JPS59165480A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPS59165480A
JPS59165480A JP3986183A JP3986183A JPS59165480A JP S59165480 A JPS59165480 A JP S59165480A JP 3986183 A JP3986183 A JP 3986183A JP 3986183 A JP3986183 A JP 3986183A JP S59165480 A JPS59165480 A JP S59165480A
Authority
JP
Japan
Prior art keywords
type semiconductor
light
semiconductor layers
light emitting
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3986183A
Other languages
Japanese (ja)
Other versions
JPH0451997B2 (en
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3986183A priority Critical patent/JPS59165480A/en
Publication of JPS59165480A publication Critical patent/JPS59165480A/en
Publication of JPH0451997B2 publication Critical patent/JPH0451997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Abstract

PURPOSE:To enable to reduce the size and to modulate at a high speed by alternately laminating P type semiconductor layers having a thickness of the degree equal to de Broglie's wave length of electron and hole or less and N type semiconductor layers to form a multilayer thin film and providing a light modulator in part thereof. CONSTITUTION:P type semiconductor layers 3a-3d made of P type In0.53Ga0.47 As and N type semiconductor layers 4a-4d made of N type In0.53Ga0.47As are alternately laminated on a clad layer 32 to form a multilayer thin film. The film is isolated to left and right regions via a slot 38. The right side 39 of the slot 38 is a light emitting unit which operates as a semiconductor laser, and the left side 40 is a light modulator in which the end face opposed to the slot 38 is formed vertically to the optical axis by a reactive ion etching method. The light emitted from the unit 39 reflected on both end faces of the modulator 40, and again returned to the unit 39 to unstabilize the oscillation is avoided by slightly inclining the both end faces of the modulator 40 from the direction perpendicular to the optical axis.

Description

【発明の詳細な説明】 本発明は半導体レーザと変調器とを一体化し、変調器の
吸収ピーク波長を変動させることによって半導体レーザ
の出力光を外部よシ高速変調できる半導体発光素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device that integrates a semiconductor laser and a modulator and can externally modulate the output light of the semiconductor laser at high speed by varying the absorption peak wavelength of the modulator. .

速い速度で変調可能な半導体レーザは光通信の分野に於
いては情報の高速、大容量伝送を可能にするものとして
重要視されているが、他の分野、例えば光演算や光情報
処理の分野に於いても今後1の重要性は増々高まる傾向
にある。
Semiconductor lasers that can be modulated at high speeds are considered important in the field of optical communications as they enable high-speed, large-capacity transmission of information, but they are also used in other fields, such as optical computing and optical information processing. The importance of 1 is likely to increase in the future.

従来半導体レーザの変調には直接変調方式が用いられて
きた。これはレーザに流れる電流を直接的に変調する方
式であり簡単ではあるが変調速度の上限は共振周波数で
決められてしまい、実用的には数GHz程度であった。
Conventionally, a direct modulation method has been used to modulate semiconductor lasers. This method directly modulates the current flowing through the laser and is simple, but the upper limit of the modulation speed is determined by the resonant frequency, and in practical terms it is about several GHz.

又直接変調方式ではレーザが変調時に多軸モードで発振
する特性があるためにスペクトルが広がシ、光通信用の
光源として用いた時にファイバの分散効果によって伝送
帯域が劣化するという問題が生じる。それに対して外部
変調方式ではその様な問題は生じない。半導体レーザの
外部変調用の変調器としては従来よりLiNbO3やL
iTaO5等の強銹電体の特性、主としてその電気光学
効果を利用して実験的に行なわれてきた。しかしながら
十分な変調を得るには変調器は数信程度は必要であるた
め容量が大き   □く、又数十Vと高い印加電圧も必
要であり、更にレーザと一体にして装置化するには光軸
合わせ等の煩雑な調整が必要であった。
Furthermore, in the direct modulation method, since the laser has the characteristic of oscillating in multi-axis modes during modulation, the spectrum is broadened, and when used as a light source for optical communication, the problem arises that the transmission band is degraded due to the dispersion effect of the fiber. On the other hand, such a problem does not occur with the external modulation method. Conventionally, LiNbO3 and L are used as modulators for external modulation of semiconductor lasers.
This has been carried out experimentally by utilizing the characteristics of strong electric materials such as iTaO5, mainly its electro-optic effect. However, in order to obtain sufficient modulation, the modulator requires a few pulses, so it has a large capacity, and a high applied voltage of several tens of V is required. Complicated adjustments such as axis alignment were required.

本発明は上記欠点に鑑みなされたもので、半導体基板上
に発光部と光変調部とをモノリシック化して形成し、小
型で高速に変調ができる半導体発光素子を提供するもの
である。すなわち本発明による半導体発光素子は、電子
及び正孔のド・ブロイ波長程度、或いはそれ以下の厚さ
を有するP型半導体層と、n型半導体層とを交互に積層
して多層薄膜を形成し、その一部に発光部を、他の部分
に発光部からの光の強度を印加電圧によって変調する光
変調部を設けたことを特徴とするものである0 以下図面を用いて本発明の実施例を具体的に説明する。
The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a semiconductor light-emitting element that is compact and capable of high-speed modulation by monolithically forming a light-emitting section and a light modulating section on a semiconductor substrate. That is, the semiconductor light emitting device according to the present invention has a multilayer thin film formed by alternately stacking P-type semiconductor layers and N-type semiconductor layers each having a thickness of about the de Broglie wavelength of electrons and holes or less. The invention is characterized in that a light emitting part is provided in a part of the light emitting part, and a light modulating part that modulates the intensity of light from the light emitting part in another part by an applied voltage. An example will be explained in detail.

第1図は本発明による半導体発光素子の動作原理を示す
発光部と光変調部とのバンド図である。
FIG. 1 is a band diagram of a light emitting section and a light modulating section showing the operating principle of a semiconductor light emitting device according to the present invention.

同図に於いて、Ia、Ib、1c及び1dはP型半導体
層である。又2a、2b、 2c及び2dはn型半導体
層である。黒丸は電子、白丸は正孔を示す。それぞれの
半導体層の厚さは電子及び正孔のド・ブロイ波長程度、
或いはそれ以下である。ここでド・ブロイ波長、tdと
はブランク定数り及びキャリアの運動量Pを用いてi、
d=h/pで定義される量で、例えばInPでは丈d;
300A位であり、キャリアの拡散長に比べれば小さな
値である。このように薄い半導体層内ではキャリアの厚
さ方向の運動エネルギーは量子化される。11.12及
び13は伝導帯に現われる電・子の離散的なエネルギー
準位を模式的に示したものである。また21及び22は
価電子帯の正孔のエネルギー準位である。エネルギー準
位の間隔は半導体層の層厚に直接的に依存しており、厚
さを薄くすると広がる。第1図の多層薄膜にP型半導体
層1aがn型半導体層2dに対して正になるように電圧
を印加したとする。
In the figure, Ia, Ib, 1c and 1d are P-type semiconductor layers. Further, 2a, 2b, 2c and 2d are n-type semiconductor layers. Black circles indicate electrons and white circles indicate holes. The thickness of each semiconductor layer is about the de Broglie wavelength of electrons and holes,
Or less. Here, the de Broglie wavelength and td are i, using Blank's constant and carrier momentum P.
A quantity defined by d=h/p, for example, in InP, the length d;
This is about 300 A, which is a small value compared to the carrier diffusion length. In such a thin semiconductor layer, the kinetic energy of carriers in the thickness direction is quantized. 11.12 and 13 schematically show the discrete energy levels of electrons appearing in the conduction band. Further, 21 and 22 are the energy levels of holes in the valence band. The spacing between energy levels directly depends on the thickness of the semiconductor layer, and increases as the thickness decreases. Assume that a voltage is applied to the multilayer thin film shown in FIG. 1 so that the P-type semiconductor layer 1a becomes positive with respect to the N-type semiconductor layer 2d.

このような状態ではP型半導体層1aと、n型半導体層
2aとは順方向バイアスの状態となる。それに対して隣
のn型半導体層2a(!:P型半型体導体層1b逆方向
バイアスの状態となシ、その接合部に生じている空乏層
の厚さは広がる。その結果n型半導体層2aの内部に存
在する電子が感じる実効的な厚さは減9、伝導体のエネ
ルギー準位の間隔は広がる。同様な事が他のn型半導体
層1b11C及び1dの伝導帯のエネルギー準位に対し
ても生じておシ、又P型半導体層2 ”% 2 bs 
2 c及び2dの価電子帯のエネルギー準位の間隔が広
がることも了解されよう。光を上記のようなバンド構造
を持った半導体層に入射した場合を考える。光の吸収係
数は半導体層のエネルギー準位の間隔に依存しているの
で、外部からの印加電圧によって光の吸収量が変わシ、
これが変調器となることが分かる。又上記半導体層を活
性層とした共振器を作ればレーザとなる。電子と正孔と
の再結合は順方向にバイアスされた半導体層間の接合部
で生じ、それによってレーザ発振を起こさせることがで
きる。各半導体層はド・ブロイ波長程度の薄さであるた
め、一端よシ注入されたキャリアは逆バイアス状態にな
った半導体層の部分で生じている電位障壁をトンネル効
果で突き抜けることができる。
In this state, the P-type semiconductor layer 1a and the N-type semiconductor layer 2a are in a forward bias state. On the other hand, when the adjacent n-type semiconductor layer 2a (!: P-type half-type conductor layer 1b is in a reverse bias state, the thickness of the depletion layer formed at the junction increases. As a result, the n-type semiconductor The effective thickness felt by the electrons existing inside the layer 2a decreases9, and the spacing between the energy levels of the conductor increases.The same thing applies to the energy levels of the conduction bands of the other n-type semiconductor layers 1b11C and 1d. It also occurs for the P-type semiconductor layer 2''% 2 bs
It will also be appreciated that the spacing between the energy levels of the 2c and 2d valence bands increases. Consider the case where light is incident on a semiconductor layer having the above band structure. The absorption coefficient of light depends on the spacing between the energy levels of the semiconductor layer, so the amount of light absorbed changes depending on the externally applied voltage.
It can be seen that this becomes a modulator. Furthermore, if a resonator is made using the above semiconductor layer as an active layer, it becomes a laser. Recombination of electrons and holes occurs at the junction between the forward biased semiconductor layers, thereby allowing lasing to occur. Since each semiconductor layer is as thin as the de Broglie wavelength, the injected carriers can tunnel through the potential barrier generated in the reverse biased portion of the semiconductor layer.

したがってキャリアは他端の半導体層まで達することが
でき、多層薄膜全体にキャリアを注入し、供給すること
が可能である。この結果n型半導体層とP型半導体層と
が各々一層よシ成る場合に比べてレーザ利得は大きくな
る。
Therefore, carriers can reach the semiconductor layer at the other end, making it possible to inject and supply carriers to the entire multilayer thin film. As a result, the laser gain becomes larger than when the n-type semiconductor layer and the P-type semiconductor layer are each made of stronger layers.

第2図は本発明に係わる一実施例の光軸に垂直な方向の
断面図、第3図は光軸方向の断面図である0InGaA
sP 系混晶で作製されたn型 InPからなる半導体
基板61の上に、層厚1μmでSnドープ、n= I 
X 10”/’6n3のn型InPがらナルクラッド層
62を形成する。この層62上に、層厚100AでBe
ドープ、P ”” I X 1017/cm ”のP型
Ino、5aGaatyAs  からなるP型半導体層
と、同じく層厚100λでSnドープ、n−1X 10
17/c1n3のn型I n o、5aGa a4y、
As  からなるn型半導体層とを交互にそれぞれ4層
ずつ積層して多層薄膜を形成する。3JL、 3b、 
3c及び3dがP型半導体層、4as 4b、4c及び
4dがn型半導体層である。各層の形成には分子線エピ
タキシャル成長法を用いる。66及び34は層111[
1μmでBeドープ、P=1x1018/cm3のP型
InPからなるクラッド層とP型I n asaGa 
o、4yAsからなるコンタクト層、35.66及び3
7は電極である。多層薄膜は溝68によって左右二つの
領域に分離されている。第6図で溝3日の右側39が半
導体レーザとして動作する発光部であり、又左側40が
光変調部である。
FIG. 2 is a cross-sectional view in the direction perpendicular to the optical axis of one embodiment of the present invention, and FIG. 3 is a cross-sectional view in the optical axis direction of 0InGaA
On a semiconductor substrate 61 made of n-type InP made of sP-based mixed crystal, a layer thickness of 1 μm is doped with Sn, n=I.
A null cladding layer 62 is formed of n-type InP with a thickness of 10"/'6n3. On this layer 62, a Be
A P-type semiconductor layer made of P-type Ino, 5aGaatyAs doped with P ``I
17/c1n3 n-type I no, 5aGa a4y,
A multilayer thin film is formed by alternately stacking four n-type semiconductor layers each made of As. 3JL, 3b,
3c and 3d are p-type semiconductor layers, and 4as 4b, 4c, and 4d are n-type semiconductor layers. Molecular beam epitaxial growth is used to form each layer. 66 and 34 are layers 111 [
A cladding layer made of P-type InP doped with 1 μm of Be and P=1×1018/cm3 and P-type In asaGa
Contact layer consisting of o, 4yAs, 35.66 and 3
7 is an electrode. The multilayer thin film is separated into two regions, left and right, by a groove 68. In FIG. 6, the right side 39 of the third groove is a light emitting section that operates as a semiconductor laser, and the left side 40 is a light modulating section.

発光部69、溝38、及び光変調部40の光軸方向の長
さはそれぞれ300μm120μm150μmでおる。
The lengths of the light emitting section 69, the groove 38, and the light modulating section 40 in the optical axis direction are 300 μm, 120 μm, and 150 μm, respectively.

発光部39の溝38に面した端面はリアクティブ・イオ
ンエツチング法によって光軸に垂直となるように形成し
である。又反対側の端面はへき開面となっている。第6
図中Poは光変調部40を通りそこで変調されて出てく
る光を示す。発光部ろ9から出た光が光変調部40の両
端面で反射されて再び発光部ろ9に戻り発振を不安定に
するのを避けるために光変調部40の両端面は光軸に垂
直な方向から少し傾けて形成しである。レーザ光の波長
は約1.5μmである。したがって本発明によれば電極
40に印加する電圧を数V変化させるだけで光変調部4
0の吸収端波長を1.4μm 1.5μmの範囲で変化
させることができ消光比100%で1GHz  の速度
の変調ができる。
The end face of the light emitting part 39 facing the groove 38 is formed perpendicular to the optical axis by reactive ion etching. Moreover, the end face on the opposite side is a cleavage plane. 6th
In the figure, Po indicates light that passes through the light modulation section 40 and is modulated there and output. Both end surfaces of the light modulator 40 are perpendicular to the optical axis in order to prevent the light emitted from the light emitting section 9 from being reflected by both end surfaces of the light modulating section 40 and returning to the light emitting section 9, making the oscillation unstable. It is formed at a slight angle from the opposite direction. The wavelength of the laser light is approximately 1.5 μm. Therefore, according to the present invention, by simply changing the voltage applied to the electrode 40 by a few volts, the light modulating section 4 can be
The zero absorption edge wavelength can be changed in the range of 1.4 μm to 1.5 μm, and speed modulation of 1 GHz is possible with an extinction ratio of 100%.

また上記実施例によるときには発光部39からは光変調
部40と反対の方向へもレーザ光が出るため、反対側に
も同様な構造で対称に光変調部を設ければそれぞれ独立
に変調でき、二つの信号光を送ることができ、経済的な
光源が得られる。
Further, in the above embodiment, since laser light is emitted from the light emitting section 39 in the opposite direction to the light modulating section 40, if a light modulating section is provided symmetrically with the same structure on the opposite side, each can be modulated independently. Two signal lights can be sent, resulting in an economical light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体発光素子の動作原理を示す
発光部と光変調部とのバンド図、第2図は本発明に係わ
る一実施例の光軸に垂直方向の断面図で第3図の■−■
線断面図を示す、第6図は光軸方向の断面図である。 1B11b、1c、1ds 3a13b、3c及び6d
はP型半導体層、7a、2b% 2c、2d14a、4
b、4c及び4dはn型半導体層、11.12.13.
21  及び22はエネルギー準位、61は半導体基板
、32及び33はクラ、ラド層、64はコンタクト層、
35.36及び67は電極、58は溝、39は発光部、
40は光変調部である。 特許出願人 日本電気株式会社
FIG. 1 is a band diagram of a light emitting section and a light modulating section showing the operating principle of a semiconductor light emitting device according to the present invention, and FIG. 2 is a cross-sectional view in a direction perpendicular to the optical axis of an embodiment according to the present invention. ■-■
FIG. 6, which shows a line sectional view, is a sectional view in the optical axis direction. 1B11b, 1c, 1ds 3a13b, 3c and 6d
are P-type semiconductor layers, 7a, 2b% 2c, 2d14a, 4
b, 4c and 4d are n-type semiconductor layers, 11.12.13.
21 and 22 are energy levels, 61 is a semiconductor substrate, 32 and 33 are CLA and RAD layers, 64 is a contact layer,
35, 36 and 67 are electrodes, 58 is a groove, 39 is a light emitting part,
40 is a light modulation section. Patent applicant: NEC Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)電子及び正孔のド・ブロイ波長程度、或いはそれ
以下の厚さを有するP型半導体層と、n型半導体層とを
交互に積層して多層薄膜を形成し、その一部に発光部を
、他の部分に発光部からの光の強度を印加電圧によって
変調する光変調部を設けたことを特徴とする半導体発光
素子。
(1) A multilayer thin film is formed by alternately stacking P-type semiconductor layers and N-type semiconductor layers having a thickness of about the de Broglie wavelength of electrons and holes or less, and a part of the layer emits light. What is claimed is: 1. A semiconductor light emitting device, comprising: a light modulating section that modulates the intensity of light from the light emitting section in accordance with an applied voltage.
JP3986183A 1983-03-10 1983-03-10 Semiconductor light emitting element Granted JPS59165480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3986183A JPS59165480A (en) 1983-03-10 1983-03-10 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3986183A JPS59165480A (en) 1983-03-10 1983-03-10 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS59165480A true JPS59165480A (en) 1984-09-18
JPH0451997B2 JPH0451997B2 (en) 1992-08-20

Family

ID=12564749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3986183A Granted JPS59165480A (en) 1983-03-10 1983-03-10 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS59165480A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168980A (en) * 1985-01-22 1986-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPS61190992A (en) * 1985-02-19 1986-08-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser with quantum well type optical modulator
JPS61198792A (en) * 1985-02-28 1986-09-03 Tokyo Inst Of Technol Active optical integrated circuit
JPS62229990A (en) * 1986-03-31 1987-10-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor light emitting element
JPS6318683A (en) * 1986-07-11 1988-01-26 Nec Corp Short-optical-pulse generating device
JPH01140781A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Light amplifier
FR2681191A1 (en) * 1991-09-06 1993-03-12 France Telecom INTEGRATED LASER-MODULATOR COMPONENT WITH VERY TORQUE SUPER-ARRAY.
JPH05259506A (en) * 1992-01-10 1993-10-08 Internatl Business Mach Corp <Ibm> Super/light-emitting semiconductor diode and manufacture therefor
JP2005019533A (en) * 2003-06-24 2005-01-20 Oki Electric Ind Co Ltd Optical semiconductor device and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145385A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for generating light pulse train

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145385A (en) * 1981-03-03 1982-09-08 Nippon Telegr & Teleph Corp <Ntt> Method for generating light pulse train

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168980A (en) * 1985-01-22 1986-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-emitting element
JPS61190992A (en) * 1985-02-19 1986-08-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser with quantum well type optical modulator
JPS61198792A (en) * 1985-02-28 1986-09-03 Tokyo Inst Of Technol Active optical integrated circuit
JPS62229990A (en) * 1986-03-31 1987-10-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor light emitting element
JPS6318683A (en) * 1986-07-11 1988-01-26 Nec Corp Short-optical-pulse generating device
JPH0567076B2 (en) * 1986-07-11 1993-09-24 Nippon Electric Co
JPH01140781A (en) * 1987-11-27 1989-06-01 Hitachi Ltd Light amplifier
FR2681191A1 (en) * 1991-09-06 1993-03-12 France Telecom INTEGRATED LASER-MODULATOR COMPONENT WITH VERY TORQUE SUPER-ARRAY.
US5305343A (en) * 1991-09-06 1994-04-19 France Telecom Etablissement Autonome De Droit Public Highly coupled superlattice integrated laser-modulator component
JPH05259506A (en) * 1992-01-10 1993-10-08 Internatl Business Mach Corp <Ibm> Super/light-emitting semiconductor diode and manufacture therefor
JP2005019533A (en) * 2003-06-24 2005-01-20 Oki Electric Ind Co Ltd Optical semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPH0451997B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JP2537002B2 (en) Semiconductor laser and optical wavelength modulation method
FI113719B (en) modulator
JPH06509428A (en) Independent station limited electroabsorption modulator
JPS59165480A (en) Semiconductor light emitting element
JPH0194689A (en) Optoelectronic semiconductor element
US4943144A (en) Electromagnetic wave modulator with quantum well structure and its use as a polarizer
US4716570A (en) Distributed feedback semiconductor laser device
EP0721241B1 (en) Semiconductor quantum well structure and semiconductor device using the same
JPH02149818A (en) Optical modulating element
US4380075A (en) Mode stable injection laser diode
JPS58202581A (en) Controller for laser diode beam
US5173955A (en) Magnetooptic device and its driving method
JPH0244311A (en) Optical modulating element
JPH01179488A (en) Optical amplifier
JPS623221A (en) Optical modulator
JP3051499B2 (en) Semiconductor light emitting device
JP2001024211A (en) Semiconductor light receiving element
JPH03192788A (en) Integrated optical modulator
JPH02132415A (en) Optical modulator
JPS6257116B2 (en)
JPS62299936A (en) Optical modulator
JPS6237833B2 (en)
JPH0715083A (en) Collision pulse mode synchronous semiconductor laser
JP2889594B2 (en) Semiconductor optical device and optical communication system
JPH0553246B2 (en)