JPH0548214A - Distributed reflection type semiconductor laser - Google Patents

Distributed reflection type semiconductor laser

Info

Publication number
JPH0548214A
JPH0548214A JP23080891A JP23080891A JPH0548214A JP H0548214 A JPH0548214 A JP H0548214A JP 23080891 A JP23080891 A JP 23080891A JP 23080891 A JP23080891 A JP 23080891A JP H0548214 A JPH0548214 A JP H0548214A
Authority
JP
Japan
Prior art keywords
region
active
passive
layer
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23080891A
Other languages
Japanese (ja)
Other versions
JPH0770785B2 (en
Inventor
Shigehisa Arai
滋久 荒井
Kazuhiro Komori
和弘 小森
Shiyouin Chin
鍾寅 沈
Yasuharu Suematsu
安晴 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP23080891A priority Critical patent/JPH0770785B2/en
Publication of JPH0548214A publication Critical patent/JPH0548214A/en
Publication of JPH0770785B2 publication Critical patent/JPH0770785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a distributed reflection type semiconductor laser excellent in productivity and high in reliability, by forming a diffraction grating of an active region and a diffraction grating of a passive region in a united body, and increasing the reflectance of the passive region. CONSTITUTION:A light confining layer 23 is formed on an active layer 22, and grating grooves are formed on its surface along with the formation of phase shifts 24. A clad layer 25 composed of n-type InP having a reflectance smaller than that of this light confining layer 23 is deposited on the light confining layer 23 and clad layer 25 constitute an active diffraction grating and a passive diffraction grating respectively. On this occasion, the depths of the grating grooves of the active and passive diffraction gratings are set individually and the reflectance of the passive diffraction grating is made larger than that of the active diffraction grating. In this way, the passive region can function as a reflector with a high reflectance, and a waveguide construction containing the active layer can function as a passive reflector by only making the reflectances of the active and passive diffraction gratings differ from each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単一モードで動作する
分布反射型半導体レーザ、特に活性層を含む導波路を高
反射率の反射器として利用できる分布反射型半導体レー
ザに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed Bragg reflector semiconductor laser operating in a single mode, and more particularly to a distributed Bragg reflector semiconductor laser in which a waveguide including an active layer can be used as a reflector having a high reflectance.

【0002】[0002]

【従来の技術】光通信の分野においては、大容量伝送及
び長距離伝送に適した高効率な半導体レーザの開発が強
く要請されている。従来、大容量光通信用の光源として
λ/4シフト分布帰還形レーザ(DFBレーザ)が既知
であり、その構造を図6(a) に模式的に示す。例えばP
形InPのような基板1を用い、この基板上に活性層2
が形成されている。活性層2上に、光閉込層3とクラッ
ド層4からの成る回折格子の形態をした活性導波路5が
形成され、活性導波路のほぼ中央部に位相制御を行うた
めの位相シフトが形成されている。導波路5の両端には
無反射コート7a及び7bがそれぞれ形成され、さらに
基板1の裏面側及びクラッド層4の上面には活性層2と
対応する長さに亘って電極8a及び8bが形成されてい
る。そして、動作電流は電極8a及び8bを介して注入
され、共振器の全領域に均一に流れて光放射が行われ
る。この分布帰還形レーザは光の伝播方向に対して対称
構造となっているから、レーザ光が両方の端面からそれ
ぞれ同量づつ放射される。
2. Description of the Related Art In the field of optical communication, there is a strong demand for the development of a highly efficient semiconductor laser suitable for large capacity transmission and long distance transmission. Conventionally, a λ / 4 shift distributed feedback laser (DFB laser) is known as a light source for large-capacity optical communication, and its structure is schematically shown in FIG. 6 (a). For example P
A substrate 1 such as InP is used, and an active layer 2 is formed on this substrate.
Are formed. An active waveguide 5 in the form of a diffraction grating composed of an optical confinement layer 3 and a clad layer 4 is formed on the active layer 2, and a phase shift for performing phase control is formed in a substantially central portion of the active waveguide. Has been done. Non-reflective coatings 7a and 7b are formed on both ends of the waveguide 5, respectively, and electrodes 8a and 8b are formed on the back surface of the substrate 1 and the upper surface of the cladding layer 4 over a length corresponding to the active layer 2. ing. Then, the operating current is injected through the electrodes 8a and 8b and uniformly flows in the entire region of the resonator to emit light. Since this distributed feedback laser has a symmetrical structure with respect to the light propagation direction, the same amount of laser light is emitted from both end faces.

【0003】このDFBレーザは単一軸モード動作を安
定して行なえる有益な特徴を有している。しかしなが
ら、光が両端面からそれぞれ同量放射されるため、片端
面微分量子効率が1/2に減少してしまい高効率なレー
ザ動作を行いない欠点があった。この欠点を解消するた
め、一方の端面に無反射コートを形成し、他方の端面に
高反射コートを形成する方法が考えられるが、片端面に
高反射コートを形成すると回折格子の位相の影響によっ
て安定した単一モード動作が得られなくなってしまう。
This DFB laser has a useful characteristic that stable single-axis mode operation can be performed. However, since the same amount of light is emitted from both end faces, the differential quantum efficiency on one end face is reduced to 1/2, and there is a drawback that a highly efficient laser operation is not performed. In order to eliminate this drawback, a method of forming a non-reflective coating on one end surface and forming a high-reflective coating on the other end surface can be considered, but if a high-reflective coating is formed on one end surface, it will be affected by the phase of the diffraction grating. Stable single mode operation cannot be obtained.

【0004】このDFBレーザの欠点を解消するレーザ
として、本発明者から図6(b) に示す分布反射型レーザ
(DRレーザ)が提案されている。この分布反射型レー
ザは活性領域の一方の側に回折格子の形態をした受動領
域が形成され、この受動領域によって活性領域で発生し
た光を反対方向に反射するように構成されている。この
DRレーザでは、受動領域を反射器として作動させるた
め活性層2は基板のほぼ半分程度まで延在させると共
に、活性領域と受動領域との間の伝播定数を整合させる
ため活性層6上に低屈折率のInP層9が形成されてい
る。
A distributed reflection laser (DR laser) shown in FIG. 6 (b) has been proposed by the inventor of the present invention as a laser for solving the drawbacks of the DFB laser. This distributed reflection laser has a passive region in the form of a diffraction grating formed on one side of the active region, and the passive region is configured to reflect light generated in the active region in the opposite direction. In this DR laser, the active layer 2 extends up to about half of the substrate in order to operate the passive region as a reflector, and the active layer 2 is lowered on the active layer 6 to match the propagation constant between the active region and the passive region. An InP layer 9 having a refractive index is formed.

【0005】[0005]

【発明が解決しようとする課題】上述した分布反射型半
導体レーザは、ほとんどの放射光が活性領域の一方の端
面から放射されるため、片端面微分量子効率を約2倍に
増大できる大きな利点を有している。しかも、安定して
単一モード動作を達成でき動的単一モードレーザとして
極めて高い有用性を有している。
Since most of the emitted light is emitted from one end face of the active region, the above-mentioned distributed Bragg reflector semiconductor laser has a great advantage that the differential quantum efficiency on one end face can be increased about twice. Have Moreover, the single mode operation can be stably achieved, and it is extremely useful as a dynamic single mode laser.

【0006】しかしながら、従来の分布反射型半導体レ
ーザでは、活性領域と受動領域を別々に形成しなければ
ならないため、導波路の層厚や組成等の作製誤差によっ
て活性領域と受動領域との間で伝播定数差が生じ易く、
安定した単一モード動作を行うことができる半導体レー
ザの製造が困難であり、生産時の歩留りに難点があっ
た。
However, in the conventional distributed Bragg reflector semiconductor laser, the active region and the passive region must be formed separately, so that the active region and the passive region may be separated between the active region and the passive region due to manufacturing errors such as the layer thickness and composition of the waveguide. Propagation constant difference easily occurs,
It is difficult to manufacture a semiconductor laser capable of performing stable single-mode operation, and there is a problem in yield during production.

【0007】従って、本発明の目的は上述した欠点を除
去し、従来のDRレーザの有用な利点をそのまま有し、
しかも生産性に優れ高い信頼性を達成できる分布反射型
半導体レーザを提供することにある。
Therefore, the object of the present invention is to eliminate the above-mentioned drawbacks and still retain the useful advantages of conventional DR lasers,
Moreover, it is intended to provide a distributed Bragg reflector semiconductor laser which is excellent in productivity and can achieve high reliability.

【0008】[0008]

【課題を解決するための手段】本発明による分布反射型
半導体レーザは、一導電型の半導体基板と、この半導体
基板上に形成した活性層と、この活性層上に互いに一体
的に形成され、反射率が互いに相異する第1及び第2の
回折格子領域と、反射率の低い第1の回折格子領域及び
これに隣接する活性層の部分にだけ電流を注入する電極
領域とを具え、前記第1の回折格子領域及びこれと隣接
する活性層の部分が光利得を有する活性領域として機能
し、反射率の高い第2の回折格子領域及びこれと隣接す
る活性層の部分が活性領域で発生した光に対して受動反
射器として作用するように構成したことを特徴とするも
のである。
A distributed Bragg reflector semiconductor laser according to the present invention comprises a semiconductor substrate of one conductivity type, an active layer formed on the semiconductor substrate, and an integrated layer formed on the active layer. A first diffraction grating region having a reflectance different from each other, and an electrode region for injecting a current only to the first diffraction grating region having a low reflectance and the active layer portion adjacent to the first diffraction grating region. The first diffraction grating region and the portion of the active layer adjacent thereto function as an active region having optical gain, and the second diffraction grating region of high reflectance and the portion of the active layer adjacent thereto are generated in the active region. It is characterized in that it is constructed so as to act as a passive reflector with respect to the generated light.

【0009】[0009]

【作用】半導体結晶成長技術の向上により、半導体レー
ザの発振波長が無注入状態での活性層のバンドギャップ
波長より長波長側にシストするバンドシュリンケージ効
果が顕著に現れ、また量子効果を用いることによって活
性層への小さい光閉じ込め係数を持つ導波路構造でも良
好な発振特性が得られるようになり、このような量子効
果の現れる超薄層の活性層を含む導波路を受動導波路に
使える可能性が考えられる。本発明者は、このような認
識に基づき活性領域とほぼ同様な組成及び構造の導波路
を反射器として作用する受動導波路に用いることを検討
した。
With the improvement of the semiconductor crystal growth technique, the band shrinkage effect, in which the oscillation wavelength of the semiconductor laser is shifted to the longer wavelength side than the bandgap wavelength of the active layer in the non-injected state, appears remarkably, and the quantum effect is used. As a result, good oscillation characteristics can be obtained even with a waveguide structure having a small optical confinement factor in the active layer, and it is possible to use a waveguide containing an ultra-thin active layer in which such quantum effect appears as a passive waveguide. There is a possibility of sex. Based on such recognition, the present inventor has studied the use of a waveguide having a composition and structure similar to that of the active region as a passive waveguide acting as a reflector.

【0010】活性層上に同一格子ピッチの活性回折格子
(活性反射器)及び受動回折格子(受動反射器)を形成
し、受動回折格子及びこれと隣接する活性層の部分(受
動領域)を高反射率の反射器として作動させるために
は、活性領域の反射率よりも受動領域の反射率を一層高
くする必要がある。ここで、受動領域の反射率Rp は、
近似的にRp =1−αp /Kpで表わすことができる。
ここでαp 及びKp は受動領域の電界損失係数及び光結
合係数である。従って受動領域の反射率を高くするに
は、受動領域の光結合係数Kp を大きくする必要があ
る。光結合係数Kp を大きくする方法として例えば受動
回折格子の格子溝を深くする方法がある。
An active diffraction grating (active reflector) and a passive diffraction grating (passive reflector) having the same grating pitch are formed on the active layer, and the passive diffraction grating and a portion of the active layer (passive region) adjacent to the passive diffraction grating are raised. In order to operate as a reflectivity reflector, it is necessary to have a higher reflectivity in the passive area than in the active area. Here, the reflectance R p of the passive region is
It can be approximately represented by R p = 1−α p / K p .
Here, α p and K p are the electric field loss coefficient and the optical coupling coefficient in the passive region. Therefore, to increase the reflectivity of the passive region, it is necessary to increase the optical coupling coefficient K p of the passive region. As a method of increasing the optical coupling coefficient K p , there is a method of deepening the grating groove of the passive diffraction grating, for example.

【0011】一方、受動領域の光結合係数を大きくする
と、回折格子の非対称により活性領域と受動領域との間
の伝播定数差Δβapが大きくなり、安定した単一モード
発振が行われなくなるおそれがある。このため、本発明
者は種々の検討及び解析を行った結果、良好な単一モー
ド動作を行うには、Δβap≦1.5 Kp の条件を満足すれ
ば十分であり、しかも受動領域の反射率を、高くすれば
同時にKp も大きくなるため、Δβap≦1.5 Kp の条件
を十分に満足できることを見い出した。すなわち、活性
領域の格子溝の深さda を固定した場合、受動領域の格
子溝の深さdp を活性領域の格子溝の深さda よりも深
くして受動領域の反射率を活性領域の反射率よりも高く
すると受動領域の光結合係数Kp も自動的に大きくなる
ためΔβap〜Kp となり、伝播定数差Δβapが増大する
ことによる問題点を解消することができる。また、伝播
定数差が大きくなる要因として注入キャリヤのプラプマ
効果も考えられるが、このプラプマ効果は回折格子の非
対称性による効果を打ち消す方向に作用し、しかもその
量は十分に小さいので無視することができる。従って、
活性層上に同一組成及び同一ピッチの活性回折格子及び
受動回折格子を一体的に形成し、受動領域の格子溝の深
さを活性領域の格子溝の深さよりも深くして受動回折格
子の反射率を活性回折格子の反射率よりも高くすれば、
活性層を含む受動導波路を高反射率の反射器として機能
させることができると共に、伝播定数差も適切に制御す
ることができる。
On the other hand, if the optical coupling coefficient of the passive region is increased, the propagation constant difference Δβ ap between the active region and the passive region becomes large due to the asymmetry of the diffraction grating, and stable single mode oscillation may not be performed. is there. Therefore, as a result of various investigations and analyzes, the present inventor suffices to satisfy the condition of Δβ ap ≦ 1.5 K p in order to perform a good single-mode operation, and the reflectance in the passive region is sufficient. the, since the K p also increases at the same time if greater, was found to be able to fully satisfy the condition of Δβ ap ≦ 1.5 K p. That is, when the depth d a of the lattice groove in the active region is fixed, the depth d p of the lattice groove in the passive region is made deeper than the depth d a of the lattice groove in the active region to activate the reflectance of the passive region. If it is higher than the reflectance of the region, the optical coupling coefficient K p of the passive region also automatically increases and becomes Δβ ap to K p , and the problem due to the increase of the propagation constant difference Δβ ap can be solved. In addition, it is possible to consider the injected carrier's pragma effect as a factor that increases the propagation constant difference, but this pragma effect acts in the direction of canceling the effect due to the asymmetry of the diffraction grating, and its amount is sufficiently small that it can be ignored. it can. Therefore,
An active diffraction grating and a passive diffraction grating of the same composition and the same pitch are integrally formed on the active layer, and the depth of the grating groove in the passive region is made deeper than the depth of the grating groove in the active region to reflect the passive diffraction grating. If the index is higher than the reflectance of the active diffraction grating,
The passive waveguide including the active layer can function as a high-reflectance reflector, and the propagation constant difference can be appropriately controlled.

【0012】しかしながら、活性領域及び受動領域の両
方に電流注入を行うと、受動領域において局部的なレー
ザ発振が生じてしまい、安定した発振動作が行われなく
なってしまう。このため、本発明では反射率の小さい回
折格子を形成した領域にだけ電流注入を行って光利得を
有する活性領域として機能させ、高い反射率の回折格子
を形成した領域を高反射率の受動反射器としてだけ機能
させる。
However, if current injection is performed into both the active region and the passive region, local laser oscillation will occur in the passive region, and stable oscillation operation will not be performed. Therefore, in the present invention, current injection is performed only in a region where a diffraction grating having a small reflectance is formed to function as an active region having optical gain, and a region where a diffraction grating having a high reflectance is formed is subjected to passive reflection having a high reflectance. Only function as a container.

【0013】本発明は、上述した解析結果に基づき、活
性領域の回折格子及び受動領域の回折格子を同一材料組
成及び同一の格子ピッチで一体的に形成すると共に、受
動領域の格子溝の深さを活性領域の格子溝の深さよりも
一層深く形成して受動領域の反射率を一層高くし、伝播
定数差δβapの制御及び受動領域における電界損失の低
減の両方を同時に達成する。しかも、活性領域にのみ電
流注入を行って受動領域における局部発振の発生を防止
して安定な発振動作を達成する。このように構成するこ
とにより、活性層を含む導波路を反射器として利用する
ことができ、生産性に優れ高い信頼性の分布反射型半導
体レーザを実現することができる。
According to the present invention, the diffraction grating of the active region and the diffraction grating of the passive region are integrally formed with the same material composition and the same grating pitch based on the above-mentioned analysis result, and the depth of the grating groove of the passive region is also formed. Are formed deeper than the depth of the lattice groove in the active region to further increase the reflectance in the passive region, and at the same time both control of the propagation constant difference δβ ap and reduction of electric field loss in the passive region are achieved. In addition, current injection is performed only in the active region to prevent local oscillation from occurring in the passive region and achieve stable oscillation operation. With this configuration, the waveguide including the active layer can be used as a reflector, and a highly reliable distributed reflection semiconductor laser with excellent productivity can be realized.

【0014】尚、受動領域の反射率を活性領域の反射率
よりも高くする方法として、活性反射器及び受動反射器
の等価屈折率negを互いに相異させることによっても達
成できる。すなわち、活性反射器及び受動反射器を同一
の格子ピッチ及び同一の格子溝の深さに設定し、受動反
射器の等価屈折率negを活性反射器の等価屈折率よりも
大きくすることにより達成できる。この場合、回折格子
を構成する光閉込層の組成を変えることにより実現でき
る。
As a method for making the reflectance of the passive region higher than that of the active region, it can be achieved by making the equivalent refractive indices n eg of the active reflector and the passive reflector different from each other. That is, it is achieved by setting the active reflector and the passive reflector at the same grating pitch and the same groove depth and making the equivalent refractive index n eg of the passive reflector larger than the equivalent refractive index of the active reflector. it can. In this case, it can be realized by changing the composition of the light confinement layer forming the diffraction grating.

【0015】[0015]

【実施例】図1(a)及び(b)は本発明による分布反
射型半導体レーザの一例の構成を示す線図的断面図であ
る。P型のInP基板20を用い、この基板20上にGaInAs
Pから成り厚さ200 nmのバッファ層21をCVD法によっ
て堆積する。このバッファ層21上に活性層22を形成す
る。本例では、活性層22として図1(b)に示す多重量
子井戸構造体を用いる。図1(b)に示すように、この
多重量子井戸構造体はGa0.47In0.53Asより成り厚さ8nm
の量子井戸層22a と、量子井戸層22a よりもバンドギャ
ップの広いバンドギャップのGa0.19In0.81As0.4P0.6
り成り厚さ10nmのバリヤ層22b とをMOCVD法により
交互に積層した構造とする。活性層22上に、Ga0.19In
0.81As0.4P0.5 より成る光閉込層23を形成し、その表面
上に回折格子を形成するためのピッチが0.2 μm の格子
溝を形成すると共に、活性領域を構成する部分と受動領
域を構成する部分との間に活性層で発生した光の位相を
制御する位相シフト24を形成する。この光閉込層23上に
光閉込層23の屈折率よりも小さい屈折率のn型のInP
からなるクラッド層25を堆積し、これら光閉込層とクラ
ッド層とによって活性回折格子及び受動回折格子をそれ
ぞれ構成する。ここで、活性回折格子の格子溝の深さd
a をda =30nmとし、受動回折格子の格子溝の深さdp
=60nmに設定して受動回折格子の反射率を活性回折格子
の反射率よりも大きくする。尚、光閉込層23の位相シフ
ト24を中心にして図面の左側の部分を第1の光閉込層23
a とし、図面の右側の部分を第2の光閉込層23b とす
る。そして、活性領域は第1の光閉込層23a とこれと隣
接する活性層の部分及びクラッド層の部分とによって構
成され、受動領域は第2の光閉込層23b とこれと隣接す
る活性層の部分及びクラッド層の部分とによって構成さ
れるものとする。活性領域にだけ電流を注入するため、
クラッド層25の表面の位相シフト24及びこれより左側の
部分と対向するようにAuGeNiから成る第1の電極26a を
形成し、基板の表面のほぼ全面に亘ってAuZnの第2の電
極26b を形成する。尚、電極を形成するに際し、クラッ
ド層25上に高不純物濃度層を設けその上に電極を形成す
ることもできる。さらに、活性領域の受動領域と反対側
の端面にアルミナ又はシリコンナイトライドの無反射コ
ート27を形成する。
1 (a) and 1 (b) are diagrammatic sectional views showing the structure of an example of a distributed Bragg reflector semiconductor laser according to the present invention. A P-type InP substrate 20 is used, and GaInAs is formed on the substrate 20.
A buffer layer 21 made of P and having a thickness of 200 nm is deposited by the CVD method. The active layer 22 is formed on the buffer layer 21. In this example, the multiple quantum well structure shown in FIG. 1B is used as the active layer 22. As shown in Fig. 1 (b), this multiple quantum well structure is composed of Ga 0.47 In 0.53 As and has a thickness of 8 nm.
The quantum well layer 22a and the barrier layer 22b made of Ga 0.19 In 0.81 As 0.4 P 0.6 having a bandgap wider than that of the quantum well layer 22a and having a thickness of 10 nm are alternately laminated by the MOCVD method. On the active layer 22, Ga 0.19 In
The optical confinement layer 23 made of 0.81 As 0.4 P 0.5 is formed, and a grating groove with a pitch of 0.2 μm for forming a diffraction grating is formed on the surface of the optical confinement layer 23, and the active region forming part and the passive region are formed. A phase shift 24 that controls the phase of the light generated in the active layer is formed between the phase shift 24 and the portion where the light is generated. An n-type InP having a refractive index smaller than that of the light confinement layer 23 is formed on the light confinement layer 23.
A clad layer 25 made of is deposited, and the optical confinement layer and the clad layer constitute an active diffraction grating and a passive diffraction grating, respectively. Here, the depth d of the grating groove of the active diffraction grating
Let a be d a = 30 nm, and the depth d p of the grating groove of the passive diffraction grating
= 60 nm to make the reflectivity of the passive grating greater than that of the active grating. The left side of the drawing with respect to the phase shift 24 of the light confinement layer 23 is the first light confinement layer 23.
Let a be the second light confinement layer 23b on the right side of the drawing. The active region is composed of the first optical confinement layer 23a and the active layer portion and the cladding layer portion adjacent thereto, and the passive region is the second optical confinement layer 23b and the active layer adjacent thereto. And a portion of the cladding layer. Injecting current only in the active region,
The first electrode 26a made of AuGeNi is formed so as to face the phase shift 24 on the surface of the clad layer 25 and the portion on the left side thereof, and the second electrode 26b of AuZn is formed over almost the entire surface of the substrate. To do. When forming the electrode, a high impurity concentration layer may be provided on the cladding layer 25 and the electrode may be formed thereon. Further, an antireflection coating 27 of alumina or silicon nitride is formed on the end face of the active region opposite to the passive region.

【0016】尚、導波路の側部の構成については、電極
26a 及び26b を形成する前に、導波路側部を2μm 程度
取り除き、その部分に埋め込みヘテロ構造体を埋め込み
形成する。尚、この埋め込みヘテロ構造は、横モード単
一動作できるものであればよく種々のストライプ構造体
を利用することができる。
Regarding the structure of the side portion of the waveguide,
Before forming 26a and 26b, the waveguide side portion is removed by about 2 μm, and a buried heterostructure is buried and formed in that portion. Note that this buried heterostructure may be any stripe structure as long as it can perform a single transverse mode operation.

【0017】次に、活性反射器及び受動反射器の形成工
程について説明する。図2(a)に示すように、光閉込
層23を均一に形成した後、マスク用のInP層30を形成
し、ホログラフィ法によって0.2 μm 幅の干渉縞を形成
して露光を行い、次に現像した後HBr を用いてウェット
エッチングを行い深さ30nmの格子溝を全面に形成する。
尚、この際位相シフト24の形成領域も併せて形成する。
次に、図2(b)に示すように、全面にレジストをコー
トし、ホトリソグラフィを利用して活性領域に対応する
部分にレジストマスク31を形成する。
Next, the process of forming the active reflector and the passive reflector will be described. As shown in FIG. 2A, after the light confinement layer 23 is uniformly formed, an InP layer 30 for a mask is formed, an interference fringe having a width of 0.2 μm is formed by holography, and exposure is performed. After development, wet etching is performed using HBr to form a grating groove with a depth of 30 nm on the entire surface.
At this time, the formation region of the phase shift 24 is also formed.
Next, as shown in FIG. 2B, a resist is coated on the entire surface, and a resist mask 31 is formed on a portion corresponding to the active region by using photolithography.

【0018】次に図2(c)に示すように、硫酸及び加
酸化水素水を含むエッチャントを用いて選択性エッチン
グを行い、受動領域を構成する部分だけにさらにエッチ
ング処理を施し、この領域に深さ60nmの格子溝を形成す
る。次に、レジストマスク31を除去してからクラッド層
をCVD法により均一に形成する。このように本発明に
よれば、2回のエッチング工程と1回のホトリソグラフ
ィ工程を行うだけで、光結合係数が互いに相異する、す
なわち反射率が互いに相異する活性回折格子と受動回折
格子とを隣接して設けることができる。
Next, as shown in FIG. 2 (c), selective etching is performed using an etchant containing sulfuric acid and hydrogenated water, and only the portion constituting the passive region is further etched, and this region is further etched. A grating groove having a depth of 60 nm is formed. Next, after removing the resist mask 31, a clad layer is uniformly formed by the CVD method. As described above, according to the present invention, the active diffraction grating and the passive diffraction grating having different optical coupling coefficients, that is, different reflectances, can be obtained by performing only two etching processes and one photolithography process. And can be provided adjacent to each other.

【0019】次に、正規化された受動領域の導波路損失
αp /Κp と受動分布反射器の電力反射率Rp との関係
のシュミレーション結果を図3に示す。横軸は正規化さ
れた受動領域の導波路損失αp /Κp を示し、縦軸は電
力反射率Rp を示す。本例では、活性領域の光結合係数
Κa をΚa =30cm-1とし、受動領域の光結合係数Κp
Κp =200 cm-1とし、活性導波路長La 及び受動導波路
長Lpをそれぞれ300μm とし、位相シフトΦをπ/2と
してシュミレーションした。実線はδβap=0の条件に
おけるシュミレーション結果を示し、1点鎖線はδβap
=100 cm-1、破線はδβap=200 cm-1の条件下における
シュミレーション結果を示す。図1に示す構造の半導体
レーザの場合電界導波路損失係数αp は18cm-1程度であ
ることが確認されているから、このような導波路にΚp
=200 cm-1の回折格子を形成した分布反射器においては
約100 cm -1 程度のδβapが生ずる。従って、図3から
明らかなように、活性分布反射器の格子溝の深さを30nm
とし、受動分布反射器の格子溝を60nmに設定した場合、
約80%程度の電力反射率が得られることになる。
Next, FIG. 3 shows a simulation result of the relationship between the normalized waveguide loss α p / K p in the passive region and the power reflectivity R p of the passive distributed reflector. The horizontal axis represents the normalized waveguide loss α p / K p in the passive region, and the vertical axis represents the power reflectivity R p . In this example, the optical coupling coefficient K a in the active region is set to K a = 30 cm −1 , the optical coupling coefficient K p in the passive region is set to K p = 200 cm −1 , the active waveguide length L a and the passive waveguide length are set. The simulation was performed with L p set to 300 μm and the phase shift Φ set to π / 2. The solid line shows the simulation result under the condition of δβ ap = 0, and the alternate long and short dash line shows δβ ap
= 100 cm -1 , the broken line shows the simulation result under the condition of δβ ap = 200 cm -1 . Since it has been confirmed that when the semiconductor laser having the structure shown in FIG. 1 is an electric field waveguide loss factor alpha p is about 18cm -1, kappa Such waveguides p
In a distributed reflector having a diffraction grating of = 200 cm -1 , about 100 cm -1 δβ ap occurs. Therefore, as is clear from FIG. 3, the depth of the grating groove of the active distributed reflector is 30 nm.
And when the grating groove of the passive distributed reflector is set to 60 nm,
A power reflectance of about 80% will be obtained.

【0020】尚、実用的には、約60%以上の電力反射率
p が得られれば半導体レーザとして十分良好に機能で
きることが確認されているから、格子溝の深さda 及び
p 及び材料組成を設定するに際し、正規化受動導波路
損失係数αp /Kp が0.25以下になるように設定するこ
とが望ましい。また、上述した材料組成の場合格子溝の
深さの相対比は、dp ≧1.5 da となるように設定すれ
ば、実用上良好な半導体レーザとして機能することがで
きる。
Practically, it has been confirmed that a power factor R p of about 60% or more can sufficiently function as a semiconductor laser. Therefore, the depths d a and d p of the grating groove and When setting the material composition, it is desirable to set the normalized passive waveguide loss coefficient α p / K p to be 0.25 or less. The relative ratio of the depth of the case grating grooves of the above-mentioned material composition is, by setting such that d p ≧ 1.5 d a, can function as a practical good semiconductor laser.

【0021】図4に本発明による分布反射型半導体レー
ザの発振諸特性を示す。図4から明らかなように、受動
領域の光結合線Κp を大きな値に設定した場合、発振諸
特性の全てについて良好な結果が得られる。図1に示す
導波路構造の場合αp が20cm-1程度の値が測定されてお
り、従ってη〜70%、Jth<1KA/cm2 、及び発振閾値
電流の2倍の動作電流での副モード抑圧比SMSMが、
SMSM>40dBという高性能に発振特性が得られる。
FIG. 4 shows various oscillation characteristics of the distributed Bragg reflector semiconductor laser according to the present invention. As is clear from FIG. 4, when the optical coupling line K p in the passive region is set to a large value, good results are obtained for all oscillation characteristics. In the case of the waveguide structure shown in FIG. 1, α p is measured at a value of about 20 cm −1 , and therefore η ˜70%, J th <1 KA / cm 2 , and an operating current twice the oscillation threshold current. The sub-mode suppression ratio SMSM is
High-performance oscillation characteristics of SMSM> 40 dB can be obtained.

【0022】図5(a)及び(b)に実際に作製した本
発明による分布反射型半導体レーザの室温連続発振特性
の実験結果を示す。作製した半導体レーザの条件は、L
a =440 μm 、Lp =180 μm 、Κa =33cm-1、Κp
200 cm-1、δβap=100cm -1とした。作製した半導体レ
ーザでは、発振閾値電流Ith=20mA、前方微分量子効率
η=18%、3倍の発振閾値電流においてSMSR=44dB
が得られた。
FIGS. 5A and 5B show experimental results of room temperature continuous oscillation characteristics of the actually manufactured distributed Bragg reflector semiconductor laser according to the present invention. The condition of the manufactured semiconductor laser is L
a = 440 μm, L p = 180 μm, K a = 33 cm −1 , K p =
It was set to 200 cm −1 and δβ ap = 100 cm −1 . In the manufactured semiconductor laser, oscillation threshold current I th = 20 mA, forward differential quantum efficiency η = 18%, and triple oscillation threshold current SMSR = 44 dB
was gotten.

【0023】本発明は上述した実施例だけに限定される
ものではなく種々の変形や変更が可能である。例えば、
上述した実施例では第1電極26a を活性領域に対応する
部分だけをおおうように形成し第2電極26b を基板全面
をおおうように形成したが、活性領域にのみキャリヤを
注入できる電極配置であればよく、第1及び第2の電極
の両方を活性領域だけおおうように形成することも可能
である。また、上述した実施例では活性層として量子井
戸構造を用いたが、バルク構造を用いることもできる。
The present invention is not limited to the above-described embodiments, but various modifications and changes can be made. For example,
In the above-mentioned embodiment, the first electrode 26a is formed so as to cover only the portion corresponding to the active region and the second electrode 26b is formed so as to cover the entire surface of the substrate. However, it is also possible to form both the first and second electrodes so as to cover only the active region. In addition, although the quantum well structure is used as the active layer in the above-described embodiments, a bulk structure may be used.

【0024】さらに活性回折格子の反射率と受動回折格
子の反射率とを互いに相異させる方法として格子溝の深
さを変えたが、勿論、光閉込層の材料組成を供えて受動
領域と活性領域の等価屈折率negを互いに相異させるこ
とによって受動領域の反射率を相対的に高くすることも
可能である。この場合、例えば受動領域の光閉込層の材
料として例えばGa x In 1-xAs y 1-y (x=0.5 、
y =0.9)を用い、活性領域の光閉込層の材料として例え
ばGaxIn 1-x As y 1-y (x=0.24、y =0.48) を
用いることができる。この場合、格子ピッチ及び格子溝
の深さを同一に設定し、光閉込層の材料組成を変えるだ
けで、活性領域及び受動領域の反射率を互いに相異させ
ることができる。
Further, the depth of the grating groove was changed as a method of making the reflectance of the active diffraction grating and the reflectance of the passive diffraction grating different from each other. It is also possible to make the reflectance of the passive region relatively high by making the equivalent refractive indices n eg of the active regions different from each other. In this case, for example, as a material of the optical confinement layer in the passive region, for example, Ga x In 1-x As y P 1-y (x = 0.5,
y = 0.9) and, for example, GaxIn 1-x As y P 1-y (x = 0.24, y = 0.48) can be used as the material of the light confinement layer in the active region. In this case, the reflectances of the active region and the passive region can be made different from each other only by setting the grating pitch and the depth of the grating groove to be the same and changing the material composition of the light confinement layer.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、活
性回折格子の反射率と受動回折格子の反射率を互いに相
異させるだけで、受動領域を高反射率の反射器として機
能させることができ、活性層を含む導波路構造を受動反
射器として作動させることができる。この結果、製造工
程において、一部の活性層を除去したり、伝播定数を整
合させるための処理が不要になり、製造誤差の影響を受
けにくく、生産性に優れ安定した単一モード動作するこ
とができる分布反射型半導体レーザを実現することがで
きる。
As described above, according to the present invention, the passive region functions as a high-reflectance reflector simply by making the reflectance of the active diffraction grating and the reflectance of the passive diffraction grating different from each other. The waveguide structure including the active layer can be operated as a passive reflector. As a result, in the manufacturing process, it is not necessary to remove a part of the active layer or to adjust the propagation constants, and it is not easily affected by manufacturing error, and it has excellent productivity and stable single mode operation. It is possible to realize a distributed reflection type semiconductor laser capable of achieving the above.

【0026】また、受動回折格子の格子溝の深さを活性
回折格子の格子溝の深さよりも深くするだけで、受動領
域を高反射率の反射器として作動させることができる。
この結果、活性回折格子と受動回折格子とを活性層上に
一体的に形成でき、特に生産に優れ製造誤差の影響を受
けにくい分布反射型半導体レーザを実現することができ
る。
The passive region can be operated as a reflector having a high reflectance simply by making the depth of the grating groove of the passive diffraction grating deeper than the depth of the grating groove of the active diffraction grating.
As a result, the active diffraction grating and the passive diffraction grating can be integrally formed on the active layer, and it is possible to realize a distributed Bragg reflector semiconductor laser which is particularly excellent in production and less susceptible to manufacturing errors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による分布反射型半導体レーザの一例の
構成を示す線図的断面図である。
FIG. 1 is a diagrammatic sectional view showing a configuration of an example of a distributed Bragg reflector semiconductor laser according to the present invention.

【図2】分布反射器の一連の製造プロセスを示す線図的
断面図である。
FIG. 2 is a schematic sectional view showing a series of manufacturing processes of a distributed reflector.

【図3】正規化受動導波路損失と電力反射率との関係の
シュミレーション結果を示すグラフである。
FIG. 3 is a graph showing a simulation result of a relationship between normalized passive waveguide loss and power reflectivity.

【図4】本発明による半導体レーザの発振諸特性のシュ
ミレーション結果を示すグラフである。
FIG. 4 is a graph showing a simulation result of various oscillation characteristics of the semiconductor laser according to the present invention.

【図5】実際に作製した半導体レーザの発振特性の実験
結果を示すグラフである。
FIG. 5 is a graph showing an experimental result of oscillation characteristics of an actually manufactured semiconductor laser.

【図6】図6は従来の分布帰還型半導体レーザ及び分布
反射型半導体レーザの構成を模式的に示す図である。
FIG. 6 is a diagram schematically showing configurations of a conventional distributed feedback semiconductor laser and distributed reflection semiconductor laser.

【符号の説明】[Explanation of symbols]

20 半導体基板 21 バッファ層 22 活性層 23 光閉込層 24 位相シフト 25 クラッド層 26a, 26b 電極 20 Semiconductor substrate 21 Buffer layer 22 Active layer 23 Optical confinement layer 24 Phase shift 25 Cladding layer 26a, 26b Electrode

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板と、この半導体基
板上に形成した活性層と、この活性層上に互いに一体的
に形成され、反射率が互いに相異する第1及び第2の回
折格子領域と、反射率の低い第1の回折格子領域及びこ
れに隣接する活性層の部分にだけ電流を注入する電極領
域とを具え、 前記第1の回折格子領域及びこれと隣接する活性層の部
分が光利得を有する活性領域として機能し、反射率の高
い第2の回折格子領域及びこれと隣接する活性層の部分
が活性領域で発生した光に対して受動反射器として作用
するように構成したことを特徴とする分布反射型半導体
レーザ。
1. A first-conductivity-type semiconductor substrate, an active layer formed on the semiconductor substrate, and first and second diffraction layers which are integrally formed on the active layer and have different reflectances. A first diffraction grating region having a low reflectance and an electrode region for injecting a current only to a portion of the active layer adjacent to the first diffraction grating region, and the first diffraction grating region and the active layer adjacent to the first diffraction grating region. A portion functions as an active region having optical gain, and the second diffraction grating region having a high reflectance and a portion of the active layer adjacent to the second diffraction grating region act as a passive reflector for light generated in the active region. A distributed reflection type semiconductor laser characterized by the above.
【請求項2】 前記第1及び第2の回折格子領域の格子
溝を互いに等しい格子ピッチで構成すると共に、第2の
回折格子領域の格子溝の深さdp を第1の回折格子領域
の格子溝の深さda よりも深くなるように形成したこと
を特徴とする請求項1に記載の分布反射型半導体レー
ザ。
2. The grating grooves of the first and second diffraction grating regions are formed at the same grating pitch, and the depth d p of the grating grooves of the second diffraction grating region is set to that of the first diffraction grating region. 2. The distributed Bragg reflector semiconductor laser according to claim 1, wherein the distributed trench semiconductor laser is formed so as to be deeper than the depth d a of the lattice groove.
【請求項3】 前記第2回折格子領域の格子溝の深さd
p を、第1回折格子の格子溝の深さd a に対して、dp
≧1.5da となるように設定したことを特徴とする請求
項2に記載の分布反射型半導体レーザ。
3. The depth d of the grating groove in the second diffraction grating region
p is d p with respect to the depth d a of the grating groove of the first diffraction grating
3. The distributed Bragg reflector semiconductor laser according to claim 2, wherein the distributed reflection semiconductor laser is set so that ≧ 1.5d a .
【請求項4】 前記受動領域の導波路損失係数及び光結
合係数をそれぞれαp 及びKp とし、αp /Kp を正規
化受動導波路損失とした場合に、αp /Kp が0.25以下
となるように設定したことを特徴とする請求項1から3
までのいずれか1項に記載の分布反射型半導体レーザ。
4. When the waveguide loss coefficient and the optical coupling coefficient of the passive region are α p and K p , respectively, and α p / K p is a normalized passive waveguide loss, α p / K p is 0.25. The following settings are made:
The distributed Bragg reflector semiconductor laser according to any one of items 1 to 7.
【請求項5】 一導電型の半導体基板と、この半導体基
板上に形成した活性層と、この活性層の一部分上に形成
され、表面に光の伝播方向に沿って所定のピッチの格子
溝が形成されている第1の光閉込層と、前記活性層の前
記部分と隣接する部分に前記第1の光閉込層と一体的に
形成され、表面に前記格子溝のピッチと同一のピッチで
前記格子溝よりも深い格子溝が形成されている第2の光
閉込層と、これら第1及び第2の光閉込層上に形成さ
れ、前記第1及び第2の光閉込層の屈折率よりも小さい
屈折率を有する反対導電型のクラッド層とを有し、前記
第1の光閉込層と、この第1の光閉込層と隣接する前記
活性層及びクラッド層の部分とが活性領域を構成し、前
記第2の光閉込層と、この第2の光閉込層と隣接する前
記活性層及びクラッド層の部分とが受動領域を構成し、
さらに前記活性領域にだけ電流を注入するように前記半
導体基板及びクラッド層の表面に形成した第1及び第2
の電極を有し、前記活性領域で発生した光に対して前記
受動領域が高反射率の反射器として作用するように構成
したことを特徴とする分布反射型半導体レーザ。
5. A semiconductor substrate of one conductivity type, an active layer formed on the semiconductor substrate, and a grating groove formed on a part of the active layer and having a predetermined pitch along the light propagation direction. The formed first light confinement layer is integrally formed with the first light confinement layer in a portion adjacent to the portion of the active layer, and has the same pitch as the pitch of the lattice grooves on the surface. A second optical confinement layer in which a lattice groove deeper than the lattice groove is formed, and the first and second optical confinement layers formed on the first and second optical confinement layers. A cladding layer of opposite conductivity type having a refractive index smaller than that of the first optical confinement layer, and a portion of the active layer and the cladding layer adjacent to the first optical confinement layer. Form an active region, the second optical confinement layer, and the active layer and the clad adjacent to the second optical confinement layer. The part of the layer constitutes the passive area,
Further, the first and second layers formed on the surfaces of the semiconductor substrate and the clad layer so as to inject current only into the active region.
The distributed reflection type semiconductor laser, wherein the passive region acts as a reflector having a high reflectance with respect to the light generated in the active region.
【請求項6】 前記第2光閉込層の格子溝の深さが、第
1光閉込層の格子溝の深さの約1.5 倍以上になるように
設定したことを特徴とする請求項5に記載の分布反射型
半導体レーザ。
6. The depth of the lattice groove of the second optical confinement layer is set to be about 1.5 times or more the depth of the lattice groove of the first optical confinement layer. 5. The distributed Bragg reflector semiconductor laser according to item 5.
【請求項7】 前記活性領域と受動領域との間に、活性
領域で発生した光の位相を制御する位相シフトを形成し
たことを特徴とする請求項5に記載の分布反射型半導体
レーザ。
7. The distributed Bragg reflector semiconductor laser according to claim 5, wherein a phase shift for controlling a phase of light generated in the active region is formed between the active region and the passive region.
【請求項8】 前記活性層を、バンドギャップが互いに
相異する2種の半導体層を交互に積層した多重量子井戸
構造体で構成したことを特徴とする請求項5から7まで
のいずれか1項に記載の分布反射型半導体レーザ。
8. The multi-quantum well structure according to claim 5, wherein the active layer is formed by alternately stacking two kinds of semiconductor layers having different band gaps. A distributed Bragg reflector semiconductor laser according to item.
【請求項9】 前記活性領域の、受動領域と反対側の端
面に無反射コートを形成したことを特徴とする請求項5
から8までのいずれか1項に記載の分布反射型半導体レ
ーザ。
9. The non-reflective coating is formed on an end surface of the active region opposite to the passive region.
9. The distributed Bragg reflector semiconductor laser according to any one of 1 to 8.
JP23080891A 1991-08-19 1991-08-19 Distributed reflection type semiconductor laser Expired - Lifetime JPH0770785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23080891A JPH0770785B2 (en) 1991-08-19 1991-08-19 Distributed reflection type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23080891A JPH0770785B2 (en) 1991-08-19 1991-08-19 Distributed reflection type semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0548214A true JPH0548214A (en) 1993-02-26
JPH0770785B2 JPH0770785B2 (en) 1995-07-31

Family

ID=16913602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23080891A Expired - Lifetime JPH0770785B2 (en) 1991-08-19 1991-08-19 Distributed reflection type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0770785B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135008A (en) * 2009-12-25 2011-07-07 Fujitsu Ltd Optical semiconductor device
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser
CN104993375A (en) * 2015-06-24 2015-10-21 华中科技大学 Distributed feedback laser with short cavity length
JP2016072608A (en) * 2014-09-30 2016-05-09 三菱電機株式会社 Semiconductor laser and optical integrated light source
US9509121B2 (en) 2013-02-18 2016-11-29 Furukawa Electric Co., Ltd. Semiconductor laser element, integrated semiconductor laser element, and method for producing semiconductor laser element
JP2019012769A (en) * 2017-06-30 2019-01-24 日本電信電話株式会社 Semiconductor laser
JP2019091806A (en) * 2017-11-15 2019-06-13 日本電信電話株式会社 Semiconductor laser
WO2024107267A1 (en) * 2022-11-20 2024-05-23 Macom Technology Solutions Holdings, Inc. Semiconductor laser with metal pull-back dbr grating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser
JP2011135008A (en) * 2009-12-25 2011-07-07 Fujitsu Ltd Optical semiconductor device
US9509121B2 (en) 2013-02-18 2016-11-29 Furukawa Electric Co., Ltd. Semiconductor laser element, integrated semiconductor laser element, and method for producing semiconductor laser element
JP2016072608A (en) * 2014-09-30 2016-05-09 三菱電機株式会社 Semiconductor laser and optical integrated light source
US9762029B2 (en) 2014-09-30 2017-09-12 Mitsubishi Electric Corporation Semiconductor laser and optical integrated light source including the same
CN104993375A (en) * 2015-06-24 2015-10-21 华中科技大学 Distributed feedback laser with short cavity length
JP2019012769A (en) * 2017-06-30 2019-01-24 日本電信電話株式会社 Semiconductor laser
JP2019091806A (en) * 2017-11-15 2019-06-13 日本電信電話株式会社 Semiconductor laser
WO2024107267A1 (en) * 2022-11-20 2024-05-23 Macom Technology Solutions Holdings, Inc. Semiconductor laser with metal pull-back dbr grating

Also Published As

Publication number Publication date
JPH0770785B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US8705583B2 (en) Semiconductor laser
JP4643794B2 (en) Semiconductor light emitting device
US8319229B2 (en) Optical semiconductor device and method for manufacturing the same
EP0125608B1 (en) Single longitudinal mode semiconductor laser
JP2746326B2 (en) Semiconductor optical device
US6850550B2 (en) Complex coupling MQW semiconductor laser
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
JP5929571B2 (en) Semiconductor laser
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JP5310533B2 (en) Optical semiconductor device
US20040013144A1 (en) Complex-coupled distributed feedback semiconductor laser device
JPH0548214A (en) Distributed reflection type semiconductor laser
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
US6925103B2 (en) Gain-coupled DFB laser diode
CN107623250B (en) Short-cavity long-surface emitting laser and manufacturing method thereof
JP2002111125A (en) Distributed feedback semiconductor laser
JP5163355B2 (en) Semiconductor laser device
JP4804618B2 (en) Semiconductor laser
JP2950297B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
US7050472B2 (en) Semiconductor laser device and method for manufacturing the same
US12027818B2 (en) Semiconductor laser
WO2022259448A1 (en) Semiconductor laser and method for making same
US20210126430A1 (en) Semiconductor Laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPS60165782A (en) Semiconductor laser

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term