JPH01179488A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH01179488A
JPH01179488A JP220388A JP220388A JPH01179488A JP H01179488 A JPH01179488 A JP H01179488A JP 220388 A JP220388 A JP 220388A JP 220388 A JP220388 A JP 220388A JP H01179488 A JPH01179488 A JP H01179488A
Authority
JP
Japan
Prior art keywords
layer
gaas
type
active layer
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP220388A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Kenichi Nishi
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP220388A priority Critical patent/JPH01179488A/en
Publication of JPH01179488A publication Critical patent/JPH01179488A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an optical amplifier large in gain band width by a method wherein an active layer comprising two or more quantum well structures different from each other in well thickness is provided to a semiconductor laser type optical amplifier. CONSTITUTION:A buffer layer 2 formed of an n-type A GaAs/AlGaAs multiple quantum well(MQW) layer 2, an n-type A GaAs clad layer 3, an MQW active layer 4, a p-type AlGaAs intermediate layer 5, a p-type AlGaAs clad layer 6, and a p-type A GaAs cap layer 7 are formed on an n-type GaAs substrate 1. The above MQW active layer 4 is composed of five periods of GaAs barriers and GaAs well layers different from each other in quantum well thickness. By these processes, a gain property constant over a wide frequency range can be obtained. And, a quantum well structure being employed, the efficiency of the carrier density toward an injecting current can be made high and an amplifier of this design can be operated with a low current.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一光通信装置や光交換装置において光信号を増
幅するのに用いられる光増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical amplifier used to amplify an optical signal in an optical communication device or an optical switching device.

(従来の技術) 光信号を一旦電気信号に変換し、さらにこの電気信号を
光信号に変換するいわゆる光−電。
(Prior Art) So-called opto-electronic technology involves first converting an optical signal into an electrical signal, and then converting this electrical signal into an optical signal.

電−光変換を介さずに増幅する光増幅器は、光フアイバ
伝送系、光交換系の性能を向上させるものとして期待さ
れている。光増幅器の実現手段としてはラマン、ブリユ
アン等の光フアイバ内の非線形散乱を利用する方法も考
えられるが、小型、低消費パワー、構成が簡易等の点か
ら、半導体レーザ(LD)の利得a横を利用したLD光
増幅器が望ましい。
Optical amplifiers that perform amplification without going through electro-optic conversion are expected to improve the performance of optical fiber transmission systems and optical switching systems. As a means of realizing an optical amplifier, it is possible to use nonlinear scattering within an optical fiber such as Raman or Brillouin, but from the viewpoint of small size, low power consumption, and simple configuration, the gain a It is desirable to use an LD optical amplifier using

LD光増幅器には大別して、ファブリ・ペロー(F−P
)、DFB  LDをそのまましきい値以下のバイアス
状態で用いる共振型と、F−P型の端面反射率をARコ
ート等により低減し、発振を抑圧した進行波(TW)型
とがある。進行波型は共振型に比べ利得波長帯域が広く
、温度変動に対し安定に動作させることができ、利得飽
和や雑音特性の面でも優れた特性が期待できる。このた
め進行波半導体レーザ型光増幅器(TW−LD光増幅器
)が広く研究されている。
LD optical amplifiers can be roughly divided into Fabry-Perot (F-P)
), a resonant type that uses the DFB LD as it is in a bias state below the threshold value, and a traveling wave (TW) type that suppresses oscillation by reducing the end face reflectance of the FP type with an AR coating or the like. The traveling wave type has a wider gain wavelength band than the resonant type, can operate stably against temperature fluctuations, and can be expected to have excellent characteristics in terms of gain saturation and noise characteristics. For this reason, traveling wave semiconductor laser type optical amplifiers (TW-LD optical amplifiers) have been widely studied.

’I”W−LD光増幅器の活性層の構造には通常の二重
へテロ構造(D H)を用いることが多いが、多重量子
井戸(MQW>構造を用いることも可能である。MQW
−LDはD I−(−L Dに比べ電流増加に対する利
得係数増大の割合が大きい。そこで、端面にARコート
を施しTW−LD光増幅器とした場合にも非常に低い電
流で高い利得が得られる。
The structure of the active layer of an 'I'W-LD optical amplifier is often a normal double heterostructure (DH), but it is also possible to use a multiple quantum well (MQW) structure.
-LD has a larger proportion of gain coefficient increase with respect to current increase than DI-(-LD. Therefore, even if the end face is AR coated and used as a TW-LD optical amplifier, high gain can be obtained with very low current. It will be done.

また、活性層が薄く、光閉じ込め係数を小さくできるか
ら、飽和光出力強度が改善されるという利点もある。
Furthermore, since the active layer is thin and the optical confinement coefficient can be reduced, there is also the advantage that the saturation optical output intensity is improved.

(発明が解決しようとする課題) MQW構造の活性層では、伝導帯、禁制帯内のエネルギ
状態が量子化され、その準位間で遷移が起きる。このた
めDH構造に比べ利得スペクトラムの波長幅が狭くなる
。端面反射率を十分に抑圧したTW−LD光増幅器では
、その利得帯域幅は活性層材料の利得帯域幅で決定され
る。従って、TW−MQW−LD光増幅器の利得帯域幅
は、通常のDH構造活性層を持つTW−DH−LD光増
幅器に比べ可成り狭いものとなる。このことは波長多重
(WDM)された光信号の増幅を考える時には大きな問
題となる。
(Problems to be Solved by the Invention) In the active layer of the MQW structure, energy states in the conduction band and forbidden band are quantized, and transitions occur between the levels. Therefore, the wavelength width of the gain spectrum is narrower than in the DH structure. In a TW-LD optical amplifier in which end face reflectance is sufficiently suppressed, the gain bandwidth is determined by the gain bandwidth of the active layer material. Therefore, the gain bandwidth of the TW-MQW-LD optical amplifier is considerably narrower than that of a TW-DH-LD optical amplifier having a normal DH structure active layer. This becomes a big problem when considering amplification of wavelength multiplexed (WDM) optical signals.

本発明の目的は上述の問題点を除き利得帯域幅の広い光
増幅器を提供することにある。
An object of the present invention is to provide an optical amplifier with a wide gain bandwidth that eliminates the above-mentioned problems.

(課題を解決するための手段) 本願の第1の発明による光増幅器は、半導体材料による
活性層と、入出力光信号を結合するための入出射端面と
を有する半導体レーザ型の光増幅器において、前記活性
層が、互いに井戸厚の異なる複数の量子井戸構造を含む
ことを特徴とする。
(Means for Solving the Problems) An optical amplifier according to the first invention of the present application is a semiconductor laser type optical amplifier having an active layer made of a semiconductor material and an input/output end face for coupling input and output optical signals. The active layer is characterized in that it includes a plurality of quantum well structures having mutually different well thicknesses.

また、本願の第2の発明による光増幅器は、半導体材料
による活性層と、入出力光信号を結合するための入出射
端面とを有する半導体レーザ型の光増幅器において、前
記活性層が井戸層またはバリア層のうちの少くとも一方
の組成が異なる複数の量子井戸構造を含むことを特徴と
するものである。
Further, an optical amplifier according to a second invention of the present application is a semiconductor laser type optical amplifier having an active layer made of a semiconductor material and an input/output end face for coupling input and output optical signals, wherein the active layer is a well layer or It is characterized by including a plurality of quantum well structures in which at least one of the barrier layers has a different composition.

(作用) 本発明は量子井戸構造の実効的なバンドギャップが井戸
層の厚み、及び井戸層またはバリア層の組成により制御
できることを利用している。まずG a A s / 
A iJ G a A s系量子井戸構造を例に、この
点につき簡単に説明する。
(Function) The present invention utilizes the fact that the effective band gap of a quantum well structure can be controlled by the thickness of the well layer and the composition of the well layer or barrier layer. First of all, Ga As /
This point will be briefly explained using an A iJ Ga As quantum well structure as an example.

第3図はG a A s / AρGaAs系単一量子
井戸(SQW)I造のエネルギ・バンド図である。
FIG. 3 is an energy band diagram of a GaAs/AρGaAs single quantum well (SQW) I structure.

GaAs井戸層をAρK Ga+−えAsバリア層では
さんだ構造であり、簡単のためバリア層厚を無限大とし
ている。このGaAs井戸内で電子、正孔のエネルギー
が量子化され離散的なエネルギ準位を形成する。このS
QW構造の実効的なバンドギャップは第3図に示すよう
な、基底単位間のエネルギー差で決定される。
It has a structure in which a GaAs well layer is sandwiched between AρK Ga+- and As barrier layers, and the barrier layer thickness is made infinite for simplicity. The energy of electrons and holes is quantized within this GaAs well to form discrete energy levels. This S
The effective bandgap of the QW structure is determined by the energy difference between the base units as shown in FIG.

ところで、電子、正孔の量子化されたエネルギ準位は井
戸のポテンシャル深さ及び井戸厚によって決定される。
Incidentally, the quantized energy levels of electrons and holes are determined by the potential depth and well thickness of the well.

つまり井戸およびバリア層の組成ならびに井戸層厚によ
り実効的なバンドギャップを制御することができる。第
4図はGaAsを井戸とするG a A s / Aρ
KGal−IAs系SQWの井戸厚とバンドギャップ波
長(バンドギャップ・エネルギに対応した波動の波長)
の関係を計ユしたものである。井戸厚及びバリアの組成
を変えることにより500人に渡り、バンドギャップ波
長を制御できる。このようなSQWを活性層内に持つL
D光増幅器はそのバンドギャップ波長近傍に利得スペク
トラムのピークを持つことになる。
In other words, the effective bandgap can be controlled by the composition of the well and barrier layer and the thickness of the well layer. Figure 4 shows GaAs/Aρ with GaAs as the well.
Well thickness and bandgap wavelength of KGal-IAs system SQW (wavelength of wave corresponding to bandgap energy)
It is calculated based on the relationship between By changing the well thickness and barrier composition, the bandgap wavelength can be controlled over 500 nm. L with such SQW in the active layer
The D optical amplifier has a gain spectrum peak near its bandgap wavelength.

井戸の厚みり、はド・ブロイ波長程度以下にしないと量
子サイズ効果が顕著に現れないため、通常150人程度
以下である。−力先の導波層でもある活性層の厚みは通
常1000〜2000人である。従って活性層内に複数
の量子井戸を持つMQW−LDが可能になる。このMQ
W−LDで各井戸の厚み又は井戸若しくはバリアの組成
を少しずつ異ならせておけば各井戸では異なる波長に利
得ピークを持つ、活性層を導波される光は各井戸構造で
の利得作用をそれぞれ受けることになる。このようなM
QW−LDをLD光増幅器として用いれば各井戸での利
得スペクトラムが重ね合され全体として極めて平坦な利
得スペクトラムが得られる。
The thickness of the well is usually about 150 or less because the quantum size effect does not become noticeable unless it is about the de Broglie wavelength or less. - The thickness of the active layer, which is also the waveguide layer at the tip of the force, is usually 1,000 to 2,000 layers. Therefore, an MQW-LD having multiple quantum wells in the active layer becomes possible. This MQ
In a W-LD, if the thickness of each well or the composition of the well or barrier is slightly different, each well will have a gain peak at a different wavelength, and the light guided through the active layer will have a gain effect in each well structure. You will receive each. M like this
When a QW-LD is used as an LD optical amplifier, the gain spectra in each well are superimposed, and an extremely flat gain spectrum can be obtained as a whole.

第5図は活性層が4つの異なる厚みの量子井戸から成る
MQW−LD光増幅器の利得スペクトラムを模式的に示
したものである。このような構造をとることにより、第
5図に示したように、一つの構造の量子井戸を用いただ
けでは得られなかった広い利得帯域が実現できる。
FIG. 5 schematically shows the gain spectrum of an MQW-LD optical amplifier whose active layer consists of quantum wells with four different thicknesses. By adopting such a structure, as shown in FIG. 5, a wide gain band that could not be obtained by using only one structure of quantum wells can be realized.

(実施例) 第1図は本発明の一実施例の構造を示す斜視図である。(Example) FIG. 1 is a perspective view showing the structure of an embodiment of the present invention.

ここでは量子サイズ効果が最も顕著に現れるG a A
 s / G a AρAs系材料全材料た場合につい
て説明する。
Here, the quantum size effect appears most prominently in G a A
The case where all the s/G a AρAs-based materials are used will be explained.

まず第1図に示した光増幅器の構造をその製作方法とと
もに説明する。n−GaAs基板1の上に、バッファ層
となるn  AAa、< Gao、s As/ n −
G a A s多!i子井戸(MQW)!2゜n−AA
a、40ao、* Asクラ・yド層3.MQW活性層
4.p−Aρ。、s Gao、s As中間層5゜p 
 A j! 0.4 G a o、 a A sクラッ
ド層6.P−A II o、 + sG a o、 a
、A Sキャップ層7をMBE法により連続成長する0
次にフォトリングラフィ法。
First, the structure of the optical amplifier shown in FIG. 1 will be explained along with its manufacturing method. On the n-GaAs substrate 1, n AAa, < Gao, s As/ n − , which becomes a buffer layer, is formed.
A lot of GaAs! Ikodo (MQW)! 2゜n-AA
a, 40ao, * As clad/y d layer 3. MQW active layer 4. p-Aρ. , s Gao, s As intermediate layer 5゜p
A j! 0.4 Gao, aAs cladding layer6. P-A II o, + sG a o, a
, A S cap layer 7 is continuously grown by the MBE method.
Next is the photophosphorography method.

化学エツチングを用いて、ストライプ状にn −GaA
s基板1に達するエツチングを行う0次にLPE法によ
り、このストライプをP  Aj!o、iaG a o
、 42A 8層8. n  Al o、5aGao、
62AFs層9により埋め込む、この際、中間層5の存
在により、埋め込み層8.9によるp−n接合位置は活
性層4の下に自動的に決定される。この構造はBGM梢
造ヒレて知られており、この成長法の詳細は電子通信学
会昭和59年総合全国大会論文集1016番(1984
)に述べられている。
Using chemical etching, n-GaA is formed in stripes.
This stripe is formed by the zero-order LPE method, which performs etching that reaches the s-substrate 1. o,iaG ao
, 42A 8 layers 8. n Al o, 5aGao,
62AFs layer 9. In this case, due to the presence of the intermediate layer 5, the pn junction position by the buried layer 8.9 is automatically determined under the active layer 4. This structure is known as BGM treetop fin, and the details of this growth method are published in Proceedings of the 1984 National Conference of the Institute of Electronics and Communication Engineers, No. 1016 (1984).
).

ここで用いたMQW活性層はGaAs井戸層、AAa、
2 Gao、s Asバリアの5周期から成っている。
The MQW active layer used here is a GaAs well layer, AAa,
It consists of 5 periods of 2 Gao, s As barriers.

GaAS井戸層の厚みは50.乃、 100 。The thickness of the GaAS well layer is 50. No, 100.

125 、150人、バリア層の厚みは170人とした
125 and 150 people, and the thickness of the barrier layer was 170 people.

各層はすべてノンドープ層である。All layers are non-doped.

次に、plP!lに電流狭窄のためのSiO□ストライ
プ10を形成した上で、n側、p側にそれぞれ電極11
.12を形成する。へき開により形成した入出力端面1
3a 、 13bには、それぞれプラズマCVDにより
SiN、ARコート(第1図では図示していない)膜を
形成し、進行波型LD光増幅器とした。デバイスの長さ
は約250 g+nとした。
Next, plP! SiO□ stripes 10 for current confinement are formed on the l, and electrodes 11 are formed on the n-side and p-side, respectively.
.. form 12. Input/output end face 1 formed by cleavage
SiN and AR coat (not shown in FIG. 1) films were formed on 3a and 13b by plasma CVD, respectively, to form a traveling wave type LD optical amplifier. The length of the device was approximately 250 g+n.

第2図は、本実施例の動作を説明するための図であり、
第1図に示した実施例の光軸に沿い、かつ基板に垂直な
面での断面図を示している。第2図にはARココ−11
A14a、 14bを示した。この試作サンプルでは、
ARコート像の発振しきい値は>100mAであった。
FIG. 2 is a diagram for explaining the operation of this embodiment,
2 is a cross-sectional view of the embodiment shown in FIG. 1 taken along the optical axis and perpendicular to the substrate. Figure 2 shows AR Coco-11.
A14a and 14b were shown. In this prototype sample,
The oscillation threshold of the AR coat image was >100 mA.

活性層4に入射光を結合するためおよび光信号を取り出
すため先球ファイバ21a、21bを用いている。電極
11.12間に順バイアスを印加すると、活性層4中の
利得が上昇し増幅機能が得られる。
Spherical fibers 21a, 21b are used to couple the incident light into the active layer 4 and to extract the optical signal. When a forward bias is applied between the electrodes 11 and 12, the gain in the active layer 4 increases and an amplification function is obtained.

この実施例では、活性層4に互いに厚みの異なる5種類
の量子井戸を含んでいるから、810〜850nmの広
い波長範囲にわたり平坦な利得特性が得られる。しかも
量子井戸構造をとっているから注入電流に対するキャリ
ア密度の効率が高く、低電流で動作できる。
In this embodiment, since the active layer 4 includes five types of quantum wells having different thicknesses, flat gain characteristics can be obtained over a wide wavelength range of 810 to 850 nm. Moreover, since it has a quantum well structure, the efficiency of carrier density with respect to injection current is high, and it can operate with low current.

本実施例では各量子井戸で井戸厚し、を変化させたが、
同様の効果は井戸およびバリアの組成を互いに異ならせ
ても得ることができる。また、ここでは井戸層に垂直な
方向に電流を注入する構造をとったが、TJSi3fi
等の横方向にキャリアを注入する構造も可能である。こ
の場合には各井戸を均一に励起できるという利点がある
In this example, the well thickness was varied in each quantum well, but
A similar effect can be obtained by varying the well and barrier compositions. In addition, here we adopted a structure in which current is injected in a direction perpendicular to the well layer, but TJSi3fi
A structure in which carriers are injected laterally is also possible. In this case, there is an advantage that each well can be uniformly excited.

本実施例ではG a A s / G a A A A
 s糸材料を用いて説明したが、量子サイズ効果が得ら
れる材料系であれば本発明の適用が可能なのは明らかで
ある。デバイス構造も実施例で示したBGM梢造ヒレで
なく、通常のLDで用いられている横モード制御構造を
採用することも全く問題ない。
In this example, G a A s / G a A A
Although the explanation has been made using an s-thread material, it is clear that the present invention can be applied to any material system that can obtain the quantum size effect. There is no problem in adopting the device structure of a transverse mode control structure used in a normal LD instead of the BGM fin structure shown in the embodiment.

(発明の効果) 以上に詳しく説明したように、本発明によれば利得帯域
幅の非常に広い光増幅器が得られる。
(Effects of the Invention) As explained in detail above, according to the present invention, an optical amplifier with a very wide gain bandwidth can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光増幅器の一実施例を示す斜視図
、第2図は光軸に沿い基板に垂直な面における第1図実
施例の断面図、第3図はGaAs/AρGaAs系単一
量子井戸(SQW)構造のエネルギ・バンド図、第4図
はGaAsを井戸とする第3図のSQWにおいて計算に
より得た井戸厚とバンドギャップ波長との特性図、第5
図は活性層が4つの異なる厚みの量子井戸からなるMQ
WLD光増幅器の利得スペクトラムを模式的に示す特性
図である。 1・・・基板、2・・・多重量子井戸(MQW) NJ
、3.6・・・クラッド層、4・・・MQW活性層、5
・・・中間層、7・・・キャップ層、8.9・・・埋め
込み層、1(L・・S i O2ストライプ、11.1
2・・・電極、13a。 13b・・・入出力端面、14a、 14b・・・AR
コート膜、21a、21b・・・先球ファイバ。
FIG. 1 is a perspective view showing an embodiment of the optical amplifier according to the present invention, FIG. 2 is a cross-sectional view of the embodiment of FIG. 1 taken along the optical axis and perpendicular to the substrate, and FIG. An energy band diagram of a single quantum well (SQW) structure. Figure 4 is a characteristic diagram of well thickness and bandgap wavelength obtained by calculation for the SQW of Figure 3 with GaAs wells. Figure 5
The figure shows an MQ whose active layer consists of quantum wells with four different thicknesses.
FIG. 2 is a characteristic diagram schematically showing a gain spectrum of a WLD optical amplifier. 1...Substrate, 2...Multiple quantum well (MQW) NJ
, 3.6... cladding layer, 4... MQW active layer, 5
... Intermediate layer, 7... Cap layer, 8.9... Buried layer, 1 (L...S i O2 stripe, 11.1
2... Electrode, 13a. 13b...input/output end surface, 14a, 14b...AR
Coat film, 21a, 21b... tipped fiber.

Claims (1)

【特許請求の範囲】 1、半導体材料による活性層と、入出力光信号を結合す
るための入出射端面とを有する半導体レーザ型の光増幅
器において、前記活性層が、互いに井戸厚の異なる複数
の量子井戸構造を含むことを特徴とする光増幅器。 2、半導体材料による活性層と、入出力光信号を結合す
るための入出射端面とを有する半導体レーザ型の光増幅
器において、前記活性層が井戸層またはバリア層のうち
の少くとも一方の組成が異なる複数の量子井戸構造を含
むことを特徴とする光増幅器。
[Claims] 1. In a semiconductor laser type optical amplifier having an active layer made of a semiconductor material and an input/output end face for coupling input and output optical signals, the active layer has a plurality of wells having different well thicknesses. An optical amplifier characterized by including a quantum well structure. 2. In a semiconductor laser type optical amplifier having an active layer made of a semiconductor material and an input/output end face for coupling input/output optical signals, the active layer has a composition of at least one of a well layer and a barrier layer. An optical amplifier characterized by including a plurality of different quantum well structures.
JP220388A 1988-01-07 1988-01-07 Optical amplifier Pending JPH01179488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP220388A JPH01179488A (en) 1988-01-07 1988-01-07 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP220388A JPH01179488A (en) 1988-01-07 1988-01-07 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH01179488A true JPH01179488A (en) 1989-07-17

Family

ID=11522798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP220388A Pending JPH01179488A (en) 1988-01-07 1988-01-07 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH01179488A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456043A2 (en) * 1990-05-09 1991-11-13 Gte Laboratories Incorporated Monolithically integrated semiconductor optical preamplifier
US5239410A (en) * 1990-04-03 1993-08-24 Canon Kabushiki Kaisha Method and apparatus for light amplification exhibiting a flat gain spectrum
US5321685A (en) * 1990-10-09 1994-06-14 Canon Kabushiki Kaisha Cantilever type probe, scanning tunnel microscope and information processing apparatus using the same
JPH07245449A (en) * 1994-01-17 1995-09-19 Nec Corp Surface emission element
JPH08236868A (en) * 1995-02-28 1996-09-13 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Planar type semiconductor light amplifier element
JPH10294530A (en) * 1997-02-19 1998-11-04 Sony Corp Multiquantum well type semiconductor light emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104191A (en) * 1982-12-07 1984-06-15 Fujitsu Ltd Semiconductor light emitting device
JPS6332982A (en) * 1986-07-25 1988-02-12 Mitsubishi Electric Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104191A (en) * 1982-12-07 1984-06-15 Fujitsu Ltd Semiconductor light emitting device
JPS6332982A (en) * 1986-07-25 1988-02-12 Mitsubishi Electric Corp Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239410A (en) * 1990-04-03 1993-08-24 Canon Kabushiki Kaisha Method and apparatus for light amplification exhibiting a flat gain spectrum
EP0456043A2 (en) * 1990-05-09 1991-11-13 Gte Laboratories Incorporated Monolithically integrated semiconductor optical preamplifier
US5321685A (en) * 1990-10-09 1994-06-14 Canon Kabushiki Kaisha Cantilever type probe, scanning tunnel microscope and information processing apparatus using the same
JPH07245449A (en) * 1994-01-17 1995-09-19 Nec Corp Surface emission element
JPH08236868A (en) * 1995-02-28 1996-09-13 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Planar type semiconductor light amplifier element
JPH10294530A (en) * 1997-02-19 1998-11-04 Sony Corp Multiquantum well type semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US8093581B2 (en) Optical semiconductor device and method for manufacturing the same
JP2010232424A (en) Semiconductor optical amplifier, and optical module
US5042049A (en) Semiconductor optical device
JPH0143472B2 (en)
JPH05226789A (en) Product including distortion layer quantum well laser
JP3249999B2 (en) Semiconductor laser device
JPH08330671A (en) Semiconductor optical element
US20010001612A1 (en) Method of producing an optical semiconductor device having a waveguide layer buried in an InP current blocking layer
JP2867819B2 (en) Multiple quantum well semiconductor laser
US6603599B1 (en) Linear semiconductor optical amplifier with broad area laser
JPH01179488A (en) Optical amplifier
US5737353A (en) Multiquantum-well semiconductor laser
JPS60149183A (en) Distributed feedback type semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
CN114530762A (en) Semiconductor optical amplifier chip
JP2005135956A (en) Semiconductor optical amplifier, its manufacturing method, and optical communication device
US5923688A (en) Semiconductor laser
JPH0983070A (en) Semiconductor laser element
JPH09129969A (en) Semiconductor laser
JPH0478036B2 (en)
JPS6218782A (en) Semiconductor laser of buried structure
JPH0831656B2 (en) Optical amplifier
JP3765117B2 (en) External cavity semiconductor laser
JP3204969B2 (en) Semiconductor laser and optical communication system
US20030138014A1 (en) Semiconductor optical component