反射が、共振器内部の光強度が弱い発振の立上りの時に
戻つてくるため反射に対し弱くなる。これに対し本発明
の素子ではレーザは常に発振状態にあるため反射光に強
く、アイソレータを使用しなくても安定な動作が可能で
ある。
In the element of the present invention, the laser is always in an oscillating state, so that it is unlikely to be affected by reflected light from the outside. The magnitude of the influence of the reflected light is determined by the ratio of the intensity of the reflected light and the light intensity in the laser resonator. In the case of direct modulation, strong light reflection at the time of oscillation is weakened against reflection because the light intensity inside the resonator is returned at the rise of oscillation. On the other hand, in the device of the present invention, since the laser is always in an oscillation state, it is strong against reflected light and stable operation is possible without using an isolator.

電気光吸収変調器がレーザ共振器の外部にあること、
及び出射端面に形成された反射防止膜の存在により、レ
ーザの発振波長が変調器の動作状態により影響を受けな
いと言う効果がある。
The electro-optic absorption modulator is external to the laser cavity,
Also, the existence of the antireflection film formed on the emission end face has an effect that the oscillation wavelength of the laser is not affected by the operating state of the modulator.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の素子の断面図、 第2図は従来の素子の断面図である。 1……共通電極 2……n型InP(半導体)基板 3……(InGaAs量子井戸層を含むInAlAs)活性層 4……InGaAs量子井戸層 5……InAlAs光導波路層 6……p型InP(半導体)クラツド層 7……変調電極 8……電気的絶縁領域 9……レーザ電極 10……回折格子 11……(SiN)反射防止膜 FIG. 1 is a sectional view of an element of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional element. 1 ... Common electrode 2 ... n-type InP (semiconductor) substrate 3 ... (InAlAs including InGaAs quantum well layer) active layer 4 ... InGaAs quantum well layer 5 ... InAlAs optical waveguide layer 6 ... p-type InP ( (Semiconductor) cladding layer 7 ... Modulation electrode 8 ... Electrical insulation area 9 ... Laser electrode 10 ... Diffraction grating 11 ... (SiN) antireflection film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 淳一 神奈川県厚木市小野1839番地 日本電信電 話公社厚木電気通信研究所内 (56)参考文献 特開 昭59−188988(JP,A) 特開 昭59−171186(JP,A) 特開 昭59−165480(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Yoshida 1839 Ono, Atsugi City, Kanagawa Prefecture Atsugi Telecommunications Research Laboratories, Nippon Telegraph and Telephone Public Corporation (56) Reference JP-A-59-188988 (JP, A) JP-A-SHO 59-171186 (JP, A) JP-A-59-165480 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】量子井戸構造の活性層を有する回折格子帰
還型レーザと、該レーザの共振器の外側に量子井戸構造
を有する電気光吸収変調器と、両者を光学的に結合する
と共に電気的に分離する電気的絶縁領域とが半導体基板
上に備えられ、前記電気光吸収変調器及び電気的絶縁領
域は、前記回折格子帰還型レーザの量子井戸構造の活性
層と共通な量子井戸構造の活性層で結合していることを
特徴とする半導体発光素子。
1. A diffraction grating feedback laser having an active layer having a quantum well structure, an electro-optical absorption modulator having a quantum well structure outside a resonator of the laser, and both are optically coupled and electrically connected. And an electrically insulating region that is separate from the semiconductor substrate, and the electro-optical absorption modulator and the electrically insulating region are active in a quantum well structure common to the active layer of the quantum well structure of the diffraction grating feedback laser. A semiconductor light-emitting device characterized by being connected by layers.
JP60009703A 1985-01-22 1985-01-22 Semiconductor light emitting element Expired - Lifetime JPH0732279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009703A JPH0732279B2 (en) 1985-01-22 1985-01-22 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009703A JPH0732279B2 (en) 1985-01-22 1985-01-22 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS61168980A JPS61168980A (en) 1986-07-30
JPH0732279B2 true JPH0732279B2 (en) 1995-04-10

Family

ID=11727595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009703A Expired - Lifetime JPH0732279B2 (en) 1985-01-22 1985-01-22 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0732279B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671116B2 (en) * 1986-07-25 1994-09-07 三菱電機株式会社 Semiconductor laser
JPH0656457B2 (en) * 1986-08-29 1994-07-27 日本電気株式会社 Optical switch
JPH067611B2 (en) * 1986-10-09 1994-01-26 日本電気株式会社 Optical short pulse generator
JPS63100422A (en) * 1986-10-17 1988-05-02 Nec Corp Waveguide type optical switch
JPS63205984A (en) * 1987-02-23 1988-08-25 Mitsubishi Electric Corp Surface emitting type semiconductor laser
JP2749038B2 (en) * 1987-07-31 1998-05-13 株式会社日立製作所 Tunable semiconductor laser
JPH069280B2 (en) * 1988-06-21 1994-02-02 松下電器産業株式会社 Semiconductor laser device
JP2891741B2 (en) * 1990-04-03 1999-05-17 日本電気株式会社 Semiconductor integrated light source
FR2706079B1 (en) * 1993-06-02 1995-07-21 France Telecom Integrated laser-modulator monolithic component with quantum multi-well structure.
US5548607A (en) * 1994-06-08 1996-08-20 Lucent Technologies, Inc. Article comprising an integrated laser/modulator combination
WO1997035367A1 (en) * 1996-03-21 1997-09-25 Siemens Aktiengesellschaft Integrated optical laser/modulator radiation source
JP2937148B2 (en) * 1996-11-06 1999-08-23 日本電気株式会社 Semiconductor integrated polarization mode converter
US6574260B2 (en) 2001-03-15 2003-06-03 Corning Lasertron Incorporated Electroabsorption modulated laser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171186A (en) * 1982-11-12 1984-09-27 Fujitsu Ltd Semiconductor light emitting device
JPS59165480A (en) * 1983-03-10 1984-09-18 Nec Corp Semiconductor light emitting element
JPS59181588A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor luminescent device
JPS59188988A (en) * 1983-04-11 1984-10-26 Nec Corp Semiconductor laser and driving method therefor

Also Published As

Publication number Publication date
JPS61168980A (en) 1986-07-30

Similar Documents

Publication Publication Date Title
US5680411A (en) Integrated monolithic laser-modulator component with multiple quantum well structure
US6281030B1 (en) Fabrication of semiconductor Mach-Zehnder modulator
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
JPH0256837B2 (en)
JP5170236B2 (en) Waveguide type semiconductor optical modulator and manufacturing method thereof
US4811352A (en) Semiconductor integrated light emitting device
JPH0732279B2 (en) Semiconductor light emitting element
GB2191015A (en) Semiconductor external optical modulator
US5742423A (en) Semiconductor optical modulator
US5179567A (en) Semiconductor laser device, method of fabricating the same and optical system of utilizing the same
JPH0194689A (en) Optoelectronic semiconductor element
US4817105A (en) Integrated laser device with refractive index modulator
JPH01319986A (en) Semiconductor laser device
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
US5999298A (en) Electroabsorption optical intesity modulator having a plurality of absorption edge wavelengths
JPS63186210A (en) Semiconductor integrated light modulating element
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP2943359B2 (en) Semiconductor laser device
JP2508332B2 (en) Integrated optical modulator
JP2760276B2 (en) Selectively grown waveguide type optical control device
JP2776381B2 (en) Semiconductor laser device
JP7402014B2 (en) Optical semiconductor elements, optical semiconductor devices
JP4961732B2 (en) Light modulator integrated light source
Makino et al. Wide Temperature (15ºC to 95ºC), 80-km SMF Transmission of a 1.55-µm, 10-Gbit/s InGaAlAs Electroabsorption Modulator Integrated DFB Laser
JPH03192788A (en) Integrated optical modulator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term