JPS59171186A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS59171186A
JPS59171186A JP19929282A JP19929282A JPS59171186A JP S59171186 A JPS59171186 A JP S59171186A JP 19929282 A JP19929282 A JP 19929282A JP 19929282 A JP19929282 A JP 19929282A JP S59171186 A JPS59171186 A JP S59171186A
Authority
JP
Japan
Prior art keywords
layer
well
layers
type
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19929282A
Other languages
Japanese (ja)
Inventor
Shigenobu Yamagoshi
茂伸 山腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19929282A priority Critical patent/JPS59171186A/en
Publication of JPS59171186A publication Critical patent/JPS59171186A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent mirror breakdown and thus contrive to stabilize the characteristic and improve the reliability by forming a window layer in accordance with the structure of a quantum well. CONSTITUTION:Under mentioned each layer 12-15 is successively formed on an N type GaAs substrate 11. An N type GaAs buffer layer 12 has the impurity concentration equal to that of the substrate 11, and an N type AlxGa1-xAs clad layer 13 has a forbidden band width larger than that of a well layer 14. The structure of a quantum well 14 is formed by alternately laminating e.g. well layers and barrier layers both in non-doping by means of GaAs for the well layer and AlxGa1-xAs for the barrier layer. By the way, the thickness of the well layer should be a de Broglie's wave length. A P type AlxGa1-xAs clad layer 15 is the same as the layer 13. In this constitution, the light generated in the well layer is confined in the layers 13 and 15 and then go toward a resonance mirror plane M caused by cleavage. The mirror plane M has the forbidden band width increased more than in the well layer, thus obtaining the effect of a window region.

Description

【発明の詳細な説明】 1Hi)  発明の技術分野 不発明は半導体発光装置、特に量子井戸(Quan−を
曲〕Well )構造の活性領域と、該量子井戸(K遺
(こ相打。拡散を選択的に施し゛C形成され、たウィン
ド領域とが設りられた半導体レーザに西する。
[Detailed Description of the Invention] 1Hi) Technical Field of the Invention The invention relates to a semiconductor light emitting device, particularly an active region of a quantum well (Quan-Well) structure, and a semiconductor light-emitting device that has an active region of a quantum well (K-well) structure and a quantum well (K-well) structure. A selectively applied window region is formed on the semiconductor laser provided with the window region.

(1))  技術の背景 光通16ならひに各種の産業或いは民生分野における光
を′I′?f報(2i吟のへ、)仝とするシステムにお
いて、′4伝導体発元装置6. iプ鳳も重装な構成要
素であって、安>f<ぎれる波昆帯威の実彷、安定した
年−の基本零次横モード発振、単一〇)縦モート発振1
元ビーム発散角の、戊少、閾値市流の低j威、屯1i1
t−一−)Y、ル“1力特性の直膨1生の向上、出刃の
増大及びこれらの特性の温度依存1生の減少へと計時性
の向−Llこのいて多くの努力が重ねられでいるが、特
に特性−の安定性と長寿命の大塊とかN要である。
(1)) Background of technology 16 What is the use of light in various industrial and consumer fields? In a system that uses f-reporting (2i ginnohe), '4 conductor generating device 6. Ipfeng is also a heavy component, and the actual behavior of the waves and the power of the waves, stable fundamental zero-order transverse mode oscillation, and single 〇) longitudinal mode oscillation 1.
The original beam divergence angle is small, the threshold value is low, and the threshold value is low.
Many efforts have been made to improve timekeeping performance, to improve the force characteristics of direct expansion, to increase the cutting edge, and to reduce the temperature dependence of these characteristics. However, in particular, stability of properties and large lumps of long life are essential.

(CI  従来技術と間謳点 前」L;の目的のために現在までに数多くの半導体発光
装置、特(こレーザか提案さすしているが、その一つと
して量子月戸半導体レーザがある。
For this purpose, many semiconductor light emitting devices, especially lasers, have been proposed up to now, one of which is the quantum Tsukido semiconductor laser.

量子井戸(Quan t tun −Wt: I l 
、) −′l’ L9俸1−−−Ijとは、ダブルへテ
ロ構造の活性層の厚さをキャリア117)ドウφブロー
イー波長λd (Ga八へではλ”ニー 30f−no
IJ)以下としたもので、活性層はh;:子力学的九J
ヨ形ポテンシャルとして機能して、キャリアのJ’Pさ
方向の運動が数子化された二次元電子状態となる。量子
力負し−Ij−ζこは活性1曽として11すれラウエル
層乃)ら構成されるSingle QuanturnW
ell L/−ザと、ウェル層とバリア層とが交互に多
重積jしされたM、ulti Quantum〜Vel
lレーサとかある0−駄子レーj1.・−サ0)特徴と
しては、ビ)b如イ旧′−流の特性j+1λ度′J゛0
が通出θ)タプルへテロレーリ′(こ比較して大きく、
閾値電流の温度−L昇に対する安定性が流れていること
っ(U)1ψ、−′モート発振か唱毘であること。し→
′iIi沖し一九出力判−4:j:の直氷柑−が良いこ
と。
Quantum well (Quantum well)
,) -'l' L9 salary 1---Ij is the thickness of the active layer of the double heterostructure as carrier 117) DouφBlowey wavelength λd (λ” knee for Ga 8) 30f-no
IJ) The active layer is h;: 9 J
It functions as a Y-shaped potential and becomes a two-dimensional electronic state in which the motion of carriers in the J'P direction is numbered. Quantum force negative - Ij - ζ This is a single QuantturnW composed of 11 (Laur layer) as an active one.
ell L/-The, M in which well layers and barrier layers are alternately stacked, ulti Quantum ~ Vel
There is such a thing as l racer 0-dago racer j1.・-Sa0) As for the characteristics, B) b) The characteristics of the old '- style j+1λ degree'J゛0
is passed through θ) tuple heteroleri′ (larger than this,
The stability of the threshold current with respect to temperature -L rises (U) 1 ψ, -' motor oscillation or chanting. →
'iIi Okishiichiku output size-4:j:'s direct ice cream- is good.

(ニ)倣分if子効:ATユが商いこと。中ウェルの幅
やバリγQ)市さをy!Sりくすること(こより発振波
長を広い範囲で設計できること。なとか挙げられ、先に
述べた半導体発光1灸置の進歩に寄力することがルj待
ぎれている。
(d) Imitation if child effect: AT Yu is trading. The width of the middle well and the burr γQ) city! This makes it possible to design the oscillation wavelength over a wide range.We are looking forward to contributing to the advancement of semiconductor light emitting devices mentioned earlier.

さて、半・j杯し−サの特性の経時的劣化安置の一つ(
こ光共振器の鏡面の劣化或いは破壊かあげられるっこの
鏡面の破壊はレーザ光の面密度か大きいときに特に顕著
となるものであって、その現象の一つきしては鏡面を形
成する半導体が雰囲気中の酸素(02)あるいは水蒸気
(H、0)等によって侵され酸化物等を生じ−Ui面が
荒らされ反射率が減少して閾値電流の増大、レーザ出力
の低下をもたらし、甚だしい場合には発振が不可能とな
る。
Well, half a cup - one of the deterioration over time of the characteristics of sa (
This deterioration or destruction of the mirror surface of the optical resonator is particularly noticeable when the areal density of the laser beam is high, and one of the phenomena is that the semiconductor forming the mirror surface is attacked by oxygen (02) or water vapor (H, 0) in the atmosphere, forming oxides, etc. - The Ui surface is roughened and the reflectance decreases, resulting in an increase in threshold current and a decrease in laser output, and in severe cases. oscillation becomes impossible.

この劣化現象は半導体がアルミニウム(Aj)を含む化
合物である場合には特に問題となる。また他の劣化現象
としては、鏡面において結晶転位が発生し、これが半導
体内部に及んで先に述べたと同様の特性劣化を生じてい
る。
This deterioration phenomenon becomes a particular problem when the semiconductor is a compound containing aluminum (Aj). Another deterioration phenomenon is that crystal dislocation occurs on the mirror surface, and this extends to the inside of the semiconductor, causing the same characteristic deterioration as described above.

迫常の従来構造の半導体レーザに関して、以上述べた鏡
面破壊を防止ターる手段を備えた第1図(al乃乃奎C
1に側断面図をもって示す構造が既に知られている。
With regard to semiconductor lasers with conventional structures, which are commonplace, a semiconductor laser with a means for preventing mirror surface destruction as described above is shown in FIG.
A structure shown in FIG. 1 with a side sectional view is already known.

第1区(alは鏡面に保護膜を設けた例を示し、工はn
+型0akS基板、2はnNAtGaAsクラッドJ1
1I+、3はn又はp 9 Ga As活性層、4はp
型AtGaAsクラッド層、5はp型GaAsキャンプ
11.6はp側電極、7はn側電極、8は保護膜であっ
て、例えば二酸化シリコン(slo*)、酸化アルミニ
ウム(h、t、Os)等によって保護膜8を鏡面M上に
形成して先に述へた雰囲気による侵蝕を防止するととも
に、鏡面Mにおける反射率のjli制御(通常補 は1/2波長の厚さを用いる)の効果をも寄て(7′V
る。
Section 1 (al indicates an example in which a protective film is provided on the mirror surface,
+ type 0akS substrate, 2 is nNAtGaAs clad J1
1I+, 3 is n or p 9 Ga As active layer, 4 is p
type AtGaAs cladding layer, 5 is a p-type GaAs camp, 11 is a p-side electrode, 7 is an n-side electrode, and 8 is a protective film, such as silicon dioxide (slo*), aluminum oxide (h, t, Os). A protective film 8 is formed on the mirror surface M to prevent the corrosion caused by the atmosphere mentioned above, and also to improve the effect of controlling the reflectance on the mirror surface M (usually using a thickness of 1/2 wavelength). Also (7'V
Ru.

第1図(blは活性領域と鏡面とC1,)間(こウィン
ド領域を設けた5・11であり、第1図(alと同一符
号(こより同一対象部分を示To p型活性領域36ま
例え(ずノンドープの(、)a As i値3′をエビ
クキシャル成長させた後に、キャップ層5衣而よりクラ
ット屓4を川〜して(′−)・」、へら層3′に逐する
深さくこ例え(χ目且鉛(Zn)を選択的に拡散するこ
とによって形成される。またダ開などの方法(こよる鏡
面N1は不純物θ)選択的導入によって形成されたp型
活憔領域3より離して良けられて、中間の(JaAsJ
偕3′が・シインド領域となる。
Figure 1 (bl is the active region, mirror surface, and C1,) 5.11 where a window region is provided, and the same reference numerals as in Figure 1 (al) indicate the same target parts. For example, after eviaxially growing a non-doped (,) As i value 3', the crack layer 4 is removed from the cap layer 5 ('-)', and the depth is transferred to the spatula layer 3'. For example, a p-type active region is formed by selectively diffusing lead (Zn) in the χ grid.Also, a p-type active region is formed by selectively introducing a method such as dipping (the mirror surface N1 is an impurity θ). It is better to move it further away than 3, and the middle (JaAsJ
偕3' becomes the sind area.

以上説明した第1図(blに示す構造においては、p型
活性領域:3は不純物の導入の結果、ノンドープのGa
As1脅3′に比較して禁制帯幅が例え(ま20〔τn
e V ]程度狭められているために、電子−正−TL
の発光再結合はp型活性領域3において行なわれ、ここ
で発生するyは(こ対してウィンド領域を形成するGa
 As Jiji 3’は透明である。またこのウィン
ド領域にはキャリアが殆んど存在しない。この結果光ζ
こ述べた鏡面破壊が防止される。
In the structure shown in FIG.
Compared to As1 threat 3', the forbidden band width is 20[τn
e V ], the electron-positive-TL
The radiative recombination of y occurs in the p-type active region 3, and the y generated here is (on the other hand, the Ga
As Jiji 3' is transparent. Further, there are almost no carriers in this wind region. As a result, the light ζ
The above-mentioned mirror surface destruction is prevented.

第1図[C)は第1図Fblと同様にウィンド領域を設
けた例であるが、一般的に行なわれている如く活性層3
等をエピタキシャル5y、長させた後Iこ一旦動作領域
の周囲の半導体層を選択的に除去して活性;便3より禁
制帯幅の大きい半導体層を選択成長させることによって
、先ζこ第1図(blに示した例と同様の効果を得てい
る。図中3はAtO,05GaO,95A、s活性層、
3′は前記の選択底長ぜしめたn型At03G、10.
7NS層であってウィンド領域を形成し、また9はp型
Ate、 3 ()a 0.7 As @流阻止層であ
る。
FIG. 1 [C] is an example in which a window region is provided similarly to FIG. 1 Fbl, but as is generally done, the active layer 3
After epitaxially elongating the semiconductor layer 5y, etc., the semiconductor layer around the active region is selectively removed to activate it; The same effect as the example shown in the figure (bl) is obtained. In the figure, 3 is AtO, 05GaO, 95A, s active layer,
3' is the n-type At03G with the selected base length; 10.
7NS layer forms a window region, and 9 is a p-type Ate, 3 ()a 0.7 As @ flow blocking layer.

量子井戸半導体レーザに関しても先に述べた鏡面破壊を
防止する手段を設けることが望ましいが、先ζこ第1図
(blを参照して説明した不純物の導入によって活性領
域を形成する方法は、通常の′l!P4体レーザに関し
てもヘテロ接合を損傷する危険性が大きい不利な方法で
あり、量子井戸レー→)では適用できない。また第1図
(clを荏照しで説明したエビクキシャル戊長による埋
め込み構造は、第2回目の成長力法・条件の選択ζこよ
って適用することができるが煩雑であって好ましい方法
ではない。
Although it is desirable to provide a means to prevent mirror surface destruction as described above for quantum well semiconductor lasers, the method of forming an active region by introducing impurities as described above with reference to FIG. It is also a disadvantageous method for P4 body lasers because it has a large risk of damaging the heterojunction, and cannot be applied to quantum well lasers. In addition, the embedding structure by eviaxial extensibility explained in FIG.

[dl  発明の目的 本発明は量子井戸構造体レーザに関して、鏡面破壊を防
止する手段特にウィンド領域が量子井戸構造に即して形
成された構造を提供することを目的とする。
[dl Object of the Invention The present invention relates to a quantum well structure laser, and an object of the present invention is to provide a means for preventing mirror destruction, particularly a structure in which a window region is formed in accordance with the quantum well structure.

(e)  発明の構成 不発明の前記目的は、′電子波のドウ・ブローイー波長
以Fの厚さを有j−るウェル層と、該ウーI春し層より
人なる禁制帯幅を市するバリア層とが父互に積層された
活性領域と、該活性領域をはさむ如く配設された前記ウ
ェル層より大なる禁制帯幅をイイする第1及び第2のク
ラッド層と、前記活性領域に当接して共振鏡面で終端し
、かつ前記バリア層及びクラッド層の少なくとも一つと
前記ウェル層(!:を構成する半導体間の相互の組成の
混合によるウィンド領域とが設けられてなる半導体発光
装置ζこより達成される。
(e) Structure of the Invention The object of the invention is to form a well layer having a thickness equal to or less than the Doe-Broy wavelength of an electron wave, and to form a forbidden band width from the well layer. an active region in which barrier layers are laminated on each other; first and second cladding layers having a larger forbidden band width than the well layer and disposed to sandwich the active region; A semiconductor light emitting device ζ, which is provided with a window region formed by mixing mutual compositions between the semiconductors constituting at least one of the barrier layer and the cladding layer and the well layer (!:), which contact and terminate at a resonant mirror surface. This is achieved through this.

(fy  発明の実施例 以r本発明を実施例により図面を参照して具体的に1況
明する。
(Examples of the Invention) The present invention will now be explained in detail by way of examples with reference to the drawings.

第2図[al乃至(C1は本発明の実施列の主要製造工
程におりるfl11酊[[m図、第2図(diは同芙施
列の斜視図、また第3図ialは第2図tal (D 
X −X/断tl、ii3図(+))は2し2図(bl
 )Y −Y’ M 1jJi 上0) アルミ−ラム
CA−1)の組成比を示す図表である。
Figures 2 [al to (C1 are the fl11 parts in the main manufacturing process of the implementation train of the present invention] [[Fig. Figuretal (D
X -X/cut tl, ii 3 (+)) is 2 and 2 (bl
) Y - Y' M 1jJi Top 0) It is a chart showing the composition ratio of aluminum ram CA-1).

第2図(al及び第3図tal参j也、n型() a 
A s基板ll上に分子蔵エビタギシーヤル成長方法(
■〜l1JE法)又は有機金属熱分解気イ4」成長力法
(MOCVDi’A)等によって下記の各層を順次形成
fる。
Figure 2 (al) and Figure 3 (tal), n-type () a
Molecule-bearing epitaxial growth method (
The following layers are sequentially formed by the metal organic pyrolysis vapor growth method (MOCVDi'A) or the like.

n型GaAsバッファ層12は、不純物濃度は基板破1
1と同等ノ例ンはlXl0”’Cc〃j−3〕am、厚
さは例えば3,5〔μm3杵度とする。n型Atx’l
’ai  xAsクラノh1m13は、A、1の組成比
Xは例えはり、4、不純物濃度は例えば’l X I 
U ’ 7乃至I X 10 ” (ci、 3〕程度
、厚さは例んは1乃至1.5〔μm〕程度とする。
The n-type GaAs buffer layer 12 has an impurity concentration equal to that of the substrate.
An example equivalent to 1 is lXl0'''Cc〃j-3]am, and the thickness is, for example, 3.5 [μm3 punch. n-type Atx'l
'ai
The thickness is, for example, approximately 1 to 1.5 [μm].

惜子井戸M遺14は、ウェル層をGaASによって厚さ
例えばIo[nm:]に、ノ刻ア層f fid)CGa
 1−メ FASによってA4の組成比Xを例えば0.2、厚さ例
えば3(nm)に何れもノンドープで、例えばウェル層
4層とバリア層3層を又互に積層することによって形成
されている。尚、ウェル層の厚さはトウ・ブL]−イー
波長以下とされているOp型AtxG、n−xAsクラ
ッド層15は、Atの組成比Xは例えば04、不純物濃
度は例えは1×1017乃至lXl0”(計−3〕程度
、厚さは世」えば1乃至1.5〔μm〕程度とする。最
後のp型QaA、sキャップ層16は不純物濃度は例え
ばlX10’9〔crn−3〕程度、厚さは例えば03
乃至o、s(μm〕程度とする。
The well layer 14 is made of GaAS with a thickness of, for example, Io[nm:], and a grooved layer f fid)CGa.
The A4 composition ratio X is, for example, 0.2, and the thickness is, for example, 3 (nm) using 1-Me FAS, both of which are non-doped and formed by laminating, for example, four well layers and three barrier layers. There is. The thickness of the well layer is less than the wavelength L]-E of the Op-type AtxG, n-xAs cladding layer 15, where the At composition ratio X is, for example, 04, and the impurity concentration is, for example, 1x1017. The impurity concentration of the final p-type QaA, s cap layer 16 is, for example, lX10'9 [crn-3]. ] For example, the thickness is 03
It is set to approximately o, s (μm).

第2図(bl及び第3図tbl参照。See Figure 2 (bl and Figure 3, tbl).

ダ開等によって共振鏡面を形成する位置の近傍において
、前記量子井戸構造14のウェル層とバリア層との間で
相互拡散を行なわせる。この際にクランド層との間にも
相互拡散が行なわれてもよい。
Mutual diffusion is caused between the well layer and the barrier layer of the quantum well structure 14 in the vicinity of a position where a resonant mirror surface is formed by diode opening or the like. At this time, mutual diffusion may also be performed with the ground layer.

これを実施する方法としては例えは意図する領域に不純
物原子或いはプロトン等を拡散或いは注入する方法が挙
げられる。
An example of a method for implementing this is a method of diffusing or implanting impurity atoms or protons into the intended region.

すなわち第2図+b+に示す如く、意図する領域に開口
を設けたマスク17を例えば窒化シリコン(S ’3N
4)もしくは二酸化シリコン(8i0.)等によって形
成し、例えば亜鉛(Zn)、硫黄(S)等を封管法等に
よって量子井戸構造14を貫通してn型AムQal −
xAsクラッド層13に達する深さまで拡散させる方法
により、又はマスク17を例えばレジストヲ介して被着
させた金(Au)等によって形成し、不純物原子或いは
プロトン等をイオン注入法によって先に述べた深さまで
導入し、アニールをイtなう方法によって、バリア層及
びAtx Ga+ −xA、sクラッド層15に含まれ
るAtがウェル層を含む量子井戸構造14内で拡散して
ペテロ接合界面は消失し量子井戸構造14に代って、は
ぼ均一なAtxGa 1− xA S領域18が形成さ
れる。
That is, as shown in FIG.
4) Or formed from silicon dioxide (8i0.) or the like, and pass through the quantum well structure 14 with, for example, zinc (Zn), sulfur (S), etc. using a sealed tube method or the like to form an n-type Am Qal -
Either by diffusion to a depth reaching the xAs cladding layer 13, or by forming a mask 17 of, for example, gold (Au) deposited through a resist, impurity atoms or protons are implanted to the depth mentioned above by ion implantation. By the method of introducing and annealing, Atx contained in the barrier layer, Atx Ga+ -xA, and the s cladding layer 15 is diffused within the quantum well structure 14 including the well layer, the Peter junction interface disappears, and the quantum well In place of the structure 14, a nearly uniform AtxGa1-xA S region 18 is formed.

第2図tc)及びtdl参照 列えばSin、による保護膜19、金・亜鉛(AuZ「
])によるp側電極20及び金・ケルマニウム(AuC
)りによるn側電極21を設けた後に、前記Atx G
 dl−xA、 s領域18内の壁開予定位置で壁間を
行なうこと(こよっ−C不実施例の曾子井戸レーザチッ
プが完成する。
Refer to Figure 2 tc) and tdl.
) and the p-side electrode 20 made of gold/germanium (AuC).
) After providing the n-side electrode 21 by
dl-xA, perform wall-to-wall opening at the planned wall opening position in the s region 18 (this completes the single-well laser chip of the non-embodiment).

不実施例において量子井戸構造14のスI・ライブ領域
のウェル層で発生した光はクラッド層13及び15に閉
じ込められてり開による共振鏡面Mに向うが、共振鏡面
M近傍は先に正門した相互拡散によって形成きれたA−
tx Oa 1− xA、 s領域18となって禁制帝
暢力)GaAsウェルj島より増大しており、従来01
1【こ3けると同様なウィンド領域の効果が得られる。
In the non-example, the light generated in the well layer of the sliver region of the quantum well structure 14 is confined in the cladding layers 13 and 15 and goes toward the resonant mirror surface M due to the opening, but the light near the resonant mirror surface M is connected to the main gate first. A- formed by mutual diffusion
tx Oa 1-
A similar effect of the window area can be obtained by subtracting 1.

なお以上の説明は八4ulti 0uanj、um W
el l <J’i造を例としたが、Single Q
uantum Well gQO)rMA合にも全(同
様に実施することができる。
The above explanation is 84ulti 0uanj, um W
el l <J'i construction was taken as an example, but Single Q
Quantum Well gQO) can also be performed in the same manner for rMA.

(gl  発明の詳細 な説明した如く不発明によれば、量子す1戸半導体レー
サに就いて、ウィンド領域を量子井戸構造に即して容易
に設けることが可能となり、特性の安定化と償頼度の向
上がなされて優れた特徴を有して将来性が期待されてい
る截子井戸牛導体レーザの実用化に大さく寄与]−る。
(gl) According to the invention as described in detail, it is possible to easily provide a window region in accordance with the quantum well structure in a quantum well semiconductor laser, thereby stabilizing the characteristics and improving reliability. This has greatly contributed to the practical application of the Kirikoido cow conductor laser, which has improved performance and excellent features and is expected to have a promising future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図[al乃至(clは量子井戸構造を備えない従来
の半導体レーザの例そ示す側断面図、第2図[al乃至
(C)は本発明の実施例の主要製造工程における側断面
図、第2図(由は同実施例の斜視図、第3図(al及び
(blは断面上のAtの組成比を示す図表である。 図において、11はn型G a A s基板、12はn
型G a A sバラフッ層、13はn型AtGaAs
クラッド層、14はG a A sウェル層とA t 
G a A sバリア層よりなる量子井戸構造、15は
p型A!GaASクランド層、16はp型G a A 
sキャップ層、18はA t G a A sウィンド
領域、19は保護膜、2oはp側電極、21はn供電&
を示す。 才  1  図 第2図        才5図 ゴ′Z区 Z/   /′3/Z  71 手続M正−F (VJ))子と9 1、 ’l f’lノに、+、 3 浦:1をlる古 =IFfil 、I−uj閉f=f:       ’
t、l4、’Bl’音!i Al11 A  神か川(
す川I11:i)山中11;ilゾj小川用](lI5
ijン■1))(522) P訓!j、;’:’l  
:1.’  通 株 式 会 ト14 代  理   
人     fllす1 神1・川(%lII田f山中
11111J1・1中1中1(l151(”l呻1・;
・、十通株式≦fン1内 5、#1114:U)l”lぞFシX11・’rミff
1iiTlす(1)本願明細店、第1頁、第5〜14行
に記載された「特u′r請求の範ν馬を別紙の通り補正
する。 (2)同第1頁、第19〜20行の「ウィンド領域」を
「領域」に補正する。 (3)同第7頁、第17行の「共振境面で終端し、」を
[−配設され、」に補正する。 (4)同第7頁、第20行の1ウイ/ド領域」を「領域
」に補正する。 (57同第11A、第15行月lこ以−トの肉汁を押入
するO [上記実施例では本発明を半導体レーザのウィンド領域
に適用した例を示したが、半導体レーザの市、流路を画
定する電流狭窄領域に本発明を適用してもよい。即ち、
ノンドープのウェル層と)(リア層から成る聞手井戸構
造の電流路以外の領域(こ不活性原子等を注入すること
lこより、高抵抗で且つ組成の均一な電流狭窄領域の形
成に用いてもよい。」 (6)同第11貞、第12行の1ウインド領域」の故に
1−又は電流狭窄領域」を特徴する 特許請求の範囲 「電子波のドウ・プロー波長波長以1・−0刀1“さを
有するウェル層と、該ウェルパづより人なるちり制帯幅
を有するバリア層とが交互に積層された活性領域と、該
活性領域をはさむ如く配設された前記ウェル層より人な
る禁161]帝幅を)j−ノる第1及び第2のクラッド
層と、前記活fI:頭域に当接して配設され、かつ前記
バリア層及びクラッド層の少なくとも一つと前記ウェル
IeI 、!:を(11゛←成する午専体間の411互
の組成の混合(こよる領域とが設けられてなることを特
徴とする丁144体発尤装置。」
FIG. 1 [al to (cl) are side sectional views showing an example of a conventional semiconductor laser without a quantum well structure, FIG. 2 [al to (C) are side sectional views in main manufacturing steps of an embodiment of the present invention. , FIG. 2 is a perspective view of the same example, and FIG. 3 is a chart showing the composition ratio of At on the cross section. In the figure, 11 is an n-type GaAs substrate, 12 is n
type GaAs barrier layer, 13 is n-type AtGaAs
cladding layer, 14 is Ga As well layer and At
Quantum well structure consisting of GaAs barrier layer, 15 is p-type A! GaAS ground layer, 16 is p-type GaA
s cap layer, 18 is an AtGaAs window region, 19 is a protective film, 2o is a p-side electrode, 21 is an n supply &amp;
shows. 1 Figure 2 Figure 5 Go'Z Ward Z/ /'3/Z 71 Procedure M-F (VJ)) child and 9 1, 'l f'lノ, +, 3 ura: 1 luru = IFfil, I-uj closed f = f: '
T, l4, 'Bl' sound! i Al11 A God or river (
Sukawa I11: i) Yamanaka 11;ilzoj Ogawa] (lI5
ijn■1)) (522) P-kun! j,;':'l
:1. 'Tori stock association 14 representative
Person flls1 God 1・kawa (%lII Denf Yamanaka 11111J1・1 middle 1 middle 1(l151("l groan 1・;
・, 10 shares ≦fn1 in 5, #1114:U)l"lzoFshiX11・'rmiff
1iiTl (1) The scope of the patent claim described in the same specification shop, page 1, lines 5 to 14 is amended as shown in the attached sheet. (2) The same page 1, lines 19 to 14 are amended. Correct "window area" in line 20 to "area". (3) On page 7, line 17, "terminates at a resonant boundary surface" is corrected to "-disposed,". (4) Correct "1 width/domain area" on page 7, line 20 to "area". (57 Id. No. 11A, No. 15, 15th line) Injecting meat juice from the meat in this part. The present invention may be applied to a current confinement region that defines a
The region other than the current path of the listener well structure consisting of the rear layer (non-doped well layer) is used to form a current confinement region with high resistance and uniform composition by implanting inert atoms, etc. (6) 11th line of the same, 12th line, 1 window region, therefore 1- or current confinement region.” (6) Claims characterized by 1- or current confinement region” 1.-0 below the dow-plow wavelength of the electronic wave. An active region in which a well layer having a length of 1" and a barrier layer having a dust control band width corresponding to the width of the well layer are alternately laminated; first and second cladding layers, which are arranged in contact with the active region, and at least one of the barrier layer and the cladding layer and the well IeI; ,!: (11゛ ← A 144-body generating device characterized by being provided with a 411-component mixture of compositions (a region in which there is a change in the composition).

Claims (1)

【特許請求の範囲】 it 子−波のドウ・フローイー波長以下のI’)さを
肩J−るつ〕−ル層と、該ウコール層より人なる禁Al
l帯幅を有するハリy′層とが交JLiこ積層されたt
占性領域と、該活性領域をはさむ如く配設された11」
6己つニIt層より大なる紙糸1コ帝幅を弔する第1及
び第2のクラット層と、hjl記活1生領域に当(淡し
て」(lf辰鏡面で経糸1し、かつ前Hj2バ10′層
及び7ラノIS層の少なくとも−りと^11記ウェル・
層とを構成1=43)半導休出1の相伝の1且す又Q月
払名゛によるウイ:/l−包A1と力S設プ(J けらゝ■耶′ことを・覗徴とする半導体光元裂酒、。
[Scope of Claims] It has a layer with a wavelength below the wavelength of the wave, and an aluminum layer that is lower than the wavelength of the wave.
The layer y′ having a band width l is intersected with the layer t
11 arranged to sandwich the occupied area and the active area.
6 The first and second Krat layers mourning the Emperor's breadth, and the first and second layers of paper, which are larger than the It layer. and at least the 11th well of the previous Hj2 bar 10' layer and the 7th layer IS layer.
Layer and composition 1 = 43) One of the inheritance of semi-conducting rest 1 and also Q monthly payment name ゛: /l-package A1 and force S configuration pu (J Semiconductor Mitsugen Rishu,.
JP19929282A 1982-11-12 1982-11-12 Semiconductor light emitting device Pending JPS59171186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19929282A JPS59171186A (en) 1982-11-12 1982-11-12 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19929282A JPS59171186A (en) 1982-11-12 1982-11-12 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS59171186A true JPS59171186A (en) 1984-09-27

Family

ID=16405372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19929282A Pending JPS59171186A (en) 1982-11-12 1982-11-12 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS59171186A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0174635A2 (en) * 1984-09-14 1986-03-19 Siemens Aktiengesellschaft Semiconductor laser for a high optical output power with reduced mirror heating
JPS61102084A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor laser
JPS61168980A (en) * 1985-01-22 1986-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPS61258488A (en) * 1985-05-13 1986-11-15 Hitachi Ltd Semiconductor laser device
JPH02307286A (en) * 1989-05-23 1990-12-20 Hikari Keisoku Gijutsu Kaihatsu Kk Manufacture of semiconductor laser
US5027164A (en) * 1988-03-23 1991-06-25 Fujitsu Limited Semiconductor device
JPH04115587A (en) * 1990-09-05 1992-04-16 Nec Corp Semiconductor laser
JP2013168620A (en) * 2012-02-17 2013-08-29 Mitsubishi Electric Corp Semiconductor laser manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003946A1 (en) * 1981-05-06 1982-11-11 Illinois Univ Method of forming wide bandgap region within a multilayer iii-v semiconductors
JPS58225677A (en) * 1982-06-23 1983-12-27 Agency Of Ind Science & Technol High output power semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003946A1 (en) * 1981-05-06 1982-11-11 Illinois Univ Method of forming wide bandgap region within a multilayer iii-v semiconductors
JPS58225677A (en) * 1982-06-23 1983-12-27 Agency Of Ind Science & Technol High output power semiconductor laser device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0174635A2 (en) * 1984-09-14 1986-03-19 Siemens Aktiengesellschaft Semiconductor laser for a high optical output power with reduced mirror heating
JPS61102084A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor laser
JPS61168980A (en) * 1985-01-22 1986-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPS61258488A (en) * 1985-05-13 1986-11-15 Hitachi Ltd Semiconductor laser device
US5027164A (en) * 1988-03-23 1991-06-25 Fujitsu Limited Semiconductor device
JPH02307286A (en) * 1989-05-23 1990-12-20 Hikari Keisoku Gijutsu Kaihatsu Kk Manufacture of semiconductor laser
JPH04115587A (en) * 1990-09-05 1992-04-16 Nec Corp Semiconductor laser
JP2013168620A (en) * 2012-02-17 2013-08-29 Mitsubishi Electric Corp Semiconductor laser manufacturing method

Similar Documents

Publication Publication Date Title
JP2839077B2 (en) Gallium nitride based compound semiconductor light emitting device
US5508554A (en) Semicoductor device having defect type compound layer between single crystal substrate and single crystal growth layer
US5556804A (en) Method of manufacturing semiconductor laser
US6677618B1 (en) Compound semiconductor light emitting device
JP3206555B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JPS59171186A (en) Semiconductor light emitting device
JP2969979B2 (en) Semiconductor structures for optoelectronic components
US5574741A (en) Semiconductor laser with superlattice cladding layer
JPH09298341A (en) Semiconductor laser element
JPH07202340A (en) Visible-light semiconductor laser
CN115548877A (en) Laser radar-oriented 1550nm waveband high-power semiconductor laser epitaxial structure and method
JPH11340559A (en) Semiconductor light-emitting element
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JPS60101989A (en) Semiconductor laser and manufacture thereof
JP2641484B2 (en) Semiconductor element
JPH05160504A (en) Semiconductor laser device
US5887011A (en) Semiconductor laser
US20080137702A1 (en) Buried semiconductor laser and method for manufacturing the same
US5192711A (en) Method for producing a semiconductor laser device
CN112134143A (en) Gallium nitride based laser and preparation method thereof
JP2909144B2 (en) Semiconductor laser device and method of manufacturing the same
JPH07176785A (en) Superluminescent diode element and its manufacture
JPS59172785A (en) Semiconductor laser
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JP2869875B2 (en) Manufacturing method of optical integrated circuit