JPS61190992A - Semiconductor laser with quantum well type optical modulator - Google Patents

Semiconductor laser with quantum well type optical modulator

Info

Publication number
JPS61190992A
JPS61190992A JP60031062A JP3106285A JPS61190992A JP S61190992 A JPS61190992 A JP S61190992A JP 60031062 A JP60031062 A JP 60031062A JP 3106285 A JP3106285 A JP 3106285A JP S61190992 A JPS61190992 A JP S61190992A
Authority
JP
Japan
Prior art keywords
layer
quantum well
active layer
inp
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60031062A
Other languages
Japanese (ja)
Other versions
JPH06105817B2 (en
Inventor
Koichi Wakita
紘一 脇田
Yuichi Kawamura
河村 裕一
Yuzo Yoshikuni
吉国 裕三
Hajime Asahi
一 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60031062A priority Critical patent/JPH06105817B2/en
Publication of JPS61190992A publication Critical patent/JPS61190992A/en
Publication of JPH06105817B2 publication Critical patent/JPH06105817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Abstract

PURPOSE:To obtain single axial mode beams stably and simply by modulating the transmission characteristics of beams by utilizing the longitudinal electric- field effect of a quantum well layer. CONSTITUTION:A multiple quantum well active layer 3 in thickness of 0.9mum is grown on an N-type InP substrate 1, to which Sn is doped, by alternately superposing undoped InGaAs layers 75Angstrom 10, which lattice-match with InP, and undoped InAlAs layers 75Angstrom 11 at sixty periods in total, and a P-InP layer 5 to which Be is doped as a P-type impurity is grown on the layer 3, thus forming the so-called PIN structure. A Be-doped InGaAs layer 8 is grown on the layer 5 in succession, and a hole having a diameter of 0.5mm is bored to the layer 8 and a P side electrode Au:Zn:Ni 21. Accordingly, a field effect extraordinarily larger than the normal bulk structure is acquired.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は,半導体レーザに関するものであシ。[Detailed description of the invention] [Field to which the invention pertains] The present invention relates to a semiconductor laser.

具体的には,構造が単純であり,作製が容易な。Specifically, it has a simple structure and is easy to manufacture.

高速かつ安定に単一軸モード発振する半導体レーザに関
するものである。
This invention relates to a semiconductor laser that oscillates in a single-axis mode at high speed and stably.

〔従来の技術〕[Conventional technology]

光ファイバの低損失化に伴い10 0 Kmを越える長
距離間の光フアイバ伝送システムが構成可能となってき
ている。このような光伝送システムでは光ファイバの波
長分散による影響を受けるため光源には単一軸モード発
振するレーザが必要とされる。
As the loss of optical fibers has been reduced, it has become possible to construct optical fiber transmission systems over long distances exceeding 100 km. Such an optical transmission system is affected by the wavelength dispersion of the optical fiber, so a laser that oscillates in a single axis mode is required as a light source.

通常の半導体レーザでは、定常状態では単一軸モードで
発振するが、高速の直接変調をかけて、注入する電流の
大きさを変えると、数本ないし10数本の軸モードが発
生してしまい、高々400Mh/S程度しか変調速度は
上げられなかった。最近このような欠点を克服するため
活性層もしくはこれに隣接して設けられた導波路層に回
折格子を設けた所謂分布帰遷型(Diztrihbta
d Fast Each略してDFE )レーザが提案
され、一部用いられている。しかし。
A normal semiconductor laser oscillates in a single axial mode in a steady state, but when high-speed direct modulation is applied and the magnitude of the injected current is changed, several to more than 10 axial modes are generated. The modulation speed could only be increased to about 400Mh/S at most. Recently, in order to overcome these drawbacks, a so-called distributed transition type (distributed transition type) in which a diffraction grating is provided in the active layer or a waveguide layer provided adjacent to the active layer has been developed.
d Fast Each (abbreviated as DFE) laser has been proposed and is partially used. but.

ElectrorLics Lottery i9巻9
37頁(1983)に岩下らによって発表されているよ
うに、高速で変調をかけるとスペクトルは広がシ、ファ
イバの波長分散の影響によって発光の初期が中心波長上
)長波長か短波長かに依存してファイバ伝播後のスペク
トルは狭くなったシ広くなったシし、その制御はできて
いないのが現状である。
ElectrorLics Lottery i9 volume 9
As reported by Iwashita et al. on p. 37 (1983), when modulation is applied at high speed, the spectrum broadens, and due to the influence of the wavelength dispersion of the fiber, the initial stage of light emission may be at a long wavelength or a short wavelength (on the center wavelength). Depending on the fiber propagation, the spectrum becomes narrower or wider depending on the fiber propagation, and it is currently not possible to control this.

また、2つの共振器長が異なる半導体レーザを共振器面
が平行になるように直列に並べ、各々独立に電流を流し
、各々から異なる波長間隔で発振する軸モードの一本を
一致するように電流値を設定して単一軸モード化する方
法が米国ベル研究所のTzang氏らによって提案され
ている(複合光共振器レーザ) (Applied P
h1yziaz Latters 42巻650頁(1
983) :I  が、単一モード発振する電流領域が
狭くかつ素子ごとにこの領域が異なるため予めこの領域
を調べておく必要があり、実用上使用が困難となると云
う問題があった。
In addition, two semiconductor lasers with different cavity lengths are arranged in series so that the cavity surfaces are parallel, and current is applied to each independently so that one of the axial modes oscillating at different wavelength intervals from each is aligned. A method of setting the current value to create a single-axis mode has been proposed by Mr. Tzang et al. of Bell Laboratories in the United States (complex optical cavity laser) (Applied P
h1yziaz Letters Volume 42, Page 650 (1
983) :I has a narrow current range in which single mode oscillation occurs and this range differs from element to element, so it is necessary to investigate this range in advance, which poses a problem that makes it difficult to use in practice.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの問題点を除去するため量子井戸型半導
体レーザを用い、かつ半導体レーザ基板を独立に電流注
入もしくは電圧印加できるように各々の領域の上部に分
離した電極を形成して発光再結合する領域に対して直列
に制御領域および制御電極とし、一方を光の変調器とし
て動作させて安定な単一軸モード発振を行なわせること
にある。
In order to eliminate these problems, the present invention uses a quantum well type semiconductor laser, and forms separate electrodes on top of each region so that current can be injected or voltage applied independently to the semiconductor laser substrate, thereby achieving luminescent recombination. A control region and a control electrode are arranged in series with the region to be controlled, and one of them is operated as a light modulator to perform stable single-axis mode oscillation.

〔発明の原理〕[Principle of the invention]

活性層厚を薄くして量子井戸効果を生じさせると、従来
の半導体では見られない特性が出現することが、主とし
てGaAs/GaAλAs 系材料で発表されている(
 1983年10月号応用物理学会誌843頁〜851
頁)、その一つに内部吸収損失の低さがあシ。
It has been reported that when the thickness of the active layer is reduced to produce a quantum well effect, properties not seen in conventional semiconductors appear, mainly in GaAs/GaAλAs materials (
Journal of Applied Physics, October 1983, pages 843-851
Page), one of which is the low internal absorption loss.

我々は従来の半導体レーザに比べ10〜70%の低い吸
収損失であることをInGaAz/In−Az系の材料
において見い出しだ。従って量子井戸型活性層の一部で
発振動作を行なわせた場合2発光領域に連続する活性層
は低損失の導波路として機能させることができる。又、
量子井戸構造においては縦方向(井戸を形成する半導体
層に垂直な方向)電界を印加すると吸収端が比較的低電
界で長波長側にシフトする現象がGaAz/GaAiA
z系において報告され(米国応用物理学会誌AppI1
.ied Physics Letters 44巻、
  1984年16頁−18頁)ているが、この効果は
長波長帯1nGaAr /IrLAIIAs系において
も同様に存在することを実験的に見い出した。第1図は
この実験に用いた試料の構造図であF)、5rL(錫)
が2 X 1018浦ドープされたn型1nP基板1の
上にInPと格子整合するアンドープのInGaAz層
75710とアンドープのIルA11Az層75,41
1を交互に合計60周期、厚さ0.9μmの多重量子井
戸活性層3を分子線エピタキシー(MEE)法により成
長し、その上にP型不純物としてBt(ベリリウム)を
5 x 1Q1?crt−” ドープされたP−InP
層5を成長して所謂PIN構造を形成し。
We have found that the absorption loss of InGaAz/In-Az materials is 10 to 70% lower than that of conventional semiconductor lasers. Therefore, when a part of the quantum well type active layer performs oscillation operation, the active layer continuous with the two light emitting regions can function as a low-loss waveguide. or,
In a quantum well structure, when an electric field is applied in the vertical direction (perpendicular to the semiconductor layer forming the well), the absorption edge shifts to the long wavelength side at a relatively low electric field.
z system (Journal of the American Society of Applied Physics AppI1)
.. ied Physics Letters Volume 44,
(1984, pp. 16-18), but it was experimentally found that this effect similarly exists in the long wavelength band 1nGaAr/IrLAIIAs system. Figure 1 is a structural diagram of the sample used in this experiment. F), 5rL (tin)
On a 2×1018 doped n-type 1nP substrate 1, an undoped InGaAz layer 75710 lattice-matched to InP and an undoped IAlA11Az layer 75, 41 are formed.
A multi-quantum well active layer 3 with a thickness of 0.9 μm is grown by molecular beam epitaxy (MEE) for a total of 60 periods in total, and Bt (beryllium) is added as a P-type impurity thereon in a 5 x 1 Q1 layer. crt-” doped P-InP
A layer 5 is grown to form a so-called PIN structure.

その上にBaドープInGaAz層8(厚さ0.2μm
、キャリア濃度5 x 1Q”cm−’ )を順次成長
したもので光の窓としてこの層とP側電極Aμ:Zn:
Ni21  とに0.5 WLm径の穴を開けた。この
試料に分光光度計を用いて光の透過スペクトルを測定し
たところ逆方向の縦方向電界によシ第2図に示すような
光の透過スペクトルに変化が現われた。すなわち、波長
1.5μmにおいて電界5.6XlO’〜缶で3.8係
の透過光量の減少が観測された。この電界効果は量子井
戸特有のもので通常のバルク構造のものに比べ。
On top of that, a Ba-doped InGaAz layer 8 (thickness 0.2 μm
, carrier concentration 5 x 1Q"cm-'), and this layer and the P-side electrode Aμ:Zn:
A hole with a diameter of 0.5 WLm was made in the Ni21. When the light transmission spectrum of this sample was measured using a spectrophotometer, a change appeared in the light transmission spectrum as shown in FIG. 2 due to a vertical electric field in the opposite direction. That is, at a wavelength of 1.5 μm, a decrease in the amount of transmitted light by a factor of 3.8 was observed in an electric field of 5.6XlO'. This electric field effect is unique to quantum wells, compared to ordinary bulk structures.

桁違いに大きい。この減少量は印加電界の大きさの2乗
に比例して増加するので、さらに高電界を加えれば透過
光量の減少、従って光吸収量は増大する。
It's an order of magnitude bigger. This amount of reduction increases in proportion to the square of the magnitude of the applied electric field, so if a higher electric field is applied, the amount of transmitted light decreases and, therefore, the amount of light absorption increases.

以上は本発明の基本原理を説明するもので、光が量子井
戸層に垂直に入射した場合について述べたが、光が量子
井戸層に平行に入っても同じ効果が期待できる。以下実
施例について説明する。
The above describes the basic principle of the present invention, and the case where light is incident perpendicularly to the quantum well layer has been described, but the same effect can be expected even if the light is incident parallel to the quantum well layer. Examples will be described below.

〈実施例1〉 第3図(a)、の)は本発明の実施例を示す斜視図及び
断面図である。
<Embodiment 1> FIG. 3(a) is a perspective view and a sectional view showing an embodiment of the present invention.

n−1tLP基板1の上に部分的に回折格子100を形
成する。この回折格子は1周期が(1Av〃) x (
m・’/2) (ただし、”−ffは実効屈折率、鶏は
正の整数、λは発振波長)で与えられる凹凸の繰り返し
の回折格子である。
A diffraction grating 100 is partially formed on the n-1tLP substrate 1. One period of this diffraction grating is (1Av〃) x (
m·'/2) (where -ff is the effective refractive index, chicken is a positive integer, and λ is the oscillation wavelength).

回折格子100の周期は2次の周期を用いた場合467
07深さ1soo、2.  (1次の周期では2555
2 、深さ7001)〈110〉方向に繰返し形成され
ている。
The period of the diffraction grating 100 is 467 when using the second-order period.
07 depth 1soo, 2. (2555 in the first cycle
2, depth 7001) are repeatedly formed in the <110> direction.

回折格子100はHe−Cdガスレーザの4250,2
の発振光を用い、2光束干渉露光法によシ形成した。回
折格子100を部分的に形成するためには9回折格子1
00を形成しない部分を5iOz膜で覆っておけばよい
。次にマスクとして用いた。5 番Ot膜をエツチング
後9通常の埋め込み型半導体レーザを作製する。
The diffraction grating 100 is 4250,2 of a He-Cd gas laser.
It was formed by a two-beam interference exposure method using oscillated light. In order to partially form the diffraction grating 100, 9 diffraction gratings 1
The portion where 00 is not formed may be covered with a 5iOz film. It was then used as a mask. After etching the Ot film No. 5, a normal buried semiconductor laser is manufactured.

ただし、活性層は量子井戸構造となっておυInGaA
z層1oai1o、 rルJ、(JF層30111が各
6層、5層成長されている。P側電極21.22を形成
する際回折格子100の上と他の部分とで20μmの分
離溝30を挾んで注入電極21と制御電極22とに分離
させて形成した。
However, the active layer has a quantum well structure and υInGaA
Z layer 1oai1o, rruJ, (JF layer 30111 are grown in 6 layers and 5 layers respectively.When forming the P-side electrode 21.22, a 20 μm separation groove 30 is formed on the diffraction grating 100 and other parts. An injection electrode 21 and a control electrode 22 were formed by sandwiching them between them.

注入電極21の下部の活性層3で発光した光は制御電極
22の下部領域の活性層3へと導波されている。活性層
で発光した光は9回折格子100の周期4670)に対
応する波長の光のみが回折され反射されるため発振スペ
クトルに強い選択性ができ、単一モード発振する。これ
は通常のDFBレーザの発振機構と同様である。
The light emitted from the active layer 3 under the injection electrode 21 is guided to the active layer 3 under the control electrode 22 . Of the light emitted from the active layer, only the light having a wavelength corresponding to the period 4670) of the nine diffraction gratings 100 is diffracted and reflected, resulting in strong selectivity in the oscillation spectrum, resulting in single mode oscillation. This is similar to the oscillation mechanism of a normal DFB laser.

制御電極によって逆バイアスをかければ制御電極の下部
領域の活性層を透過する光はバイアスの値によってその
吸収される値は変わるため、透過光強度は変調を受ける
ことになる。発光領域に注入される電流を一定にしてお
けばそのスペクトルは変化せず、一方制御電極によって
注入電流とは独立に変調がかけられるため、全体として
半導体レーザ外部へ放出される光のスペクトルは安定か
つ軸モード単一である。
If a reverse bias is applied by the control electrode, the absorbed value of the light transmitted through the active layer under the control electrode changes depending on the bias value, so that the transmitted light intensity is modulated. If the current injected into the light emitting region is kept constant, its spectrum will not change; on the other hand, since the control electrode modulates it independently of the injected current, the overall spectrum of light emitted to the outside of the semiconductor laser is stable. And the axis mode is single.

〈実施例2〉 第4図(α)、(b)は本発明の第2の実施例を示す斜
視図及び断面図である。第1の実施例と異なる点は光導
波路層4の上に回折格子100が形成されている点であ
る。この構造において単一軸モードで発振し、その波長
は25℃、5nJ’の光出力時に1.55μmであった
。発振しきい値電流は50rILAと小さく。
<Embodiment 2> FIGS. 4(α) and 4(b) are a perspective view and a sectional view showing a second embodiment of the present invention. The difference from the first embodiment is that a diffraction grating 100 is formed on the optical waveguide layer 4. This structure oscillated in a single-axis mode, and its wavelength was 1.55 μm at 25° C. and an optical output of 5 nJ′. The oscillation threshold current is as small as 50rILA.

また微分量子効率は20チと高い値であったが、これは
実施例1とほぼ同様な特性であった。
Further, the differential quantum efficiency was as high as 20 cm, which was almost the same characteristic as in Example 1.

〈実施例3〉 第5図(α)、(b)は本発明の第3の実施例を示す断
面図である。n型1nP基板1にn W InPグラツ
ド層(膜厚3ハ、 Snドープ、キャリア濃度8x 1
Q”tM−’)。
<Embodiment 3> FIGS. 5(α) and 5(b) are cross-sectional views showing a third embodiment of the present invention. An nW InP gradient layer (thickness 3cm, Sn doping, carrier concentration 8x1) is formed on an n-type 1nP substrate 1.
Q"tM-').

その上に5層のInGaAz井戸層10(層厚1oo、
2.ノンドープ)その間に4層のl5A2Asバリア層
11(層厚30)、ノンドープ)を挾んで形成しその上
にP型1nP第1クラッド層9(層厚0.2μm、 Z
nドープ、キャリア濃度1×1018cTrr5)を成
長した後。
On top of that, five InGaAz well layers 10 (layer thickness 10 mm,
2. A four-layer l5A2As barrier layer 11 (layer thickness 30, non-doped) is formed between them, and a P-type 1nP first cladding layer 9 (layer thickness 0.2 μm, Z
After growing n-doped, carrier concentration 1×1018cTrr5).

P型1nP第1クラッド層9を部分的にHCf!、系の
選択エツチングで剥離し、この部分のみ周期4670i
の回折格子100を形成する。この上にP型1nPクラ
ッド層4(層厚1μIn、Znドープ、キャリア濃度1
 x I Q”z−’ )  を成長する。その後の他
の工程は第1の実施例と同様である。
P-type 1nP first cladding layer 9 is partially coated with HCf! , peeled off by selective etching of the system, and only this part was etched with a period of 4670i.
A diffraction grating 100 is formed. On top of this, a P-type 1nP cladding layer 4 (layer thickness 1 μIn, Zn doped, carrier concentration 1
x I Q"z-' ). The other steps thereafter are the same as in the first embodiment.

〈実施例4〉 第6図は本発明の第4の実施例を示す斜視図である。第
1と第2の共振器長の異なる半導体レーの部分の電圧を
変えて透過光の強度を変え1強度変調を行なわせるもの
である。レーザの作製法は通常の方法と同様であり、そ
れに加えて第1と第2のレーザを電気的に分離するとと
もにそれらの光共振器間に小さな間隔を入れておく。活
性層は第3のレーザには必ず量子井戸層が用いられてい
るが、第1.第2のレーザには量子井戸を用いなくても
よい。
<Embodiment 4> FIG. 6 is a perspective view showing a fourth embodiment of the present invention. In this method, the intensity of transmitted light is changed by changing the voltage at the portions of the semiconductor laser having the first and second resonator lengths different from each other, thereby performing single intensity modulation. The method of fabricating the laser is similar to conventional methods, in addition to electrically separating the first and second lasers and providing a small spacing between their optical resonators. The active layer is always a quantum well layer in the third laser, but in the first. A quantum well may not be used in the second laser.

以上の実施例では活性層の発光波長は1.55μmであ
ったが、この波長に限定されることはない。又。
In the above examples, the emission wavelength of the active layer was 1.55 μm, but it is not limited to this wavelength. or.

回折格子の周期が2次の場合について説明したが。The case where the period of the diffraction grating is second-order has been explained.

周期が1次の場合についても適用できる。又、レーザの
構造は埋め込み型について述べたが、他の構造のレーザ
についても適用される。
It can also be applied to cases where the period is first-order. Furthermore, although the description has been made regarding the buried type laser structure, the invention also applies to lasers with other structures.

〔効果の説明〕[Explanation of effects]

以上説明したように本発明によれば、量子井戸層の縦方
向電界効果を利用して光の透過特性に変調をかけるだめ
、定常状態において単一軸モード発振している半導体レ
ーザすべてに適用でき、安定かつ簡便に単一軸モード光
を得ることができる。
As explained above, the present invention can be applied to all semiconductor lasers that oscillate in a single axis mode in a steady state, since the vertical electric field effect of the quantum well layer can be used to modulate the light transmission characteristics. Single-axis mode light can be obtained stably and easily.

すなわち、直接変調により注入電流が変わるために軸モ
ードの不安定化、線幅の広がりが必然的に生ずる通常の
半導体レーザを安定な単一軸モード発振とすることが可
能である。具体的には回折格子が形成された光導波路領
域に量子井戸形の活性層を用いることにより或いは複合
光共振器を用いることによシ単−軸モード発振する半導
体レーザに量子井戸層を<<シつけ、その部分に縦方向
電界を加えて吸収端を変化させて透過光強度を変え変調
をかけるものである。
That is, it is possible to make a normal semiconductor laser, which inevitably causes destabilization of the axial mode and broadening of the line width due to the change in injection current due to direct modulation, to stable single-axis mode oscillation. Specifically, by using a quantum well-type active layer in an optical waveguide region in which a diffraction grating is formed, or by using a composite optical resonator, a quantum well layer can be added to a semiconductor laser that oscillates in a single-axis mode. It applies a vertical electric field to that part to change the absorption edge and change the intensity of transmitted light, thereby applying modulation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本原理を実証するための素子の構造
図。 第2図はその結果を示す図、 第3図(α)、(6)は本発明の第1の実施例を示す斜
視図及び断面図。 第 W本発明の第2の実施例を示す斜視図及第6図挑得
は本発明の第4の実施例を示す斜視図である。 図中。 1はn型IrLP基板 2はn型1nPクラッド層 3はIrLGaAz /In、41.Az ff子井戸
活性層(InGaAz ; 10 、 InAIIAz
 ; 11 )4はInGaAzP光導波層 5はP型1nPクラッド層 6はP型1nP埋め込み層 7はn型1nP電流閉じ込め層 8はP型1nGαAtキャップ層 21.23は注入電極 22は制御電極 30は分離溝 40はn側電極 100は回折格子を示す。
FIG. 1 is a structural diagram of an element for demonstrating the basic principle of the present invention. FIG. 2 is a diagram showing the results, and FIGS. 3(α) and (6) are a perspective view and a sectional view showing the first embodiment of the present invention. FIG. 6 is a perspective view showing a second embodiment of the present invention; FIG. 6 is a perspective view showing a fourth embodiment of the present invention. In the figure. 1 is an n-type IrLP substrate 2 is an n-type 1nP cladding layer 3 is IrLGaAz/In, 41. Az ff well active layer (InGaAz; 10, InAIIAz
11) 4 is InGaAzP optical waveguide layer 5 is P type 1nP cladding layer 6 is P type 1nP buried layer 7 is n type 1nP current confinement layer 8 is P type 1nGαAt cap layer 21.23 is injection electrode 22 is control electrode 30 In the separation groove 40, the n-side electrode 100 represents a diffraction grating.

Claims (1)

【特許請求の範囲】 1、InPと格子整合している1n_1_−_x_1_
−_y_1Ga_x_1Al_y_1As(ただし0≦
y1)でなる量子井戸層と、InPと格子整合している
In_1_−_x_2−_y_2Ga_x_2Al_y
_2As(ただし、y1<y2、0≦x2)でなる上記
量子井戸層に比し広い禁制帯幅を有する障壁層とが順次
交互に積層されている構成を有する活性層と、 上記活性層の一方の面上に形成された第1の導電型を有
するInP層からなる第1のクラッド層と上記活性層の
他方の面上に形成された第1の導電型とは逆の第2の導
電型を有するInP層からなる第2のクラッド層が形成
されていることを特徴とする量子井戸型半導体レーザに
おいて、独立に電流注入もしくは電圧印加できるように
各々の領域の上部に分離した電極が形成され、発光再結
合する上記活性層に対して直列に制御領域および制御電
極を配置形成したことを特徴とする半導体レーザ。 2、上記活性層の一部領域あるいは上記活性層に隣接し
て設けられた導波路層の一部領域に形成された周期が(
1/n_e_f_f)×(m・λ/2)〔n_e_f_
f:実効屈折率、m:正の整数、λ:発振波長〕で与え
られる凹凸の繰り返しの回折格子を含む多層積層構造を
備えることを特徴とする前記特許請求の範囲第1項記載
の半導体レーザ。
[Claims] 1. 1n_1_-_x_1_ which is lattice matched with InP
−_y_1Ga_x_1Al_y_1As (however, 0≦
y1) and In_1_-_x_2-_y_2Ga_x_2Al_y which is lattice-matched to InP.
an active layer having a structure in which barrier layers having a wider forbidden band width than the quantum well layer and made of _2As (y1<y2, 0≦x2) are sequentially and alternately stacked; and one of the active layers. a first cladding layer made of an InP layer having a first conductivity type formed on the surface of the active layer; and a second conductivity type opposite to the first conductivity type formed on the other surface of the active layer. In a quantum well semiconductor laser characterized in that a second cladding layer is formed of an InP layer having A semiconductor laser characterized in that a control region and a control electrode are arranged and formed in series with the active layer that emits light and recombines. 2. The period formed in a partial region of the active layer or a partial region of the waveguide layer provided adjacent to the active layer is (
1/n_e_f_f)×(m・λ/2) [n_e_f_
f: effective refractive index, m: positive integer, λ: oscillation wavelength] A semiconductor laser according to claim 1, characterized in that it has a multilayer laminated structure including a diffraction grating with repeated concavities and convexities given by f: effective refractive index, m: positive integer, and λ: oscillation wavelength. .
JP60031062A 1985-02-19 1985-02-19 Semiconductor laser with quantum well optical modulator Expired - Lifetime JPH06105817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60031062A JPH06105817B2 (en) 1985-02-19 1985-02-19 Semiconductor laser with quantum well optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60031062A JPH06105817B2 (en) 1985-02-19 1985-02-19 Semiconductor laser with quantum well optical modulator

Publications (2)

Publication Number Publication Date
JPS61190992A true JPS61190992A (en) 1986-08-25
JPH06105817B2 JPH06105817B2 (en) 1994-12-21

Family

ID=12320980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60031062A Expired - Lifetime JPH06105817B2 (en) 1985-02-19 1985-02-19 Semiconductor laser with quantum well optical modulator

Country Status (1)

Country Link
JP (1) JPH06105817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815087A (en) * 1985-05-15 1989-03-21 Sumitomo Elec. Industries, Ltd. High speed stable light emitting semiconductor device with low threshold current

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139691A (en) * 1983-01-31 1984-08-10 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS59165480A (en) * 1983-03-10 1984-09-18 Nec Corp Semiconductor light emitting element
JPS59181588A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor luminescent device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139691A (en) * 1983-01-31 1984-08-10 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS59165480A (en) * 1983-03-10 1984-09-18 Nec Corp Semiconductor light emitting element
JPS59181588A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor luminescent device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815087A (en) * 1985-05-15 1989-03-21 Sumitomo Elec. Industries, Ltd. High speed stable light emitting semiconductor device with low threshold current

Also Published As

Publication number Publication date
JPH06105817B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US5398256A (en) Interferometric ring lasers and optical devices
JPH09512138A (en) Strain-compensated composite quantum well laser structure
US6541297B2 (en) Method for fabricating semiconductor device and semiconductor device
EP0378098B1 (en) Semiconductor optical device
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
US4775980A (en) Distributed-feedback semiconductor laser device
JPS59205787A (en) Single axial mode semiconductor laser
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
JP2013520003A (en) Semiconductor device
CN105140779B (en) Backup type semiconductor laser based on reconstruction-equivalent chirp technology
JPH08274404A (en) Multi-quantum well laser diode
JPS61190992A (en) Semiconductor laser with quantum well type optical modulator
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
JP2630035B2 (en) Tunable semiconductor laser
US20030094617A1 (en) Laser diode
JPH08274406A (en) Distributed feedback semiconductor laser and its manufacture
US5448584A (en) Semiconductor laser for use as light source in data processing device with cladding layers having a bandgap twice as large as the active layer
JP3765117B2 (en) External cavity semiconductor laser
JPH05335551A (en) Optical semiconductor device
JPS60145692A (en) Single axial mode semiconductor laser
JPH11326964A (en) Wavelength converting device
JPH04280490A (en) Semiconductor laser equipment
JPS59184585A (en) Semiconductor laser of single axial mode
JPH0728093B2 (en) Semiconductor laser device
JPS6332979A (en) Semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term