JPS61168980A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS61168980A
JPS61168980A JP60009703A JP970385A JPS61168980A JP S61168980 A JPS61168980 A JP S61168980A JP 60009703 A JP60009703 A JP 60009703A JP 970385 A JP970385 A JP 970385A JP S61168980 A JPS61168980 A JP S61168980A
Authority
JP
Japan
Prior art keywords
laser
electrode
modulator
layer
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60009703A
Other languages
Japanese (ja)
Other versions
JPH0732279B2 (en
Inventor
Yuzo Yoshikuni
吉国 裕三
Koichi Wakita
紘一 脇田
Yuichi Kawamura
河村 裕一
Junichi Yoshida
淳一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60009703A priority Critical patent/JPH0732279B2/en
Publication of JPS61168980A publication Critical patent/JPS61168980A/en
Publication of JPH0732279B2 publication Critical patent/JPH0732279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Abstract

PURPOSE:To enable waveguide parts to be of lower loss and of high speed modulation by using an active layer of quantum well constitution and a light modulator of an electro-optical absorption type. CONSTITUTION:An InAlAs active layer 3 including a quantum well layer 4, an InAlAs optical waveguide path layer 5 and a P-type Inp clad layer 6 are formed. On an N-type Inp semiconductor substrate 2 and an electric insulated region 8, a diffraction lattice 10 and an SiN anti-reflection layer 11 are provided, then a common electrode 1, a laser electrode 9 and a modulated electrode 7 are formed. When the laser electrode 9 is impressed in forward direction and electric current injection is performed, a part, which forms a diffraction lattice 10, works as a distributed feedback type laser and oscillates. When bias in reverse direction and modulated voltage are impressed to the modulated electrode 7 a lower section of the electrode 7 works as an electric field optical absorption modulator. An oscillating light of the laser is subjected to do electric field optical absorption by the modulator, and the intensity of electric field optical absorption is varied by modulated voltage and optical output is modulated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、数GA/II 以上の超高速変調が可能で、
しかも変調時でも発振線幅が広がらない半導体発光素子
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of ultra-high-speed modulation of several GA/II or more,
Furthermore, the present invention relates to a semiconductor light emitting device in which the oscillation line width does not widen even during modulation.

〔従来の技術〕[Conventional technology]

長距離大容量光通信用光源として、高速変調時において
も、発振線幅が広がらない半導体発光装置が必要とされ
ている。これまでに、レーザ内部に回折格子を持った分
布帰還(DFB)・分布反射(rmt )型レーザ等の
単−縦モードレーザが開発され、変調時の線幅が通常の
多縦モードレーザの数十分の−になることが確認されて
いる。しかし、縦 これらの単4−ドレープでも、ah/z  以上の直接
変調を行なった場合には、活性層の屈折率変化による発
振周波数変化(Chirpi%g)がおこシ、発振線幅
が数A以上広がってしまう。そのため、1.5μm帯の
光通信用光源として用いた場合には、光7アイパーの波
長分散によシ伝送特性の劣化をもたらしていた。
As a light source for long-distance, high-capacity optical communications, there is a need for a semiconductor light-emitting device whose oscillation linewidth does not widen even during high-speed modulation. So far, single-longitudinal mode lasers such as distributed feedback (DFB) and distributed reflection (RMT) type lasers that have a diffraction grating inside the laser have been developed, and the number of multi-longitudinal mode lasers whose linewidth during modulation is normal. It has been confirmed that - of ten minutes. However, even with these vertical AAA drapes, when direct modulation of ah/z or more is performed, the oscillation frequency changes (Chirpi%g) due to the change in the refractive index of the active layer, and the oscillation linewidth increases by several A. It will spread further. Therefore, when used as a light source for optical communication in the 1.5 μm band, transmission characteristics deteriorate due to wavelength dispersion of the optical 7-eyeper.

又、半導体レーザを直接変調した場合には、キャリアと
光子の寿命できまる共鳴周波数があり、これによって変
調周波数の上限がおさえられてしまう。パルス変調の場
合には、これによる共鳴効果のために、変調パターンに
よって変調特性が変わる現象(パター7効果)がちシ、
伝送特性の劣化をもたらしていた。
Furthermore, when a semiconductor laser is directly modulated, there is a resonant frequency determined by the lifetime of carriers and photons, which limits the upper limit of the modulation frequency. In the case of pulse modulation, due to the resonance effect caused by this, the modulation characteristics tend to change depending on the modulation pattern (Patter 7 effect).
This resulted in deterioration of transmission characteristics.

これまでに、この問題を解決するために、第2図のよう
に分布帰還型レーザと光吸収変調器を集積化した素子が
提案されている。この素子は、半導体基板22上に形成
された分布帰還型レーザと、そのレーザと共通な光導波
路層25及び活性層23で結ばれた、電気的絶縁領域及
び電流注入型光変調器より形成される集積型光素子であ
り、該変調器への電流注入によって、光吸収を減少させ
、光出力を変調するものである。な訃、図において、2
1は共通電極、26はり2ラド層、27は変調電極、2
9はレーザ電極である。
In order to solve this problem, an element in which a distributed feedback laser and a light absorption modulator are integrated as shown in FIG. 2 has been proposed. This element is formed of a distributed feedback laser formed on a semiconductor substrate 22, an electrically insulating region and a current injection optical modulator connected by an optical waveguide layer 25 and an active layer 23 common to the laser. It is an integrated optical device that reduces optical absorption and modulates optical output by injecting current into the modulator. In the figure, 2
1 is a common electrode, 26 is a beam 2 Rad layer, 27 is a modulation electrode, 2
9 is a laser electrode.

この構成によれば半導体レーザに分布帰還型構造を採用
しているので、反射端面が不用となシ、レーザと変調器
を導波路で直接結合でき、これによシ両者の結合損失を
ほとんど0にすることができる。
According to this configuration, since a distributed feedback structure is adopted for the semiconductor laser, there is no need for a reflective end face, and the laser and modulator can be directly coupled through the waveguide, thereby reducing the coupling loss between the two to almost zero. It can be done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来の素子の構成では、高速変調用光源と
しては、以下のような欠点があった。
However, the above conventional element configuration has the following drawbacks as a light source for high-speed modulation.

■ 電気的絶縁領域がレーザ部分と同じ活性層を含むた
めに、導波路としての損失が大きい。すなわち、活性層
は通常のDH溝構造あるため、電流が注入されない電気
的絶縁領域は強い光吸収を示す。そのため、電気的絶縁
を十分確保できず、変調器からレーザへの電流の回り込
みによるチャーピング(Chirping;光の強度変
調をかけると発振周波数が変動してしまう現象)がおこ
ってしまう。
■ Since the electrically insulating region includes the same active layer as the laser part, the loss as a waveguide is large. That is, since the active layer has a normal DH groove structure, the electrically insulating region where no current is injected exhibits strong light absorption. Therefore, sufficient electrical insulation cannot be ensured, and chirping (a phenomenon in which the oscillation frequency fluctuates when intensity modulation of light is applied) occurs due to the current flowing from the modulator to the laser.

■ 変調器が順方向バイアスによるキャリア注入型の素
子(電流注入による光吸収の変化を利用している)であ
るため、キャリア蓄址効果のために変調周波数帯域が狭
<、GA/8 領域での変調はむずかしい。400 M
h/g程度までしか変調できていない。
■ Since the modulator is a carrier injection type element with forward bias (utilizing changes in optical absorption due to current injection), the modulation frequency band is narrow in the GA/8 region due to the carrier accumulation effect. is difficult to modulate. 400M
It can only be modulated to about h/g.

〔間層点を解決するための手段〕[Means for solving interlayer points]

本発明では、前記素子の活性層を量子井戸構造とし、且
つ光変調器を電気光吸収盤とすることによシ、従来素子
の欠点を除去するものであシ、半導体基板上に回折格子
帰還型レーザと、該レーザと共通な量子井戸構造の活性
層で結ばれた電気的絶縁領域及び電気光吸収変調器とを
集積化せしめている。
In the present invention, the active layer of the device has a quantum well structure, and the optical modulator is an electro-optical absorption disk, thereby eliminating the drawbacks of the conventional device. A type laser is integrated with an electrically insulating region and an electro-optical absorption modulator connected by an active layer having a quantum well structure common to the laser.

〔実施例〕〔Example〕

以下、第1図の本発明の実施例の素子を説明する。 The device according to the embodiment of the present invention shown in FIG. 1 will be explained below.

路層5.p型1nPクラッド層6の各成長層が形成され
ている。8はエツチングによシフラッド層の一部を除去
して形成した電気的絶縁領域、 10は光導波路の一部
に形成された回折格子、11はSiN反射防止膜である
。またn型1nP基・板2には共通電極1が、また電気
的絶縁領域8の左右のクラッド層6上にレーザ電極9及
び変調電極7が形成されている。
Road layer 5. Each growth layer of the p-type 1nP cladding layer 6 is formed. Reference numeral 8 designates an electrically insulating region formed by removing a part of the shuffled layer by etching, 10 a diffraction grating formed in a part of the optical waveguide, and 11 an SiN antireflection film. Further, a common electrode 1 is formed on the n-type 1nP substrate/board 2, and a laser electrode 9 and a modulation electrode 7 are formed on the cladding layers 6 on the left and right sides of the electrically insulating region 8.

この素子を動作させるには、レーザ電極9に頭方向(正
)電圧を加えて電流注入を行なう。これによって2本素
子の回折格子10を形成された部分は分布帰還型レーザ
として動作し発振する。一方変調電極7に逆方向バイア
スを加え、それに変調電圧を加えることによシミ極7の
下の部分は電場光吸収変調器として動作する。分布帰還
型レーザの発振光は、変調器による電場光吸収を受ける
。電場光吸収の強さは、変調電圧によって変化するため
変調器を通った光出力は変調を受ける。反射防止膜11
は、変調器を通った光が端面で反射され、分布帰還型レ
ーザし影響を与えるのを防止するために設けられている
To operate this device, a headward (positive) voltage is applied to the laser electrode 9 to inject a current. As a result, the portion where the two-element diffraction grating 10 is formed operates as a distributed feedback laser and oscillates. On the other hand, by applying a reverse bias to the modulation electrode 7 and applying a modulation voltage thereto, the portion below the stain pole 7 operates as an electric field light absorption modulator. The oscillated light of the distributed feedback laser is subjected to electric field light absorption by the modulator. Since the intensity of electric field light absorption changes depending on the modulation voltage, the light output passing through the modulator is modulated. Anti-reflection film 11
is provided to prevent the light passing through the modulator from being reflected at the end face and affecting the distributed feedback laser.

本素子は、半導体レーザと光変調器を集積化した素子の
一種であるが、以上の様な構成とすることによυ以下の
ような効果がえられる。
This device is a type of device that integrates a semiconductor laser and an optical modulator, and by configuring it as described above, the following effects can be obtained.

活性層を量子井戸構造にすることによシ、導波路の低損
失化及び変調器の電気光吸収効果の増大が可能になる。
By forming the active layer into a quantum well structure, it becomes possible to reduce the loss of the waveguide and increase the electro-optic absorption effect of the modulator.

量子井戸レーザでは、その発振波長は電流注入を行なわ
ない場合の吸収帯に比べて長波長側にシフトすることが
知られている。このため、本素子で電気的絶縁領域及び
変調器で用いている導波路は、レーザ領域からのレーザ
光に対してはほぼ透明であり、低損失の導波路となって
いる。
It is known that the oscillation wavelength of a quantum well laser shifts to a longer wavelength side than the absorption band when no current is injected. Therefore, the waveguide used in the electrically insulating region and the modulator in this device is almost transparent to the laser light from the laser region, and is a low-loss waveguide.

本素子は、レーザと変調器をこの低損失の導波路でつ々
いでいるため、損失を増大させずにレーザと変調器を離
すことができ、電気的絶縁を完全にすることができる。
In this device, the laser and modulator are connected through this low-loss waveguide, so the laser and modulator can be separated without increasing loss, allowing complete electrical isolation.

これによって、レーザと変調器との電気的な干渉を除去
でき、本素子のようにレーザを順バイアス、変調器を逆
バイアスで動作させることが可能になる。
This makes it possible to eliminate electrical interference between the laser and the modulator, and it becomes possible to operate the laser with forward bias and the modulator with reverse bias, as in the present device.

又、量子井戸構造では室温でも励起子吸収が観測でき、
そのために電気光吸収効果が通常の半導体に比べて十倍
以上大きいことが知られている。
In addition, in the quantum well structure, exciton absorption can be observed even at room temperature.
Therefore, it is known that the electro-optical absorption effect is more than ten times greater than that of ordinary semiconductors.

そのため量子井戸構造の活性層を電場光吸収変調器とし
て利用することにより、10’ V/am程度の電場に
よって十分な変調度を得ることが可能である。
Therefore, by using an active layer having a quantum well structure as an electric field light absorption modulator, it is possible to obtain a sufficient degree of modulation with an electric field of about 10' V/am.

電場光吸収による変調器は、キャリア密度の変動を伴わ
ないため高速変調が可能であ” 、10GA/a・での
変調結果も報告されている。しかし、通常の半導体では
10’ V/am程度の高電界を必要とするため実用化
された例は少ない。本素子では、量子井戸構造を利用す
ることによシ数rの電圧で動作する変調器を実現してい
る。
Modulators based on electric field light absorption are capable of high-speed modulation because they do not involve fluctuations in carrier density, and modulation results at 10 GA/a have also been reported. However, with ordinary semiconductors, the modulation rate is about 10' V/am. Since it requires a high electric field, there are few examples of practical use.This device uses a quantum well structure to realize a modulator that operates with a voltage of the number r.

なお、本実施例においても半導体レーザに分布帰還型構
造を採用することにより、反射端面が不要になシ、レー
ザと変調器を導波路で直接結合でき、これKよシ、レー
ザと変調器間の結合損失をほとんど0にすることができ
るという第2図の素子と共通する効果を保有する。
In addition, by adopting a distributed feedback structure for the semiconductor laser in this embodiment as well, there is no need for a reflective end face, and the laser and modulator can be directly coupled via a waveguide. This element has the same effect as the element shown in FIG. 2 in that the coupling loss of the element can be reduced to almost zero.

以上に示した実施例では、レーザを分布帰還型としてい
るが、分布反射型(DBR)レーザを用いてもよい。又
、電気的絶縁層はクラッド層の一部をエツチングによシ
除去して形成しているが、h。
In the embodiments shown above, the laser is of the distributed feedback type, but a distributed reflection type (DBR) laser may also be used. Further, the electrically insulating layer is formed by removing a part of the cladding layer by etching, but h.

F−等のイオン注入による絶縁化を用いてもよい。Insulation by ion implantation of F- or the like may also be used.

活性層は、量子井戸構造であれば、単一量子井戸(SQ
W)でも多重量子井戸CMQW)でもよい。又、上記実
施例ではレーザ部分の端面はヘキ開面のままとなってい
るが高出力化のために、金等の高反射膜をコーチイブし
てもよく、あるいはさらに導波路を接続して光出力モニ
タ等に結合してもよい。
If the active layer has a quantum well structure, the active layer has a single quantum well (SQ
W) or multiple quantum well CMQW). In addition, in the above embodiment, the end face of the laser part remains a hexagonal facet, but in order to increase the output, it may be coated with a highly reflective film such as gold, or it may be further connected with a waveguide to It may also be coupled to an output monitor or the like.

又、レーザ部分に関しては高性能化のため、位相シフト
回折格子型レーザ等を用いてもよい。
Further, as for the laser part, a phase shift grating type laser or the like may be used to improve performance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の素子は高速変調が可能な
電場光吸収変調器と安定な単−縦モードで発振する分布
帰還型レーザ等を集積したものであるから、以下のよう
な効果が期待できる。
As explained above, since the device of the present invention integrates an electro-optic absorption modulator capable of high-speed modulation and a distributed feedback laser that oscillates in a stable single longitudinal mode, it has the following effects. You can expect it.

■ 電場光吸収変調器は、キャリアの蓄積効果がないた
めに、数10Gb/sの高速変調が可能である。又、半
導体レーザの直接変調とちがい共鳴効果がないため、パ
ルスパターンによる変調特性の変化(パターン効果)も
おこらないため、超大容量光通信用光源として利用でき
る。
(2) Since the electric field optical absorption modulator has no carrier accumulation effect, high-speed modulation of several tens of Gb/s is possible. Furthermore, unlike direct modulation of a semiconductor laser, there is no resonance effect, and no change in modulation characteristics due to pulse patterns (pattern effect) occurs, so it can be used as a light source for ultra-large capacity optical communications.

■ 本発明の素子では、半導体レーザは一定出力の連続
動作をしているから、変調時でも’cNrpinl”に
よる発振線幅の広がシはなく、光通信用光源 。
(2) In the device of the present invention, since the semiconductor laser operates continuously with a constant output, there is no broadening of the oscillation line width due to 'cNrpinl' even during modulation, making it a light source for optical communication.

に用いた場合、ファイバーの分散効果をさけることがで
きる。
When used for this purpose, the dispersion effect of fibers can be avoided.

■ 本発明の素子では、レーザは常に発振状態にあるた
め、外部からの反射光の影響を受けにくい。反射光の影
響の大きさは、反射光の強さとレーザ共振器内の光強度
の比で決まる。直接変調の場合には、発振時の強い光の
反射が、共振器内部の光強度が弱い発振の立上シの時に
戻ってくるため反射に対し弱くなる。これに対し本発明
の素子ではレーザは常に発振状態にあるため反射光に強
く、アイソレータを使用しなくても安定な動作が可能で
ある。
(2) In the device of the present invention, since the laser is always in an oscillating state, it is less affected by reflected light from the outside. The magnitude of the influence of reflected light is determined by the ratio of the intensity of reflected light to the light intensity within the laser resonator. In the case of direct modulation, the strong light reflected during oscillation returns at the start of oscillation when the light intensity inside the resonator is weak, making it weak against reflection. In contrast, in the device of the present invention, since the laser is always in an oscillating state, it is resistant to reflected light and can operate stably without using an isolator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の素子の断面図、第2図は従来
の素子の断面図である。 1、共通電極 2、 n型IルP(半導体)基板 3、 (InGaAz量子井戸層を含むIル看、47)
活性層4. r鴇GaAz量子井戸層 5、 InAXAz光導波路層 6、13型IルP(半導体)クラッド層7、変調電極 8、電気的絶縁領域 9、レーザ電極 10、回折格子 11、 (5こN)反射防止膜
FIG. 1 is a sectional view of an element according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional element. 1, common electrode 2, n-type IP (semiconductor) substrate 3, (IPL including InGaAz quantum well layer, 47)
Active layer 4. GaAz quantum well layer 5, InAXAz optical waveguide layer 6, 13-type IP (semiconductor) cladding layer 7, modulation electrode 8, electrically insulating region 9, laser electrode 10, diffraction grating 11, (5 N) reflection prevention film

Claims (1)

【特許請求の範囲】[Claims] 量子井戸構造の活性層を有する回折格子帰還型レーザと
、電気光吸収変調器と、両者を光学的に結合すると共に
電気的に分離する電気的絶縁領域とが半導体基板上に備
えられ、前記電気光吸収変調器及び電気的絶縁領域は、
前記回折格子帰還型レーザの量子井戸構造の活性層と共
通な量子井戸構造の活性層で結合していることを特徴と
する半導体発光素子。
A grating feedback laser having an active layer with a quantum well structure, an electro-optical absorption modulator, and an electrically insulating region that optically couples the two and electrically isolates them are provided on a semiconductor substrate, and the electrical The optical absorption modulator and the electrically insulating region are
A semiconductor light emitting device, characterized in that the semiconductor light emitting device is coupled through an active layer having a quantum well structure common to the active layer having a quantum well structure of the diffraction grating feedback laser.
JP60009703A 1985-01-22 1985-01-22 Semiconductor light emitting element Expired - Lifetime JPH0732279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009703A JPH0732279B2 (en) 1985-01-22 1985-01-22 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009703A JPH0732279B2 (en) 1985-01-22 1985-01-22 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS61168980A true JPS61168980A (en) 1986-07-30
JPH0732279B2 JPH0732279B2 (en) 1995-04-10

Family

ID=11727595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009703A Expired - Lifetime JPH0732279B2 (en) 1985-01-22 1985-01-22 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0732279B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332977A (en) * 1986-07-25 1988-02-12 Mitsubishi Electric Corp Semiconductor laser
JPS6358412A (en) * 1986-08-29 1988-03-14 Nec Corp Optical switch
JPS6395685A (en) * 1986-10-09 1988-04-26 Nec Corp Light short pulse generator
JPS63100422A (en) * 1986-10-17 1988-05-02 Nec Corp Waveguide type optical switch
JPS6435978A (en) * 1987-07-31 1989-02-07 Hitachi Ltd Wavelength-tunable semiconductor laser
US4847844A (en) * 1987-02-23 1989-07-11 Mitsubishi Denki Kabushiki Kaisha Surface-emitting semiconductor laser device
JPH01319986A (en) * 1988-06-21 1989-12-26 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH03286587A (en) * 1990-04-03 1991-12-17 Nec Corp Semiconductor integrated light source
EP0627798A1 (en) * 1993-06-02 1994-12-07 France Telecom Monolithically integrated laser-modulator with multiquantum well structure
EP0687043A1 (en) * 1994-06-08 1995-12-13 AT&T Corp. Article comprising an integrated laser/modulator combination
WO1997035367A1 (en) * 1996-03-21 1997-09-25 Siemens Aktiengesellschaft Integrated optical laser/modulator radiation source
EP0841733A1 (en) * 1996-11-06 1998-05-13 Nec Corporation Semiconductor optical functional device and method of driving the same
US6574260B2 (en) 2001-03-15 2003-06-03 Corning Lasertron Incorporated Electroabsorption modulated laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165480A (en) * 1983-03-10 1984-09-18 Nec Corp Semiconductor light emitting element
JPS59171186A (en) * 1982-11-12 1984-09-27 Fujitsu Ltd Semiconductor light emitting device
JPS59181588A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor luminescent device
JPS59188988A (en) * 1983-04-11 1984-10-26 Nec Corp Semiconductor laser and driving method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171186A (en) * 1982-11-12 1984-09-27 Fujitsu Ltd Semiconductor light emitting device
JPS59165480A (en) * 1983-03-10 1984-09-18 Nec Corp Semiconductor light emitting element
JPS59181588A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor luminescent device
JPS59188988A (en) * 1983-04-11 1984-10-26 Nec Corp Semiconductor laser and driving method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332977A (en) * 1986-07-25 1988-02-12 Mitsubishi Electric Corp Semiconductor laser
JPS6358412A (en) * 1986-08-29 1988-03-14 Nec Corp Optical switch
JPS6395685A (en) * 1986-10-09 1988-04-26 Nec Corp Light short pulse generator
JPS63100422A (en) * 1986-10-17 1988-05-02 Nec Corp Waveguide type optical switch
US4847844A (en) * 1987-02-23 1989-07-11 Mitsubishi Denki Kabushiki Kaisha Surface-emitting semiconductor laser device
JPS6435978A (en) * 1987-07-31 1989-02-07 Hitachi Ltd Wavelength-tunable semiconductor laser
JPH01319986A (en) * 1988-06-21 1989-12-26 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH03286587A (en) * 1990-04-03 1991-12-17 Nec Corp Semiconductor integrated light source
US5680411A (en) * 1993-06-02 1997-10-21 France Telecom Etablissement Autonome De Droit Public Integrated monolithic laser-modulator component with multiple quantum well structure
EP0627798A1 (en) * 1993-06-02 1994-12-07 France Telecom Monolithically integrated laser-modulator with multiquantum well structure
FR2706079A1 (en) * 1993-06-02 1994-12-09 France Telecom Integrated laser-modulator monolithic component with quantum multi-well structure.
EP0687043A1 (en) * 1994-06-08 1995-12-13 AT&T Corp. Article comprising an integrated laser/modulator combination
US5548607A (en) * 1994-06-08 1996-08-20 Lucent Technologies, Inc. Article comprising an integrated laser/modulator combination
WO1997035367A1 (en) * 1996-03-21 1997-09-25 Siemens Aktiengesellschaft Integrated optical laser/modulator radiation source
EP0841733A1 (en) * 1996-11-06 1998-05-13 Nec Corporation Semiconductor optical functional device and method of driving the same
EP0997993A2 (en) * 1996-11-06 2000-05-03 Nec Corporation Semiconductor optical functional device and method of driving the same
EP0997992A2 (en) * 1996-11-06 2000-05-03 Nec Corporation Semiconductor optical functional device and method of driving the same
EP0997992A3 (en) * 1996-11-06 2001-12-12 Nec Corporation Semiconductor optical functional device and method of driving the same
EP0997993A3 (en) * 1996-11-06 2001-12-12 Nec Corporation Semiconductor optical functional device and method of driving the same
US6574260B2 (en) 2001-03-15 2003-06-03 Corning Lasertron Incorporated Electroabsorption modulated laser

Also Published As

Publication number Publication date
JPH0732279B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JP5858997B2 (en) Loss-modulated silicon evanescent laser
EP0735635B1 (en) Optical semiconductor apparatus, driving method therefor, light source apparatus and optical communication system using the same
JPS6155981A (en) Semiconductor light-emitting element
US6252895B1 (en) Distributed feedback semiconductor laser in which light intensity distributions differ in different polarization modes, and driving method therefor
US4743087A (en) Optical external modulation semiconductor element
JPS61168980A (en) Semiconductor light-emitting element
US4811352A (en) Semiconductor integrated light emitting device
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
JP2019008179A (en) Semiconductor optical element
JPH01319986A (en) Semiconductor laser device
CN107623250B (en) Short-cavity long-surface emitting laser and manufacturing method thereof
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
JP3245940B2 (en) Semiconductor optical integrated device
JPS63186210A (en) Semiconductor integrated light modulating element
JP2508332B2 (en) Integrated optical modulator
US20230035055A1 (en) Electroabsorption Modulated Laser
JPS6170779A (en) Optical transmitter
JP2776381B2 (en) Semiconductor laser device
JP4961732B2 (en) Light modulator integrated light source
JPS61107781A (en) Single axial-mode semiconductor laser device
Makino et al. Wide Temperature (15ºC to 95ºC), 80-km SMF Transmission of a 1.55-µm, 10-Gbit/s InGaAlAs Electroabsorption Modulator Integrated DFB Laser
JPH04280490A (en) Semiconductor laser equipment
JPS63122188A (en) Photo-semiconductor device
JPH03235915A (en) Optical function element
JP2023020996A (en) Semiconductor optical device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term