JP3700245B2 - Phase-shifted distributed feedback semiconductor laser - Google Patents

Phase-shifted distributed feedback semiconductor laser Download PDF

Info

Publication number
JP3700245B2
JP3700245B2 JP11866096A JP11866096A JP3700245B2 JP 3700245 B2 JP3700245 B2 JP 3700245B2 JP 11866096 A JP11866096 A JP 11866096A JP 11866096 A JP11866096 A JP 11866096A JP 3700245 B2 JP3700245 B2 JP 3700245B2
Authority
JP
Japan
Prior art keywords
diffraction grating
semiconductor laser
layer
distributed feedback
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11866096A
Other languages
Japanese (ja)
Other versions
JPH09307179A (en
Inventor
雅博 青木
厚 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11866096A priority Critical patent/JP3700245B2/en
Publication of JPH09307179A publication Critical patent/JPH09307179A/en
Application granted granted Critical
Publication of JP3700245B2 publication Critical patent/JP3700245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体レーザ素子の1種である分布帰還型半導体レーザに係わり、特に光通信用モジュール、光通信システム、光ネットワークに用いる好適な分布帰還型半導体レーザに関する。
【0002】
【従来の技術】
現在、幹線系のみならず加入者系の通信網の光化(光を通信媒体とする所謂光通信システムの導入)が急がれている。高速変調時にも安定な単一縦モード動作が実現可能な分布帰還型半導体レーザは、このような光通信システムの基本送信デバイスとして実用化が進んでいる。分布帰還型(又は、DFB型:Distributed Feedback-type)と呼ばれる活性層に沿って回折格子(グレーティング)が形成された半導体レーザ素子は、例えば特開昭63−122188号公報に記載されている。分布帰還型半導体レーザのうち、位相シフト型の回折格子を備えたλ/4位相シフト分布帰還型半導体レーザは、安定な単一縦モード動作を再現良く実現する上で特に好ましく、光通信の基本送信デバイスのこの主流構造になるものと見込まれる。
【0003】
通常の分布帰還型レーザには、レーザ光を発振するための共振器長方向(レーザ光出射端面からこれに対向する他端面へ延伸する方向)に沿って形成された周期的な凹凸からなる回折格子が設けられている。これに対し、λ/4位相シフト分布帰還型半導体レーザの回折格子は、四分の一波長(λ/4)の位相シフトを発生させる位相シフト(Phase shift)領域をレーザ共振器の中央に形成したλ/4位相シフト型回折格子と呼ばれる構造を有する。その特徴は、共振器の両端面からLなる周期(隣接し合う凸部の頂上間又は凹部の底間の距離)とHなる振幅(凸部頂上と凹部の底との高低差)で繰り返さえて形成された凹凸の規則的なパターンが、共振器長の略中央にて凹部間に形成された高さH/2程度、幅L/2の凸部、又は、凸部間に形成された深さH/2程度、幅L/2の凹部により断たれた構成にある。この凹凸パターンの断続部により、活性層から発生した波長λの光の位相をλ/4分シフトさせてレーザ発振を行う。
【0004】
λ/4位相シフト分布帰還型半導体レーザおよびその作製法は、例えばアプライドフィジックスレター、55巻5号(1989年7月)、415−417頁(Applied Physics Letters, Vol.55, No.5, July 1989, pages 415-417)に開示されている。
【0005】
【発明が解決しようとする課題】
上述のλ/4位相シフト型分布帰還型半導体レーザを作製するにあたり、その回折格子の位相シフト領域(凹凸パターンの断続部)の幅を精度よく形成することが要請される。しかし、λ/4位相シフト型回折格子を高い歩留まりで大量生産作製する基本技術は未だ確立されていない。従って、λ/4位相シフト分布帰還型半導体レーザは広く実用化されるには至っていないのが現状である。
【0006】
本発明は、従来の位相シフト型分布帰還型半導体レーザに比べて簡易な作製法で且つ再現性良く(高い歩留まりで)作製できる位相シフト型分布帰還半導体レーザの素子構造、およびその作製方法を提供することを目的とする。また、これらの光素子を搭載した低コストで高性能動作可能な光モジュール等の光学装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、レーザ共振器内部に回折格子が形成されていない領域を少なくとも一ケ所設けて、この領域での光波の伝搬定数を回折格子が形成された領域と異なる値に設定した構造(以下、部分回折格子構造)を採用し、これら二領域の伝搬定数の差Δβと回折格子が形成さない領域の長さ(共振器方向の長さ)の和Lsとが数式1にしめす関係を満たすように半導体レーザ素子を構成した。
【0008】
0.4π<Δβ・Ls<0.6π …(数式1)
このように半導体レーザ素子を構成することで、従来より簡易な手法で等価的なλ/4位相シフト型回折格子を有する分布帰還型半導体レーザを実現した。要するに、本発明の半導体レーザ素子は活性層と呼ばれる第1の半導体層と、これに接合される活性層より屈折率の小さい(光吸収の小さい)第2の半導体層(例えば、光ガイド層、クラッド層、バッファ層、又はこれらを組み合わせて積層したもの)とでレーザ発振のための共振器を構成し、第1の半導体層で発生した光が到達する位置において共振器長方向に回折格子を間欠的に形成すれば良いため、従来のような凹凸パターンの断続部の厳密な寸法出しの作業を回避できるのである。勿論、回折格子の間欠的な形成(部分回折格子構造の形成)において、(1)共振器の両端面部には回折格子を形成すること、(2)回折格子間を隔てる間隙領域(回折格子非形成領域)は1ヶ所でも複数箇所でも構わないが、その共振器長方向の長さ(複数箇所なら、長さの和)が上述の数式1の関係を満たすこと、の2点に配慮する必要はある。部分回折格子構造をバッファ層またはクラッド層のどちらか一方の中に形成すると、位相シフト量の制御性はさらに向上した。
【0009】
図1の半導体レーザ素子の共振器長方向の断面図を参照して、本発明の半導体レーザ素子の設計の一例を説明する。図のように波長1.3μm帯の分布帰還型半導体レーザにおいて、部分的に形成された埋め込み型回折格子13を有する層構造(以下、回折格子供給層)を実現する。「回折格子供給層」の由来は、実施例1で後述するようにクラッド層主面上にこれと組成の異なる「半導体層」を形成し、この半導体層に凹凸のパターンを形成して回折格子としたプロセス上の特徴にある。長さLcの共振器長の内、埋め込み型回折格子が存在する領域18と存在しない領域19とでは光波の伝搬定数が僅かに異なる。したがって図1の素子構造では、この伝搬定数差Δβと回折格子の存在しない領域19の長さLsとの積Δβ・Lsが光波に対する位相シフト量となる。この値がπ/2となるようにLsを調整すれば等価的なλ/4シフト型の回折格子が得られる。また、規格化光結合係数は光結合係数κを用いてκ(Lc−Ls)で与えられる。なお、κは具体的には回折格子の単位長さ(ここでは共振器長方向)の反射率(単位:m~1)を示す。
【0010】
図2は図1の場合において、位相シフト量π/2を得るためのLs値及び規格化光結合係数κ(Lc−Ls)値を回折格子供給層13のInGaAsP四元の組成波長に対して計算した結果である。組成波長とは、In、Ga、As及びPの4種の元素から組成される化合物半導体の組成比によって決まる値であり、波長の値は禁制帯幅に対応する物理量である。Lsとしては約60〜100μm程度で位相シフト量π/2が得られることが分かる。この長さは通常のレーザの共振器長400μmの1/7〜1/4と少ない割合であるため、規格化光結合係数κ(Lc−Ls)にも大きな減少はなく、2.5以上6以下が実現できることが分かる。一方、位相シフト量は回折格子のデューティー比にほぼ比例して変化する。通常の場合デューティー比は0.4〜0.6の範囲に設定できるため位相シフト量は0.4π〜0.6π程度に分布するが、この範囲であれば分布帰還型レーザの単一モード性に悪影響はないことが分かっている。
【0011】
ところで、上述の数式1に示される伝搬定数βは媒質の有効屈折率neffと媒質を導波する光の波長λにより数式2のように求められる。
【0012】
β=2πneff/λ …(数式2)
数式2から、本発明の半導体レーザ素子において伝搬定数βは、これを構成する半導体材料に依存することが窺える。例えば、波長λは第1の半導体層における活性層(多重量子井戸構造の場合は井戸層)の材料で決まる。因みに有効屈折率neffの媒質を伝播する光の速度vは、数式3が示すようにneffによって決まる(cは光速度:2.99792458×108m/s)。
【0013】
v=c/neff …(数式3)
本発明の半導体レーザ素子では伝搬定数の異なる回折格子形成領域と回折格子非形成領域との間で光の速度を変調してレーザ発振の位相シフトを行うことは、数式3から明らかである。
【0014】
さて、図1に示す埋め込み型の回折格子13を用いた素子構成では、回折格子形成領域と回折格子非形成領域との伝搬定数差Δβは回折格子供給層13の厚み及び屈折率(組成に依存)により制御される。現在、有機金属気相成長法や分子線結晶成長法など結晶成長での膜厚や組成の制御性が極めて高い手法が確立されおり、これらを本発明の半導体レーザ素子の作製に適用することで位相シフト量の制御性が非常に高い位相シフト型分布帰還型半導体レーザが実現できる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を示した実施例1乃至3とこれらに関連する図3乃至5を用い、本発明に関しさらに具体的に説明する。
【0016】
<実施例1>
図3は本発明を用いて波長1.3μm帯の分布帰還型半導体レーザを作製した例である。図3(A)に示すように、n型(100)InP半導体基板101上に有機金属気相成長法によりn型InPバッファ層1.0μm102、n型InGaAsP下側ガイド層(組成波長1.10μm)0.05μmと5周期の多重量子井戸層(6.0nm厚の1%圧縮歪InGaAsP(組成波長1.37μm)井戸層、10nm厚のInGaAsP(組成波長1.10μm)障壁層)とInGaAsP(組成波長1.10μm)上側光ガイド層0.05μmとからなる活性層103、第一p型InPクラッド層0.1μm104、アンドープInGaAsP(組成波長1.15μm)回折格子供給層0.05μm105、p型InPキャップ層0.01μm106を順次形成する。多重量子井戸活性層103の発光波長は約1.31μmである。
【0017】
次にフォトリソグラフィーと選択的ウェットエッチングによりキャップ層106および回折格子供給層105の一部(共振器長の略中央)を図3(B)に示すように除去する。ここでエッチングにより形成されるストライプ方向は[01−1]とし、除去領域幅は80μmである。続いて、図3(C)に示すように干渉露光法とウェットエッチングを用いて均一周期241nmの回折格子を基板上に積層された半導体層の上面全域に形成する。回折格子の深さは約80nmとし、回折格子が回折格子供給層105を貫通し第一p型InPクラッド層104に達するようにする。
【0018】
続いて、有機金属気相成長法により第二p型InPクラッド層1.7μm108、高濃度p型InGaAsキャップ層0.2μm109を順次形成する。この工程で、InPクラッド層104に形成された凹部は、その上面に新たにInPクラッド層108を再成長させることで埋められ、その再成長界面の痕跡は殆ど消える。従って、InPクラッド層104と108は実質上一体に形成され、再成長界面によるクラッド層内の光導波への影響は殆どない。
【0019】
この結果、図3(D)に示すように回折格子がクラッド層内部に埋め込まれ、共振器中央部80μmに渡って回折格子が形成されていない構造の分布帰還型レーザ構造が形成される。 横幅約1.5μmの埋め込み型レーザ構造または横幅約2.2μmのリッジ導波路型レーザ構造に加工形成した後、上部電極110、下部電極111を形成する。図3(E)に示すように劈開工程により素子長400μmの素子に切り出した後、素子の両端面には反射率約1%の低反射膜112を例えばスパッタリング法により形成する。
【0020】
作製した1.3μm帯の分布帰還型半導体レーザ素子は室温、連続条件においてしきい値電流10mA、発振効率0.45W/Aであった。また、簡易な作製を反映して、85℃の高温においてもしきい値電流25mA、発振効率0.30W/Aと良好な発振特性を得た。発振しきい値以下に順バイアスを印加した場合の、スペクトル形状を図3(F)に示した。λ/4シフト型の回折格子を反映してストップバンドの中央に発振主モードが現われる典型的なスペクトルが得られた。この結果、85℃の高温においても副モード抑圧比40dB以上の安定な単一モード動作を95%以上の高い作製歩留まりで実現した。本構造は1.3μm帯のみならず1.55μm帯や他の波長帯の分布帰還型半導体レーザにも適用可能である。
【0021】
<実施例2>
図4は本発明による位相シフト領域を複数有する1.3μm帯の分布帰還型半導体レーザを作製した例(共振器長方向の断面図)である。回折格子の形成された領域が異なること以外は構造は実施例1と同じである。図4に示すように、レーザ共振器の内部2ケ所で回折格子供給層は除去されており、それぞれの領域での位相シフト量は約π/2である。作製した素子において実施例1の特性の他、共振器内の光強度分布が実施の形態1の場合に比べてより平坦化されるため、40mW以上の高出力動作時にも単一モード動作に優れた分布帰還型半導体レーザが実現できた。本構造は1.3μm帯のみならず1.55μm帯や他の波長帯の分布帰還型半導体レーザにも適用可能である。
【0022】
<実施例3>
本実施例では、実施例1または2で説明した分布帰還型半導体レーザを光学装置に応用した例について説明する。図5は、分布帰還型半導体レーザ201をヒートシンク202上に実装した後、光学レンズ203、後端面光出力モニタ用のフォトダイオード204と光ファイバ205とを一体化したモジュールの構造図である。室温、連続条件においてしきい値電流10mA、発振効率0.20W/Aであった。また、簡易な作製を反映して、85℃の高温においてもしきい値電流25mA、発振効率0.13W/Aと良好な発振特性を得た。また、85℃の高温においても副モード抑圧比40dB以上の安定な単一モード動作を95%以上の高い作製歩留まりで実現した。本レーザでは規格化光結合係数を2.5以上と高く設定できるため、モジュール実装での最大の課題であるファイバ端からの戻り光による発振特性の劣化は全く起こらなかった。
【0023】
【発明の効果】
本発明に係る半導体発光素子よれば、安定な単一モード可能な高出力分布帰還型半導体レーザやこれを搭載した光モジュールを極めて容易な手法で実現できる。本発明を用いれば、素子性能、歩留まりが飛躍的に向上するだけでなく、この素子を適用した光通信システムの低価格化、大容量化、長距離化を容易に実現できる。
【図面の簡単な説明】
【図1】本発明による半導体レーザ素子を説明するための共振器長方向の断面図である。
【図2】回折格子供給層(回折格子を形成する半導体材料)の組成波長と位相シフト領域長及び規格化光結合係数の関係を示す図である。
【図3】本発明の実施例1を説明するための図であり、(A)〜(E)は半導体レーザ素子の製造工程を示す流れ図、(F)は作製されたレーザ素子の発振光のスペクトルを示す図である。
【図4】本発明の実施例2に記載の半導体レーザ素子の共振器長方向の断面図である。
【図5】本発明の実施例3に記載の光モジュールの断面図である。
【符号の説明】
11…n型(100)InP半導体基板、12…活性層、13…回折格子供給層、14…クラッド層、15…低反射膜、16…上部電極、17…下部電極、101…n型(100)InP半導体基板、102…バッファ層、103…圧縮歪多重量子井戸活性層、104…第一クラッド層、105…回折格子供給層、106…キャップ層、107…回折格子、108…第二クラッド層、109…キャップ層、110…上部電極、111…下部電極、112…低反射膜、201…分布帰還型半導体レーザ、202…ヒートシンク、203…光学レンズ、204…モニタフォトダイオード、205…光ファイバ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distributed feedback semiconductor laser which is a kind of semiconductor laser element, and more particularly to a distributed feedback semiconductor laser suitable for use in an optical communication module, an optical communication system, and an optical network.
[0002]
[Prior art]
At present, there is an urgent need to opticalize not only trunk lines but also subscriber networks (introduction of so-called optical communication systems using light as a communication medium). Distributed feedback semiconductor lasers capable of realizing stable single longitudinal mode operation even during high-speed modulation have been put into practical use as basic transmission devices for such optical communication systems. A semiconductor laser device in which a diffraction grating (grating) is formed along an active layer called a distributed feedback type (or DFB type) is described in, for example, Japanese Patent Laid-Open No. 63-122188. Among the distributed feedback semiconductor lasers, the λ / 4 phase shift distributed feedback semiconductor laser having a phase shift type diffraction grating is particularly preferable for realizing a stable single longitudinal mode operation with good reproducibility. This mainstream structure of the transmitting device is expected.
[0003]
A normal distributed feedback laser has a diffraction pattern consisting of periodic irregularities formed along the cavity length direction for oscillating laser light (the direction extending from the laser light emitting end face to the other end face facing it). A grid is provided. In contrast, the diffraction grating of a λ / 4 phase shift distributed feedback semiconductor laser forms a phase shift region that generates a phase shift of a quarter wavelength (λ / 4) in the center of the laser resonator. It has a structure called a λ / 4 phase shift type diffraction grating. Its features are repeated from both ends of the resonator with a period of L (distance between the tops of adjacent convex parts or the bottom of the concave part) and an amplitude of H (height difference between the top of the convex part and the bottom of the concave part). The regular pattern of irregularities formed is a convex part having a height of about H / 2, a width L / 2 formed between the concave parts at the approximate center of the resonator length, or a depth formed between the convex parts. It is the structure cut | disconnected by the recessed part of about width H / 2 and width L / 2. Laser oscillation is performed by shifting the phase of light of wavelength λ generated from the active layer by λ / 4 by the intermittent portions of the uneven pattern.
[0004]
For example, Applied Physics Letter, Vol. 55, No. 5 (July 1989), pp. 415-417 (Applied Physics Letters, Vol. 55, No. 5, July). 1989, pages 415-417).
[0005]
[Problems to be solved by the invention]
In fabricating the above-mentioned λ / 4 phase shift type distributed feedback semiconductor laser, it is required to accurately form the width of the phase shift region (intermittent portion of the concavo-convex pattern) of the diffraction grating. However, the basic technology for mass production of λ / 4 phase shift type diffraction gratings with high yield has not been established yet. Therefore, at present, the λ / 4 phase shift distributed feedback semiconductor laser has not been widely put into practical use.
[0006]
The present invention provides an element structure of a phase-shifted distributed feedback semiconductor laser that can be fabricated with a simpler fabrication method and better reproducibility (with higher yield) than conventional phase-shifted distributed feedback semiconductor lasers, and a fabrication method therefor The purpose is to do. Another object of the present invention is to provide an optical device such as an optical module capable of operating at high cost at a low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have provided at least one region in which no diffraction grating is formed in the laser resonator, and the propagation constant of the light wave in this region is a region in which the diffraction grating is formed. A structure (hereinafter referred to as a partial diffraction grating structure) set to a value different from the above is adopted, and the sum Ls of the difference Δβ between the propagation constants of these two regions and the length of the region not formed by the diffraction grating (length in the resonator direction) The semiconductor laser device was configured so as to satisfy the relationship expressed by Equation 1.
[0008]
0.4π <Δβ · Ls <0.6π (Formula 1)
By configuring the semiconductor laser element in this way, a distributed feedback semiconductor laser having an equivalent λ / 4 phase shift type diffraction grating was realized by a simpler method than before. In short, the semiconductor laser device of the present invention includes a first semiconductor layer called an active layer, and a second semiconductor layer (for example, a light guide layer, which has a refractive index smaller than that of the active layer bonded to the active layer). A resonator for laser oscillation is formed with a cladding layer, a buffer layer, or a combination of these layers), and a diffraction grating is formed in the resonator length direction at the position where the light generated in the first semiconductor layer reaches. Since it suffices to form it intermittently, it is possible to avoid the strict dimensioning operation of the intermittent portion of the concavo-convex pattern as in the prior art. Of course, in intermittent formation of the diffraction grating (formation of the partial diffraction grating structure), (1) a diffraction grating is formed on both end faces of the resonator, and (2) a gap region that separates the diffraction gratings (diffraction grating non-diffraction). The formation region) may be one place or a plurality of places, but it is necessary to consider two points that the length in the resonator length direction (the sum of the lengths if there are a plurality of places) satisfies the relationship of the above-mentioned formula 1. There is. When the partial diffraction grating structure is formed in either the buffer layer or the cladding layer, the controllability of the phase shift amount is further improved.
[0009]
An example of the design of the semiconductor laser device of the present invention will be described with reference to a sectional view of the semiconductor laser device in the cavity length direction of FIG. As shown in the figure, a layered structure (hereinafter referred to as a diffraction grating supply layer) having a partially formed buried diffraction grating 13 is realized in a distributed feedback semiconductor laser having a wavelength of 1.3 μm. The origin of the “diffraction grating supply layer” is that a “semiconductor layer” having a different composition from that of the cladding layer is formed on the principal surface of the cladding layer as will be described later in Example 1, and an uneven pattern is formed on this semiconductor layer. It is in process characteristics. Of the resonator length of length Lc, the propagation constant of the light wave is slightly different between the region 18 where the embedded diffraction grating exists and the region 19 where the embedded diffraction grating does not exist. Therefore, in the element structure of FIG. 1, the product Δβ · Ls of the propagation constant difference Δβ and the length Ls of the region 19 where the diffraction grating does not exist is a phase shift amount with respect to the light wave. By adjusting Ls so that this value becomes π / 2, an equivalent λ / 4 shift type diffraction grating can be obtained. The normalized optical coupling coefficient is given by κ (Lc−Ls) using the optical coupling coefficient κ. Incidentally, kappa is the reflectivity of the unit length of the specific diffraction grating (here the resonator length direction) (unit: m ~ 1) shows a.
[0010]
2 shows the Ls value and the normalized optical coupling coefficient κ (Lc−Ls) value for obtaining the phase shift amount π / 2 with respect to the composition wavelength of the InGaAsP quaternary of the diffraction grating supply layer 13 in the case of FIG. It is the result of calculation. The composition wavelength is a value determined by the composition ratio of the compound semiconductor composed of four elements of In, Ga, As, and P, and the wavelength value is a physical quantity corresponding to the forbidden band width. It can be seen that the phase shift amount π / 2 can be obtained when Ls is about 60 to 100 μm. Since this length is as small as 1/7 to 1/4 of the cavity length of a normal laser of 400 μm, the normalized optical coupling coefficient κ (Lc−Ls) is not significantly reduced and is 2.5 or more and 6 It can be seen that the following can be realized. On the other hand, the phase shift amount changes substantially in proportion to the duty ratio of the diffraction grating. Normally, the duty ratio can be set in the range of 0.4 to 0.6, so the phase shift amount is distributed in the range of about 0.4π to 0.6π. However, within this range, there is no adverse effect on the single mode characteristics of the distributed feedback laser. I know it.
[0011]
By the way, the propagation constant β shown in the above Equation 1 is obtained as Equation 2 by the effective refractive index n eff of the medium and the wavelength λ of the light guided through the medium.
[0012]
β = 2πn eff / λ (Formula 2)
From Equation 2, it can be seen that the propagation constant β in the semiconductor laser device of the present invention depends on the semiconductor material constituting the propagation constant β. For example, the wavelength λ is determined by the material of the active layer (well layer in the case of a multiple quantum well structure) in the first semiconductor layer. Incidentally, the speed v of light propagating through a medium having an effective refractive index n eff is determined by n eff (c is the speed of light: 2.99792458 × 10 8 m / s) as shown in Equation 3.
[0013]
v = c / n eff (Equation 3)
In the semiconductor laser device of the present invention, it is clear from Equation 3 that the phase of laser oscillation is modulated by modulating the speed of light between the diffraction grating forming region and the diffraction grating non-forming region having different propagation constants.
[0014]
In the element configuration using the embedded diffraction grating 13 shown in FIG. 1, the propagation constant difference Δβ between the diffraction grating formation region and the diffraction grating non-formation region depends on the thickness and refractive index (depending on the composition) of the diffraction grating supply layer 13. ). Currently, methods with extremely high controllability of film thickness and composition in crystal growth, such as metal organic vapor phase epitaxy and molecular beam crystal growth, have been established, and these can be applied to the fabrication of the semiconductor laser device of the present invention. A phase shift type distributed feedback semiconductor laser having a very high controllability of the phase shift amount can be realized.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to Examples 1 to 3 showing the embodiment of the present invention and FIGS. 3 to 5 related thereto.
[0016]
<Example 1>
FIG. 3 shows an example in which a distributed feedback semiconductor laser having a wavelength of 1.3 μm is manufactured using the present invention. As shown in FIG. 3 (A), an n-type InP buffer layer 1.0 μm 102 and an n-type InGaAsP lower guide layer (composition wavelength 1.10 μm) 0.05 on an n-type (100) InP semiconductor substrate 101 by metal organic vapor phase epitaxy. Multi-quantum well layer with μm and 5 periods (6.0 nm thick 1% compressive strain InGaAsP (composition wavelength 1.37 μm well layer, 10 nm thick InGaAsP (composition wavelength 1.10 μm) barrier layer) and InGaAsP (composition wavelength 1.10 μm) upper side An active layer 103 composed of an optical guide layer 0.05 μm, a first p-type InP cladding layer 0.1 μm 104, an undoped InGaAsP (composition wavelength 1.15 μm) diffraction grating supply layer 0.05 μm 105, and a p-type InP cap layer 0.01 μm 106 are sequentially formed. The emission wavelength of the multiple quantum well active layer 103 is about 1.31 μm.
[0017]
Next, parts of the cap layer 106 and the diffraction grating supply layer 105 (substantially the center of the resonator length) are removed by photolithography and selective wet etching as shown in FIG. Here, the stripe direction formed by etching is [01-1], and the width of the removed region is 80 μm. Subsequently, as shown in FIG. 3C, a diffraction grating having a uniform period of 241 nm is formed over the entire upper surface of the semiconductor layer stacked on the substrate by using an interference exposure method and wet etching. The depth of the diffraction grating is about 80 nm so that the diffraction grating penetrates the diffraction grating supply layer 105 and reaches the first p-type InP cladding layer 104.
[0018]
Subsequently, a second p-type InP cladding layer 1.7 μm 108 and a high-concentration p-type InGaAs cap layer 0.2 μm 109 are sequentially formed by metal organic vapor phase epitaxy. In this step, the recess formed in the InP clad layer 104 is filled by newly regrowing the InP clad layer 108 on the upper surface, and the trace of the regrowth interface almost disappears. Therefore, the InP cladding layers 104 and 108 are formed substantially integrally, and there is almost no influence on the optical waveguide in the cladding layer by the regrowth interface.
[0019]
As a result, as shown in FIG. 3D, a distributed feedback laser structure is formed in which the diffraction grating is embedded in the cladding layer and the diffraction grating is not formed over the resonator central portion of 80 μm. After processing into an embedded laser structure having a lateral width of about 1.5 μm or a ridge waveguide laser structure having a lateral width of about 2.2 μm, an upper electrode 110 and a lower electrode 111 are formed. As shown in FIG. 3E, after cutting into an element having an element length of 400 μm by a cleavage process, low reflection films 112 having a reflectance of about 1% are formed on both end faces of the element by, for example, a sputtering method.
[0020]
The manufactured 1.3 μm band distributed feedback semiconductor laser element had a threshold current of 10 mA and an oscillation efficiency of 0.45 W / A at room temperature and in continuous conditions. Reflecting simple fabrication, good oscillation characteristics were obtained with a threshold current of 25 mA and an oscillation efficiency of 0.30 W / A even at a high temperature of 85 ° C. The spectrum shape when forward bias is applied below the oscillation threshold is shown in FIG. Reflecting the λ / 4 shift type diffraction grating, a typical spectrum in which an oscillation main mode appears in the center of the stop band was obtained. As a result, a stable single mode operation with a sub-mode suppression ratio of 40 dB or higher was achieved at a high manufacturing yield of 95% or higher even at a high temperature of 85 ° C. This structure is applicable not only to the 1.3 μm band but also to the distributed feedback semiconductor laser in the 1.55 μm band and other wavelength bands.
[0021]
<Example 2>
FIG. 4 is an example (cross-sectional view in the cavity length direction) of a 1.3 μm band distributed feedback semiconductor laser having a plurality of phase shift regions according to the present invention. The structure is the same as that of Example 1 except that the region where the diffraction grating is formed is different. As shown in FIG. 4, the diffraction grating supply layer is removed at two locations inside the laser resonator, and the phase shift amount in each region is about π / 2. In the manufactured element, in addition to the characteristics of Example 1, the light intensity distribution in the resonator is flattened compared to the case of Embodiment 1, so that it is excellent in single mode operation even at high output operation of 40 mW or more. A distributed feedback semiconductor laser was realized. This structure is applicable not only to the 1.3 μm band but also to the distributed feedback semiconductor laser in the 1.55 μm band and other wavelength bands.
[0022]
<Example 3>
In this embodiment, an example in which the distributed feedback semiconductor laser described in Embodiment 1 or 2 is applied to an optical device will be described. FIG. 5 is a structural diagram of a module in which a distributed feedback semiconductor laser 201 is mounted on a heat sink 202, and then an optical lens 203, a rear end face light output monitoring photodiode 204, and an optical fiber 205 are integrated. The threshold current was 10 mA and the oscillation efficiency was 0.20 W / A under continuous conditions at room temperature. Reflecting simple fabrication, good oscillation characteristics were obtained with a threshold current of 25 mA and an oscillation efficiency of 0.13 W / A even at a high temperature of 85 ° C. In addition, a stable single mode operation with a submode suppression ratio of 40 dB or higher was achieved at a high manufacturing yield of 95% or higher even at a high temperature of 85 ° C. In this laser, since the normalized optical coupling coefficient can be set as high as 2.5 or more, the oscillation characteristics are not degraded at all by the return light from the fiber end, which is the biggest problem in module mounting.
[0023]
【The invention's effect】
According to the semiconductor light emitting device of the present invention, a stable single-mode high output distributed feedback semiconductor laser and an optical module equipped with the same can be realized by an extremely easy method. By using the present invention, not only the device performance and the yield are dramatically improved, but also the price reduction, the capacity increase, and the distance increase of the optical communication system to which this device is applied can be easily realized.
[Brief description of the drawings]
FIG. 1 is a sectional view in a cavity length direction for explaining a semiconductor laser device according to the present invention.
FIG. 2 is a diagram showing a relationship between a composition wavelength, a phase shift region length, and a normalized optical coupling coefficient of a diffraction grating supply layer (semiconductor material forming a diffraction grating).
FIGS. 3A and 3B are diagrams for explaining a first embodiment of the present invention, in which FIGS. 3A to 3E are flow charts showing a manufacturing process of a semiconductor laser device, and FIG. 3F is a diagram of oscillation light of the manufactured laser device; FIGS. It is a figure which shows a spectrum.
FIG. 4 is a cross-sectional view of the semiconductor laser device according to the second embodiment of the present invention in the cavity length direction.
FIG. 5 is a cross-sectional view of an optical module according to Embodiment 3 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... n-type (100) InP semiconductor substrate, 12 ... Active layer, 13 ... Diffraction grating supply layer, 14 ... Cladding layer, 15 ... Low reflection film, 16 ... Upper electrode, 17 ... Lower electrode, 101 ... N-type (100 ) InP semiconductor substrate, 102... Buffer layer, 103... Compression-strained multiple quantum well active layer, 104... First cladding layer, 105 ... diffraction grating supply layer, 106 ... cap layer, 107 ... diffraction grating, 108 ... second cladding layer , 109 ... cap layer, 110 ... upper electrode, 111 ... lower electrode, 112 ... low reflection film, 201 ... distributed feedback semiconductor laser, 202 ... heat sink, 203 ... optical lens, 204 ... monitor photodiode, 205 ... optical fiber.

Claims (5)

第1の導電型の半導体基板上に第1の導電型のバッファ層、発光層と該発光層の近傍層に放出された光を分布反射するための光の進行方向に沿う回折格子、及び第2の導電型のクラッド層を有し、且つレーザ共振器内部に該回折格子が形成されていない領域を少なくとも一ケ所設けることによりこの領域での光波の伝搬定数を回折格子が形成された領域と異なる値に設定した部分回折格子構造の分布帰還半導体レーザにおいて、二領域の伝搬定数の差Δβと回折格子が形成されない領域の長さの和Lsとの間に、
0.4π<Δβ・Ls<0.6π
の関係があり、
上記バッファ層または上記クラッド層のどちらか一方の中に上記回折格子は設けられ、上記回折格子を構成する各格子はそれを構成する層の厚さが一定で、かつ、間欠的に設けられ、前記一の格子と隣接する他の一の格子との間は上記バッファ層または上記クラッド層を構成する材料で埋められていることを特徴とする分布帰還型半導体レーザ。
A first conductive type buffer layer on a first conductive type semiconductor substrate; a diffraction grating along a traveling direction of light for distributing and reflecting light emitted to the light emitting layer and a layer near the light emitting layer; And having at least one region where the diffraction grating is not formed in the laser resonator, the propagation constant of the light wave in this region is determined as the region where the diffraction grating is formed. In a distributed feedback semiconductor laser having a partial diffraction grating structure set to a different value, between the difference Δβ between the propagation constants of the two regions and the sum Ls of the lengths of the regions where the diffraction grating is not formed,
0.4π <Δβ · Ls <0.6π
Relationship there is,
The diffraction grating is provided in either one of the buffer layer or the cladding layer, and each of the gratings constituting the diffraction grating has a constant thickness and is provided intermittently. A distributed feedback semiconductor laser characterized in that a space between the one grating and another adjacent grating is filled with a material constituting the buffer layer or the cladding layer .
上記回折格子を形成するための光ガイド層の導電型が周囲の層と異なることを特徴とした請求項1に記載の分布帰還型半導体レーザ。  2. The distributed feedback semiconductor laser according to claim 1, wherein a conductivity type of the light guide layer for forming the diffraction grating is different from that of the surrounding layers. 上記回折格子の規格化光結合係数κ(Lc-Ls)(ここで、κ;光結合係数であって、回折格子の単位長さ(ここでは共振器長方向)の反射率(単位:m-1), Lc;前記供給の長さ、Ls;位相シフト量が0.4πより大で、かつ、0.6π未満となるように定められた、回折格子が設けられていない部分の長さ)が2以上6以下であることを特徴とした請求項1から2に記載の分布帰還型半導体レーザ。Normalized optical coupling coefficient κ (Lc-Ls) of the diffraction grating (where κ is the optical coupling coefficient, and the reflectance (unit: m ) of the unit length of the diffraction grating (here, the cavity length direction)) 1 ), Lc; the length of the supply, Ls; the length of the portion where the phase shift amount is greater than 0.4π and less than 0.6π and no diffraction grating is provided) is 2 3. The distributed feedback semiconductor laser according to claim 1, wherein the distributed feedback semiconductor laser is 6 or less. 第1の導電型の半導体基板上に第1の導電型のバッファ層、発光層と該発光層の近傍層に放出された光を分布反射するための光の進行方向に沿う回折格子、及び第2の導電型のクラッド層を有し、且つレーザ共振器内部に該回折格子が形成されていない領域を少なくとも一ケ所設けることによりこの領域での光波の伝搬定数を回折格子が形成された領域と異なる値に設定した部分回折格子構造の分布帰還半導体レーザにおいて、二領域の伝搬定数の差Δβと回折格子が形成されない領域の長さの和Lsとの間に、
0.4π<Δβ・Ls<0.6π
の関係があり、
上記バッファ層または上記クラッド層のどちらか一方の中に上記回折格子は設けられ、上記回折格子を構成する各格子はそれを構成する層の厚さが一定で、かつ、間欠的に設けられ、前記一の格子と隣接する他の一の格子との間は上記バッファ層または上記クラッド層を構成する材料で埋められており、
上記周期的回折格子の規格化光結合係数κ(Lc-Ls)(ここで、κ;光結合係数であって、回折格子の単位長さ(ここでは共振器長方向)の反射率(単位:m-1), Lc;前記供給の長さ、Ls;位相シフト量が0.4πより大で、かつ、0.6π未満となるように定められた、回折格子が設けられていない部分の長さ)が2以上6以下であることを特徴とする分布帰還型半導体レーザ。
A first conductive type buffer layer on a first conductive type semiconductor substrate; a diffraction grating along a traveling direction of light for distributing and reflecting light emitted to the light emitting layer and a layer near the light emitting layer; And having at least one region where the diffraction grating is not formed in the laser resonator, the propagation constant of the light wave in this region is determined as the region where the diffraction grating is formed. In a distributed feedback semiconductor laser having a partial diffraction grating structure set to a different value, between the difference Δβ between the propagation constants of the two regions and the sum Ls of the lengths of the regions where the diffraction grating is not formed,
0.4π <Δβ · Ls <0.6π
There is a relationship
The diffraction grating is provided in either one of the buffer layer or the cladding layer, and each of the gratings constituting the diffraction grating has a constant thickness and is provided intermittently. The space between the one lattice and another adjacent lattice is filled with the material constituting the buffer layer or the cladding layer,
Normalized optical coupling coefficient κ (Lc-Ls) of the above periodic diffraction grating (where κ is the optical coupling coefficient, and the reflectance of the diffraction grating unit length (here, the cavity length direction) (unit: m −1 ), Lc: length of the supply, Ls: length of a portion where the phase shift amount is larger than 0.4π and less than 0.6π and no diffraction grating is provided) Is a distributed feedback type semiconductor laser characterized by being 2 or more and 6 or less.
上記回折格子を形成するための光ガイド層の導電型が周囲の層と異なることを特徴とした請求項4に記載の分布帰還型半導体レーザ。  5. The distributed feedback semiconductor laser according to claim 4, wherein a conductivity type of the light guide layer for forming the diffraction grating is different from that of the surrounding layers.
JP11866096A 1996-05-14 1996-05-14 Phase-shifted distributed feedback semiconductor laser Expired - Fee Related JP3700245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11866096A JP3700245B2 (en) 1996-05-14 1996-05-14 Phase-shifted distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11866096A JP3700245B2 (en) 1996-05-14 1996-05-14 Phase-shifted distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPH09307179A JPH09307179A (en) 1997-11-28
JP3700245B2 true JP3700245B2 (en) 2005-09-28

Family

ID=14742072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11866096A Expired - Fee Related JP3700245B2 (en) 1996-05-14 1996-05-14 Phase-shifted distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP3700245B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051640A (en) * 2001-08-07 2003-02-21 Mitsubishi Electric Corp Semiconductor laser
US7065123B2 (en) * 2002-06-27 2006-06-20 Anritsu Corporation Distributed feedback semiconductor laser for outputting beam of single wavelength
US7057803B2 (en) * 2004-06-30 2006-06-06 Finisar Corporation Linear optical amplifier using coupled waveguide induced feedback
CA2589288C (en) * 2004-11-26 2014-10-14 The Commonwealth Of Australia Method and apparatus for modifying out of band reflection for a laser element

Also Published As

Publication number Publication date
JPH09307179A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
JP4643794B2 (en) Semiconductor light emitting device
US6107112A (en) Distributed feedback semiconductor laser and method for producing the same
EP0814547A1 (en) Semiconductor laser and process for producing the same
JPH0256837B2 (en)
EP0125608B1 (en) Single longitudinal mode semiconductor laser
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JP5310533B2 (en) Optical semiconductor device
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JPH04783A (en) Semiconductor optical element
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JP2950302B2 (en) Semiconductor laser
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
US6363093B1 (en) Method and apparatus for a single-frequency laser
US6734464B2 (en) Hetero-junction laser diode
JP2907234B2 (en) Semiconductor wavelength tunable device
JPH10242577A (en) Semiconductor laser and manufacture thereof
JP4804618B2 (en) Semiconductor laser
JP5163355B2 (en) Semiconductor laser device
JP2002057405A (en) Semiconductor laser device and its manufacturing method
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP5834910B2 (en) Semiconductor laser and manufacturing method thereof
JP2009016878A (en) Semiconductor laser and optical module using the same
JP2000223774A (en) Wavelength-variable light source
JP2023020996A (en) Semiconductor optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees