JPS59184585A - Semiconductor laser of single axial mode - Google Patents

Semiconductor laser of single axial mode

Info

Publication number
JPS59184585A
JPS59184585A JP5950583A JP5950583A JPS59184585A JP S59184585 A JPS59184585 A JP S59184585A JP 5950583 A JP5950583 A JP 5950583A JP 5950583 A JP5950583 A JP 5950583A JP S59184585 A JPS59184585 A JP S59184585A
Authority
JP
Japan
Prior art keywords
layer
junction
active layer
electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5950583A
Other languages
Japanese (ja)
Inventor
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5950583A priority Critical patent/JPS59184585A/en
Priority to EP83110135A priority patent/EP0106305B1/en
Priority to DE8383110135T priority patent/DE3379442D1/en
Priority to US06/541,211 priority patent/US4618959A/en
Priority to CA000438801A priority patent/CA1197308A/en
Publication of JPS59184585A publication Critical patent/JPS59184585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Abstract

PURPOSE:To enhance the productivity by simplifying the process of forming an electrode by a method wherein a region including a photo guide layer provided with diffraction grating is put in a p-n-p-n structure. CONSTITUTION:This multilayer film structural substrate has a p type InP leakage blocking layer 11 introduced under the photo guide layer 10. By the introduction of the leakage blocking layer 11, the multilayer films is of p-n-p-n junction in conductivity constitution at the part of a terrace region on the left side of a stepwise difference 40, and only of p-n junction sandwiching an active layer 3 at the region on the right side. Therefore, when a forward directional bias whose positive is on the side of a cap layer 8 and negative is the side of the substrate 1 is impressed, the current is all injected to the active layer 3 on the right side of the stepwise different 40 in the state of normal operation at the voltage of the TURN-ON of the p-n-p-n junction (approx. 10V) or less, resulting in light emitting recombination with good efficiency. Besides, the process of forming the electrode can be largely simplified, since the p-side metallic electrode 32 can be formed by vapor-depositing Ti/Pt/Au over the entire surface of the cap layer 8 as the electrode material.

Description

【発明の詳細な説明】 本発明は元ファイバ通信システム用光源に適した単一軸
モード半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single-axis mode semiconductor laser suitable as a light source for fiber communication systems.

光ファイバの伝送損失が波長1.3μm帯及び1.5μ
m帯で0.3〜0.5dB/1m以下と超低損失化され
たことにより中継間隔が100b以上という超長距離の
伝送実験が各所で行われ始めている。この様な超長距離
光フアイバ通信システムは中継間隔を長くすることが有
利な海底通信システム等への適用が期待されている。超
長距離伝送においては、伝送可能中継間隔は光ファイバ
の伝送損失の制限のほかに、波長分散による制限も受け
るようになる。
The transmission loss of optical fiber is 1.3μm wavelength band and 1.5μm.
Due to the ultra-low loss of 0.3 to 0.5 dB/1 m or less in the m-band, ultra-long distance transmission experiments with repeating intervals of 100 b or more are beginning to be conducted in various places. Such ultra-long distance optical fiber communication systems are expected to be applied to submarine communication systems, etc., where it is advantageous to lengthen the relay interval. In ultra-long distance transmission, the repeating interval that can be transmitted is not only limited by the transmission loss of optical fibers, but also by chromatic dispersion.

従来光フアイバ通信用光源として開発されて来たファプ
リー・ペロー(Fabry−Perot )共振器形半
導体レーザは通常複数本の発振軸モードを有するため、
伝送可能中継器間隔あるいは伝送容量は伝送損失よりも
むしろ波長分散による制限を受ける。従って長距離かつ
高速の元ファイバ伝送通信システムを実現して行く上で
は、高速変調時にC単一軸モードで発振する半導体レー
ザが要求される。この様な半導体レーザとしては、ファ
プリー・ペロー共振器によらず内部に周期構造を有する
回折格子を作り付けた分布帰還形半導体レーザあるいは
分布反射形半導体レーザがある。筆者は特願昭57−1
78824で第1図(a)に示す構造の分布反射形半導
体レーザを発明した。この分布反射形半導体レーザの特
徴は、エピタキシャル成長の結晶方位依存性を有効に利
用して、回折格子20が形成された光力イト層10と活
性gI3とが突き合せの形で接続されており、活性層3
と光力イト層10との間の伝搬光の結合効率が90%程
度と高いこと、また埋め込みへテロ構造が採用されてい
ることにより。
Fabry-Perot cavity semiconductor lasers, which have been developed as light sources for optical fiber communications, usually have multiple oscillation axis modes.
Transmissible repeater spacing or transmission capacity is limited by chromatic dispersion rather than transmission loss. Therefore, in order to realize a long-distance, high-speed original fiber transmission communication system, a semiconductor laser that oscillates in the C single-axis mode during high-speed modulation is required. Such semiconductor lasers include distributed feedback semiconductor lasers and distributed reflection semiconductor lasers in which a diffraction grating having a periodic structure is built inside without using a Fapley-Perot resonator. The author applied for a special application in 1986-1.
78824, invented a distributed reflection type semiconductor laser having the structure shown in FIG. 1(a). The feature of this distributed reflection type semiconductor laser is that the optical power layer 10 on which the diffraction grating 20 is formed and the active gI3 are connected in a butt manner by effectively utilizing the crystal orientation dependence of epitaxial growth. active layer 3
This is because the coupling efficiency of propagating light between the optical power layer 10 and the optical power layer 10 is as high as about 90%, and because a buried heterostructure is employed.

発成閾値が室温で20〜30mAと低いこと、微分量子
効率が30〜50%と冒いこ乏、等である。しかしなが
らこの分布反射形半導隼レーザではp形InP電流ブロ
ック層5と11形find’@流閉じ込めff!j6が
形成すれていないメサストライプ15の領域について、
中央部のA−B−Cの断面をみると、第1図(b)に示
す様に活性層3の部分にpn接合が形成されている。従
って電流注入領域を制御する8 i 02絶縁膜30が
なけれは、レーザ動作には不必要な光カイト層5上の活
性層3にも電流が注入され、無効電流を発生させる。
The generation threshold is as low as 20 to 30 mA at room temperature, and the differential quantum efficiency is as low as 30 to 50%. However, in this distributed reflection semiconductor Hayabusa laser, the p-type InP current blocking layer 5 and the type 11 find'@flow confinement ff! Regarding the area of mesa stripe 15 where j6 is not formed,
Looking at the cross section along ABC in the center, a pn junction is formed in the active layer 3, as shown in FIG. 1(b). Therefore, without the 8 i 02 insulating film 30 that controls the current injection region, current is also injected into the active layer 3 on the optical kite layer 5 which is unnecessary for laser operation, generating a reactive current.

またS r Oを絶縁膜30が形成されていてもp形I
nP埋め込み層7およびp形InPクラッド層4を回り
込んでこの不必要な活性層3に流れ込む電流が数m人存
在する。以上の様に第1図(a)に示す従来構造の年−
軸モード半導体レーザでは電流注入領域を制限するため
の5iO−絶縁膜加の形成工程を含む長い電極形成プロ
セスを必要としたこと、また? 若干の無効電流が存在したことが欠点々なっていた。
Moreover, even if the insulating film 30 is formed on S r O, p-type I
Several meters of current flows around the nP buried layer 7 and the p-type InP cladding layer 4 and flows into this unnecessary active layer 3. As mentioned above, the conventional structure shown in Figure 1 (a) -
Axial mode semiconductor lasers require a long electrode formation process including the formation of a 5iO-insulating film to limit the current injection region. A drawback was the presence of some reactive current.

本発明は、上記分布反射形半導体レーザの構造を改良す
ることにより、触動電流を少くし動作特性を向上させ、
かつ電極形成プロセスを簡易にした単一軸モード半纒体
レーザを提供するものである。
The present invention improves the structure of the distributed reflection type semiconductor laser to reduce the tactile current and improve the operating characteristics.
The present invention also provides a single-axis mode semi-coated laser with a simplified electrode formation process.

本発明lこよれは上面もしくは下面の少くとも片面に回
折格子が形成された分布反射領域となる光ガイド層と発
光再結合を行う活性層とを含み、前記光力イト層と前記
活性層とは各々の端面が突き合わされた形で接続されて
おり、かつ前記光力イト層と前記活性層とは少なくとも
上下面を屈折率の低い牛纏体層により取り囲まれている
構造の単一軸モード半導体レーザにおいて、前記光力イ
ト層の上下方向の半導体多層膜がpnpMj合とnpn
接合のうちの少くとも片方を含んだ接合を構成している
ことを%徴とする単一軸モード半導体レーザが得られる
The light guide layer of the present invention includes a light guide layer that serves as a distributed reflection region with a diffraction grating formed on at least one of its upper or lower surfaces, and an active layer that performs light emission recombination, and the light guide layer and the active layer are connected to each other. is a uniaxial mode semiconductor having a structure in which the respective end surfaces are butted and connected, and the optical power layer and the active layer are surrounded at least on the upper and lower surfaces by a cylindrical layer having a low refractive index. In the laser, the semiconductor multilayer film in the vertical direction of the optical power layer has pnpMj and npn
A single-axis mode semiconductor laser is obtained which is characterized by a junction including at least one of the junctions.

次に図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

第2図(alは本発明の第1の実施例を示す斜視図であ
る。
FIG. 2 (al is a perspective view showing the first embodiment of the present invention.

まず製造工程を述べる(!−第1回目の液相エピタキシ
ャル成長工程で(001)面方位n形InP基板l上に
p形InP il洩阻止1ll(Znドープ、I X 
10111m1厚さo、3μWL)およびn形InGa
AsP光ガイド層10 C発光波長にして1.3μm組
成、厚さ05μ扉)を積層した基板を作製した後、He
−Cdガスレーザを用いた干渉露光法とフォl−IJソ
グラフィの手法により、ピッチ方向が<110>方向と
なる周期’235QAの回折格子20を元カイト層10
の上に形成する。次Br−メタノール系のエツチング液
を用いて<ITO>方向に平行に段差部40の右側を1
.0μm 5− の深さでエツチングしてテラス状基板を作製する。
First, the manufacturing process will be described (! - In the first liquid phase epitaxial growth process, a p-type InP il leakage prevention layer (Zn-doped, IX
10111m1 thickness o, 3μWL) and n-type InGa
After producing a substrate laminated with an AsP light guide layer (composition of 1.3 μm in terms of C emission wavelength, thickness of 05 μm), He
- By interference exposure method using a Cd gas laser and Fol-IJ lithography method, a diffraction grating 20 with a period of '235QA with a pitch direction in the <110> direction is formed on the original kite layer 10.
form on top of. Next, use a Br-methanol-based etching solution to remove the right side of the step 40 parallel to the <ITO> direction.
.. Etching is performed to a depth of 0 μm 5− to produce a terraced substrate.

第2回目の液相エピタキシャル成長工程では、n形In
Pバッフy/12(’Snドープ 、 ×1oill 
m−厚さ0.7μm)およびノンドープInGaAsP
活性膚3(発振波長1.ssμm組成、厚さ0.15μ
m)を2〜3度の比較的低い過飽和度を有する成長溶液
から成長させることにより段差部40の両側で途切れる
形状で成長させる。また次のp形InPクラッド層4 
(Znドープ、 l X1918m”、厚さ約1.5μ
s)を15度程度の比較的高い過飽和度を有する成長溶
液から1段差部伯の上方も含めて全面を覆う形状で成長
させる。この基板に<110>方向に平行な2本の溝1
6.17(幅約7μm、深さ約3μm)を、間に幅約2
μmのメサストライプ15を挾む形で形成する。次に第
3回目の液相エピタキシャル成長工程では、p形InP
電流ブロック層5(Znドープ、  l XIQ” c
m s、平坦部での厚さ0.5μ” ) e  n形I
nP電流閉じ込め層6 (Teドープ、2X10”ff
i ” 、平坦部での厚さ0,5μm〕をメサストライ
プ15の上部の上部を除いて積層させた後、p形Inp
 6− 埋め込み層7 (Znドープ I X IQ” cm 
” 、平坦部での厚さ1.5μm)およびp形InGa
AsPキャップ層8 (Znドープ、 5XIQ”cr
n”、平坦部での厚さ07μm)を全面を覆って積層さ
せる。以上で全エピタキシャル成長工程を終了する。こ
の多層膜構造基板が第1図に示す従来例の場合と異なる
点はp形InP漏洩阻止層11が光力イト層10の下に
導入されたことである。第2図(b)に示す、メサスト
ライプ15の中央部分での断面図を見ると、この漏洩阻
止層11が導入されたことにより1段差部40の左側の
テラス状領域部分では、多層膜の導電形構成がpnpn
接合となっていることがわかる。また段差部40の右側
の領域は活性層3を挾んだpn接合のみである。従って
キャップ層8側を正、基板1側を負とする順方向バイア
スを印加した場合。
In the second liquid phase epitaxial growth process, n-type In
P buffer y/12 ('Sn doped, ×1oil
m-thickness 0.7 μm) and undoped InGaAsP
Active skin 3 (oscillation wavelength 1.ssμm composition, thickness 0.15μ
m) is grown from a growth solution having a relatively low degree of supersaturation of 2 to 3 degrees, so that it is grown in a shape that is interrupted on both sides of the stepped portion 40. Also, the next p-type InP cladding layer 4
(Zn doped, l x 1918m", thickness approx. 1.5μ
s) is grown from a growth solution having a relatively high degree of supersaturation of about 15 degrees so as to cover the entire surface including the area above the one-step difference. There are two grooves 1 parallel to the <110> direction on this substrate.
6.17 (width about 7 μm, depth about 3 μm), with a width of about 2
It is formed in the form of sandwiching a μm mesa stripe 15. Next, in the third liquid phase epitaxial growth process, p-type InP
Current blocking layer 5 (Zn doped, l
m s, thickness at flat part 0.5 μ”) e n type I
nP current confinement layer 6 (Te doped, 2X10”ff
i'', thickness 0.5 μm at the flat part] except for the upper part of the mesa stripe 15, and then p-type Inp
6- Buried layer 7 (Zn doped I
”, thickness 1.5 μm at flat part) and p-type InGa
AsP cap layer 8 (Zn doped, 5XIQ”cr
n", thickness 07 μm at the flat part) is deposited to cover the entire surface. This completes the entire epitaxial growth process. This multilayer structure substrate differs from the conventional example shown in FIG. 1 by p-type InP. This is because the leakage prevention layer 11 is introduced under the optical power layer 10. Looking at the cross-sectional view at the center of the mesa stripe 15 shown in FIG. As a result, the conductivity type configuration of the multilayer film is pnpn in the terrace-like region on the left side of the one-step difference portion 40.
It can be seen that they are joined. Further, the region on the right side of the stepped portion 40 is only a pn junction sandwiching the active layer 3. Therefore, when a forward bias is applied such that the cap layer 8 side is positive and the substrate 1 side is negative.

pn pn接合がターン・オンする電圧(約10V)以
下の通常の動作状態では電流は全て段差部40の右側部
分の活性層3に注入され効率良く発光再結合することに
なる。内部にこの様な電流制限構造を有するため第2図
(a)に示す実施例では、第1図(a)の従来例では必
要であった電流注入領域を制限するためのSiO*絶縁
膜30を必要としない。従って電極材料としてTi/P
t/Auをキャップ層8の表面全部lこ蒸着しp側金属
電極32を形成することができるので電極形成プロセス
を大幅に簡略化できた。
Under normal operating conditions below the voltage at which the pn pn junction turns on (approximately 10 V), all current is injected into the active layer 3 on the right side of the stepped portion 40 and is efficiently recombined in light. Since the embodiment shown in FIG. 2(a) has such a current limiting structure inside, the SiO* insulating film 30 is used to limit the current injection region, which was necessary in the conventional example shown in FIG. 1(a). does not require. Therefore, Ti/P can be used as an electrode material.
Since the p-side metal electrode 32 can be formed by depositing t/Au on the entire surface of the cap layer 8, the electrode formation process can be greatly simplified.

また動作特性としては第2図(b)を見ればわかる様に
、順方向バイアス電圧を印加した時光ガイド層10の上
方の活性層3に流入する電流径路がほとんど存在しない
ため、無効電流を減少させることができ従来の素子に比
べ発振閾値を低下させ、微分量子効率を増大させること
ができた。
As for the operating characteristics, as can be seen from FIG. 2(b), when a forward bias voltage is applied, there is almost no current path flowing into the active layer 3 above the light guide layer 10, so the reactive current is reduced. We were able to lower the oscillation threshold and increase the differential quantum efficiency compared to conventional elements.

−例を示すと1段差部40の右側の活性層3の長さを約
200μm また段差部40の左側の光ガイド層の長さ
を400μmとする素子で発振閾値15mA、微分量子
効率55チの値を得た。発振波長は1.55μmで単一
軸モードであった。
- To give an example, in a device in which the length of the active layer 3 on the right side of the step part 40 is approximately 200 μm, and the length of the light guide layer on the left side of the step part 40 is 400 μm, the oscillation threshold is 15 mA and the differential quantum efficiency is 55 cm. Got the value. The oscillation wavelength was 1.55 μm and a single axis mode.

次に本発明の第2の実施例を第3図(a)a (b)を
用いて示す。第3図(alの斜視図に示す第2の実施例
の構造が第2図(a)に示された第1の実施例の構造と
異なる点は、p形InPの漏洩阻止層(Znドープ ]
XIQ  6n、厚さ約0.5μtx)11が光力イト
層lOの上に形成されている点である。この場合の漏洩
阻止層11は第1回目の液相エピタキシャル成長工程で
元カイト層10の上に03μmの厚さで形成される。こ
の構造においても、第3図(blのメサストライプ15
の中央部分での断面図を見る2段差部40の左側のテラ
ス状領域部分では多層膜がp−npn接合を形成してい
るため、この領域では電流が流れない。従って第1の実
施例と同様に、p側金属電極32をキャップ層8の表面
の全面に形成できるため電極形成プロセスを簡略化でき
、また無効電流を減少できるため動作特性を向上させる
ことができた。
Next, a second embodiment of the present invention will be shown using FIGS. 3(a) and 3(b). The structure of the second embodiment shown in the perspective view of FIG. 3 (al) differs from the structure of the first embodiment shown in FIG. ]
XIQ 6n, thickness approximately 0.5 μtx) 11 is formed on the optical power layer IO. In this case, the leakage prevention layer 11 is formed to a thickness of 0.3 μm on the original kite layer 10 in the first liquid phase epitaxial growth process. In this structure as well, the mesa stripe 15 in Fig. 3 (bl)
Since the multilayer film forms a p-npn junction in the terrace-like region on the left side of the two-step difference portion 40 shown in the cross-sectional view at the center of the figure, no current flows in this region. Therefore, as in the first embodiment, the p-side metal electrode 32 can be formed over the entire surface of the cap layer 8, which simplifies the electrode formation process, and also reduces reactive current, which can improve operating characteristics. Ta.

本発明の第3の実施例を第4図(al e (blに示
す。
A third embodiment of the present invention is shown in FIG.

第1及び第2の実施例と異なる点は、エピタキシャル成
長工程が2回と短いことである。即ち最初にn形InP
基板1の表面にZn拡散を施し厚さ約08μmの漏洩防
止層l]を形成したあとで表面に回折格子20を形成す
る。
The difference from the first and second embodiments is that the epitaxial growth process is two times shorter. That is, first n-type InP
After Zn diffusion is performed on the surface of the substrate 1 to form a leakage prevention layer 1 with a thickness of about 08 μm, a diffraction grating 20 is formed on the surface.

次に第1の実施例と同様なエツチングを施し。Next, the same etching as in the first example was performed.

 9一 段差部40の両側を13μmの段差をつける。第1回目
の液相エピタキシャル成長工程でn形InGaAsP光
ガイド層10.n形InPバッファ層2.ノンドープI
nGaAsP活性層3を段差部40の両側で分離して成
長させたのちp形1nPクラッド層4を全面に連続して
成長させる。各層の膜厚を各々、05μm1μm、0.
15μm、 ]μmで成長させると段差部40のところ
で回折格子上の光力イト層IOと活性層3とが端面・を
突き合せた形で接続される。このテラス状基板を作製し
た後の工程は第1の実施例と同様である。この構造は、
第4図(b)の断面図に示される様に段差部40の左側
では第1の実施例と全く同じ積層形状をしている。また
段差部40の右側では光ガイド層10を余計に含むが、
この庵と活性層3との間には、n形InPバッファ層2
を1μmの厚さで形成しているため、活性N3へのキャ
リア注入及び活性層3での元導波齋こ影響を与えること
はない。従って第3の実施例は第1の実施例と同等の性
能を実現できかつ第1の実施例よりも製作工程が短くて
済む利点を有している。
91 A step of 13 μm is provided on both sides of the step portion 40. In the first liquid phase epitaxial growth process, the n-type InGaAsP optical guide layer 10. n-type InP buffer layer 2. Non-dope I
After the nGaAsP active layer 3 is grown separately on both sides of the stepped portion 40, the p-type 1nP cladding layer 4 is continuously grown over the entire surface. The film thickness of each layer is 0.5 μm, 1 μm, 0.
When grown to a thickness of 15 .mu.m, ] .mu.m, the optical power layer IO on the diffraction grating and the active layer 3 are connected at the stepped portion 40 with their end surfaces butted against each other. The steps after producing this terraced substrate are the same as those in the first embodiment. This structure is
As shown in the cross-sectional view of FIG. 4(b), the left side of the stepped portion 40 has exactly the same laminated shape as in the first embodiment. In addition, the light guide layer 10 is additionally included on the right side of the stepped portion 40;
Between this hermitage and the active layer 3, there is an n-type InP buffer layer 2.
Since it is formed with a thickness of 1 μm, carrier injection into the active layer 3 and the original waveguide in the active layer 3 are not affected. Therefore, the third embodiment has the advantage that performance equivalent to that of the first embodiment can be achieved and the manufacturing process is shorter than that of the first embodiment.

10− 以上の3つの実施例においては、 Ir+GaAsP活
性層3は上下をInP層で挾まれていたが1片側あるい
は両側にInGaAsP活性層3よりも屈折率が小さい
InGaAsP!4波層を設けたラージ・オノティカル
ーキャビテ((Large QpticalCavit
y ) 構造とすることも可能である。また材料を(J
 a A a基板上のAlGaAsあるいはInGaA
sP等とすることも可能である。
10- In the above three embodiments, the Ir+GaAsP active layer 3 was sandwiched between InP layers on the upper and lower sides, but on one side or both sides was InGaAsP, which has a lower refractive index than the InGaAsP active layer 3! Large Qptical Cavity with 4 wave layers
y) structure. Also, the material (J
a A AlGaAs or InGaA on a substrate
It is also possible to use sP or the like.

最後に本発明の%徴をまとめると、従来に比べ回折格子
が設けられた光力イト層を含む領域をpnpn多層構造
とすることにより、電極形成プロセスを簡略化でき生産
性を高めることができることである。
Finally, to summarize the characteristics of the present invention, the electrode formation process can be simplified and productivity can be increased by making the region including the optical power layer provided with the diffraction grating into a pnpn multilayer structure compared to the conventional method. It is.

【図面の簡単な説明】[Brief explanation of drawings]

明の第1の実施例の胴視図、第2図(blはその断面図
、第3図(a)は本発明の第2の実施例の斜視図。 第3図(blはその断面図、第4図(a)は本発明の第
3の実施例の斜視図、第4図(bjはその断面図を示す
。 図中1はn形InP基板、2はn形InPバッファ層。 3はInGaAsP活性層、4はp形InPクラッド層
。 5はp形InP電流ブロック層、6はn形InP電流閉
じ込め層、7はp形InP埋め込み層、 8はp形In
GaAsPキャップ層、10はp形もしくはn形のI 
nGaAsP光ガイド/e*、11はp形InPi洩阻
止層、 15はメサストライプ、16及び17は平行な
2本の溝、20は回折格子、30は5ins絶縁膜、3
2はp側金属電極、33はn側金属電極、40は段差部
を示す。 第1 口 (b) 82 図 躬 31fl 范 〃 図 (b)
FIG. 2 is a sectional view of the first embodiment of the invention; FIG. 3A is a perspective view of the second embodiment of the invention; FIG. , FIG. 4 (a) is a perspective view of the third embodiment of the present invention, and FIG. is an InGaAsP active layer, 4 is a p-type InP cladding layer, 5 is a p-type InP current blocking layer, 6 is an n-type InP current confinement layer, 7 is a p-type InP buried layer, 8 is a p-type InP layer
GaAsP cap layer, 10 is p-type or n-type I
nGaAsP light guide/e*, 11 is a p-type InPi leakage prevention layer, 15 is a mesa stripe, 16 and 17 are two parallel grooves, 20 is a diffraction grating, 30 is a 5ins insulating film, 3
2 is a p-side metal electrode, 33 is an n-side metal electrode, and 40 is a stepped portion. 1st mouth (b) 82 茬 31fl 范 〃 fig. (b)

Claims (1)

【特許請求の範囲】 1、上面もしくは下面の少くとも片面に回折格子が形成
された分布反射領域となる光力イト層と。 発光再結合を行う活性層とを含み、前記光ガイド層と前
記活性層とは各々の端間が突き合わされた形で接続され
ており、かつ前記光力イト層と前記活性層とは少なくと
も上下面を屈折率の低い半導体層により取り囲まれてい
る構造の単一軸モード半導体レーザにおいて、前記光ガ
イド層の上下方向の半導体多層膜がpnp接合とnpn
接合のうマ〜少くとも一方の接合を含んだ接合を搗成し
ていることを特徴とする単一軸モード半導体レーザ。
[Scope of Claims] 1. An optical power layer serving as a distributed reflection region having a diffraction grating formed on at least one of the upper or lower surfaces. an active layer that performs luminescent recombination, the optical guide layer and the active layer are connected such that their ends are butted, and the optical guide layer and the active layer are connected at least to the upper In a single-axis mode semiconductor laser having a structure in which the bottom surface is surrounded by a semiconductor layer with a low refractive index, the semiconductor multilayer film in the vertical direction of the optical guide layer has a pnp junction and an npn junction.
A single-axis mode semiconductor laser characterized by forming a junction including at least one of the junctions.
JP5950583A 1982-10-12 1983-04-05 Semiconductor laser of single axial mode Pending JPS59184585A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5950583A JPS59184585A (en) 1983-04-05 1983-04-05 Semiconductor laser of single axial mode
EP83110135A EP0106305B1 (en) 1982-10-12 1983-10-11 Double heterostructure semiconductor laser with periodic structure formed in guide layer
DE8383110135T DE3379442D1 (en) 1982-10-12 1983-10-11 Double heterostructure semiconductor laser with periodic structure formed in guide layer
US06/541,211 US4618959A (en) 1982-10-12 1983-10-12 Double heterostructure semiconductor laser with periodic structure formed in guide layer
CA000438801A CA1197308A (en) 1982-10-12 1983-10-12 Double heterostructure semiconductor laser with periodic structure formed in guide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5950583A JPS59184585A (en) 1983-04-05 1983-04-05 Semiconductor laser of single axial mode

Publications (1)

Publication Number Publication Date
JPS59184585A true JPS59184585A (en) 1984-10-19

Family

ID=13115185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5950583A Pending JPS59184585A (en) 1982-10-12 1983-04-05 Semiconductor laser of single axial mode

Country Status (1)

Country Link
JP (1) JPS59184585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221181A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Distributed reflection semiconductor laser
JPS62221182A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Distributed reflection laser
JPS62221184A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Distributed reflection semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221181A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Distributed reflection semiconductor laser
JPS62221182A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Distributed reflection laser
JPS62221184A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Distributed reflection semiconductor laser

Similar Documents

Publication Publication Date Title
JPS5844785A (en) Semiconductor laser
JP2746326B2 (en) Semiconductor optical device
JPS59205787A (en) Single axial mode semiconductor laser
JP3558717B2 (en) Laser diode, manufacturing method thereof, and optical communication system using such laser diode
JPH0194689A (en) Optoelectronic semiconductor element
JPS5940592A (en) Semiconductor laser element
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JP4027639B2 (en) Semiconductor light emitting device
JPH01319986A (en) Semiconductor laser device
JPS59184585A (en) Semiconductor laser of single axial mode
US20050025210A1 (en) Semiconductor laser device
JPH0548214A (en) Distributed reflection type semiconductor laser
JPH10242577A (en) Semiconductor laser and manufacture thereof
JPH09275240A (en) Waveguide optical device and forming method thereof
JP5163355B2 (en) Semiconductor laser device
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JPH0671121B2 (en) Semiconductor laser device
JP2950297B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPS61220389A (en) Integrated type semiconductor laser
JPS62137893A (en) Semiconductor laser
JPS621277B2 (en)
JP3108926B2 (en) Light emitting device manufacturing method
JPH0446477B2 (en)
JPS61212082A (en) Integrated semiconductor laser