JPS623221A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPS623221A
JPS623221A JP14173085A JP14173085A JPS623221A JP S623221 A JPS623221 A JP S623221A JP 14173085 A JP14173085 A JP 14173085A JP 14173085 A JP14173085 A JP 14173085A JP S623221 A JPS623221 A JP S623221A
Authority
JP
Japan
Prior art keywords
doped
layers
layer
type
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14173085A
Other languages
Japanese (ja)
Other versions
JPH0545003B2 (en
Inventor
Kenichi Nishi
研一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14173085A priority Critical patent/JPS623221A/en
Priority to US06/878,741 priority patent/US4727341A/en
Publication of JPS623221A publication Critical patent/JPS623221A/en
Publication of JPH0545003B2 publication Critical patent/JPH0545003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high quenching ratio with a low driving voltage by constituting the titled modulator in such a manner that the forbidden band width of a semiconductor layer having the narrow forbidden band width in a thin semiconductor film has the max. value near the central part with respect to the lamination direction and decreases toward both ends. CONSTITUTION:Thin film structure is formed by laminating an Si-doped n-type GaAs buffer layer 22 and an Si-doped n-type Al0.4Ga0.6As clad layer 23 on an Si-doped n-type GaAs substrate 21 and alternately laminating non-doped AlxGa1-xAs quantum well layers 24 in which the Al compsn. ratio (x) is continuously incerased from 0 to 0.15 and is again continuously decreased down to 0 and non-doped Al0.4Ga0.6As barrier layers 25 to 30 periods. A Be-doped p-type Al0.4Ga0.6As clad layer 26 and a Be-doped p-type GaAs contact layer 27 are grown thereto to make the multi-layered structure. Electrodes 28 are formed on the top and bottom surfaces and thereafter the layers are removed by selective etching to a circular shape up to and down to the GaAs layers on the top and bottom surfaces. The high quenching ratio is thus obtd. with the low voltage and intensity modulation of several tens GHz is made possible in principle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低駆動電圧で高い消光比を得ることのできる高
速変調可能な光変調器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical modulator capable of high-speed modulation and capable of obtaining a high extinction ratio with a low driving voltage.

(従来技術とその問題点) 光通信等において、光源として、用いられる半導体レー
ザの出力強度や位相を高速で変化させる際には、大きく
分類して2種の方法がある。それは、半導体レーザを駆
動する電流を直接変化させる方法と、光源からの光出力
を受動素子である光変調器を通す事によって変調する方
法である。この両者にはそれぞれ長所短所がある。前者
は光変調器を使用しないため、光変調器による挿入損失
はないが、数百メガヘルツ以上の高速変調時には、半導
体レーザ中のキャリヤの緩和振動による変調波形の歪み
や、発振波長の時間変化(チャーピング)が生じ、信号
光の検出が困難になる。また、この変調速度はキャリヤ
寿命により制限され、毎秒約4ギガビツト以上の直接変
調は原理的に困難である。
(Prior Art and its Problems) When rapidly changing the output intensity and phase of a semiconductor laser used as a light source in optical communications and the like, there are broadly two types of methods. There are two methods: one is to directly change the current that drives the semiconductor laser, and the other is to modulate the optical output from the light source by passing it through an optical modulator, which is a passive element. Both have their own advantages and disadvantages. The former does not use an optical modulator, so there is no insertion loss caused by the optical modulator, but during high-speed modulation of several hundred megahertz or higher, distortion of the modulation waveform due to relaxation oscillation of carriers in the semiconductor laser and time change in the oscillation wavelength ( Chirping) occurs, making it difficult to detect the signal light. Further, this modulation speed is limited by the carrier lifetime, and direct modulation of more than about 4 gigabits per second is difficult in principle.

一方後者は、毎秒10ギガビット程度の高速変調が可能
で、かつ高速変調時においてもチャーピングは少ないが
、通常の光変調器では挿入損失が大きく、特に長距離の
伝送に対しては不利である。
On the other hand, the latter is capable of high-speed modulation of about 10 gigabits per second and has little chirping even during high-speed modulation, but ordinary optical modulators have large insertion loss, which is particularly disadvantageous for long-distance transmission. .

また、高い消光比の変調を得るためには高い電圧で駆動
する必要がある。
Furthermore, in order to obtain modulation with a high extinction ratio, it is necessary to drive at a high voltage.

そこで、後者のタイプで、低損失で高速変調可能な多層
薄膜半導体による光変調器が提案されている。その−例
は、山西氏らにより、ジャパニーズ・ジャーナル・オフ
・アプライド・フィジックス(Japanese Jo
unal of Applied Physics)誌
1983年22巻L22に掲載されているように、多層
薄膜半導体に電界を印加する事により、吸収端を長波長
にずらす、というものであるが、これは、同時に電子と
正孔を空間的に分離してしまい、吸収確率は小さくなる
という欠点を有する。また高い消光比の変調を得るため
の駆動電圧も実用上はまだ高めである。
Therefore, an optical modulator of the latter type using a multilayer thin film semiconductor has been proposed, which is capable of high-speed modulation with low loss. An example is the Japanese Journal of Applied Physics by Yamanishi et al.
As published in Vol. 22, L22 of Applied Physics (1983), applying an electric field to a multilayer thin film semiconductor shifts the absorption edge to longer wavelengths, but this also means that electrons and This method has the disadvantage that the holes are spatially separated and the probability of absorption is reduced. Furthermore, the driving voltage required to obtain modulation with a high extinction ratio is still relatively high in practice.

(問題点を解決するための手段) 本発明による光変調器は、1層ないし多層の、膜厚が電
子の平均自由行程程度以下である半導体薄膜を有し、該
半導体薄膜に積層方向に電界を印加する手段を有する光
変調器において、該半導体薄膜中の狭い禁制帯幅を有す
る半導体層の禁制帯幅が積層方向に関して中央部近傍で
最大値をとり両端部に近づくにつれ減少することに特徴
がある。
(Means for Solving the Problems) An optical modulator according to the present invention has a single or multilayer semiconductor thin film whose film thickness is equal to or less than the mean free path of electrons, and an electric field is applied to the semiconductor thin film in the stacking direction. The optical modulator is characterized in that the forbidden band width of a semiconductor layer having a narrow forbidden band width in the semiconductor thin film has a maximum value near the center in the stacking direction and decreases as it approaches both ends. There is.

(発明の作用・原理) 以下、図面を用いて本発明の作用・原理を説明する。ま
ず本発明による光変調器の半導体薄膜構造    “□
のバンド構造を模式的に、電界が印加されていない場合
について第1図(a)に、積層方向に電界が印加されて
いる場合について第1図(b)に示す。ここで、電子の
波動関数11と正孔の波動関数12の電界による変形に
ついて考える。無電界時、つまり第1図(a)の場合で
は、どちらの波動関数も、狭バンドギヤツプ層(以下量
子井戸層と呼ぶ)の中の両側のへテロ界面付近に存在し
ており、しかもほぼ左右対称の形状をしていることがわ
かる。そのため、2つの波動関数の重なり積分の値はほ
ぼ1とな゛る。しかるに電界印加により量子井戸層での
バンド構造が変形した際の波動関数は、本発明による構
造によれば第1図(b)に示すように、電子と正孔で反
対側のへテロ界面付近に非常に局在するようになり、そ
のため2つの波動関数の重なり積分の値は、波動関数が
指数関数的に減少する領域でしが重なりあわないため0
に近い値となる。この重列積分の値は吸収係数にほぼ比
例し、また電界印加によっては電子のエネルギー準位1
3と正孔のエネルギー準位14の差によって決まる吸収
端のエネルギー15(第1図(C))は減少するので、
この電界印加による吸収係数スペクトルの変化は第1図
(C)に示すようになる。実線は無電界時の吸収係数ス
ペクトル16.破線は電界印加時の吸収係数スペクトル
17である。
(Operation/Principle of the Invention) The operation/principle of the present invention will be explained below with reference to the drawings. First, the semiconductor thin film structure of the optical modulator according to the present invention “□
The band structure is schematically shown in FIG. 1(a) when no electric field is applied, and in FIG. 1(b) when an electric field is applied in the stacking direction. Here, the deformation of the electron wave function 11 and the hole wave function 12 due to the electric field will be considered. In the absence of an electric field, that is, in the case shown in Figure 1(a), both wave functions exist near the heterointerface on both sides of the narrow bandgap layer (hereinafter referred to as quantum well layer), and moreover, the left and right wave functions are approximately parallel to each other. It can be seen that it has a symmetrical shape. Therefore, the value of the overlap integral of the two wave functions is approximately 1. However, when the band structure in the quantum well layer is deformed by applying an electric field, the wave function in the structure according to the present invention is near the hetero-interface where electrons and holes are on the opposite side, as shown in FIG. 1(b). Therefore, the value of the overlap integral of the two wave functions becomes 0 because they do not overlap in the region where the wave functions decrease exponentially.
The value is close to . The value of this multiple column integral is approximately proportional to the absorption coefficient, and depending on the electric field applied, the electron energy level 1
Since the absorption edge energy 15 determined by the difference between the energy level 14 of the hole and the energy level 14 of the hole decreases,
The change in the absorption coefficient spectrum due to the application of this electric field is as shown in FIG. 1(C). The solid line is the absorption coefficient spectrum 16. without electric field. The broken line is the absorption coefficient spectrum 17 when an electric field is applied.

したがって、無電界時の吸収端よりやや大きいエネルギ
ー18を有する光について考えてみれば、無電界時では
吸収係数が大きいため、この量子井戸層で非常に吸収さ
れるが、電界印加時では吸収係数がOに近い値をとるた
めこの量子井戸層ではほとんど吸収されないことがわが
る。したがって、このエネルギー18を有する光の強度
変調を電界印加のオン・オフにより高い消光比でもって
行なえることがわかる。
Therefore, if we consider light with energy 18, which is slightly larger than the absorption edge in the absence of an electric field, the absorption coefficient is large in the absence of an electric field, so it is greatly absorbed by this quantum well layer, but when an electric field is applied, the absorption coefficient It can be seen that since the value of 0 is close to O, almost no absorption occurs in this quantum well layer. Therefore, it can be seen that the intensity modulation of the light having energy 18 can be performed with a high extinction ratio by turning on and off the application of the electric field.

また、この際に必要な電界の大きさも、本発明l叩 ト
 ス、L専シ占マーl+ゴヒ+ r−a、  七 ノ 
プ −ト フ、+)−−白一り打 −1変調についても
電界により波動関数の形状を変化させることが本質なの
で原理的に数十GHz以上まで     □の変調が可
能である。
In addition, the magnitude of the electric field required at this time can also be determined by the present invention.
Since the essential point of modulation is to change the shape of the wave function by an electric field, modulation of □ up to several tens of GHz or more is possible in principle.

(実施例) 第2図(a)に本発明第1の実施例の光変調器の斜視図
を、第2図(b)にそのバンド図を示す。本実施例は分
子線エピタキシー(MBE)法により製作したものであ
る。これは、まずSiドープn型GaAs基板21上に
厚さ1.011mのSiドープn型GaAsドツファ一
層22.厚さ2.0層mのSiドープn型A10.4G
ao6Asクラッド層23を積層した。次にA1組成比
XをOがら0.15まで連続的に増     加させた
のち再びOまで連続的に減少させた厚さ100人のノン
ドープAlxGa1−xAs量子井戸層24と厚さ  
   80人のシンドープA1o、4GaO,6Asバ
リヤ層25を交互に30周期積層し薄膜構造を形した。
(Embodiment) FIG. 2(a) shows a perspective view of an optical modulator according to a first embodiment of the present invention, and FIG. 2(b) shows its band diagram. This example was manufactured using the molecular beam epitaxy (MBE) method. First, a Si-doped n-type GaAs doped layer 22. Si-doped n-type A10.4G with a thickness of 2.0 layers m
An ao6As cladding layer 23 was laminated. Next, the A1 composition ratio X was continuously increased from O to 0.15, and then continuously decreased to O again.
80 thin-doped Alo, 4GaO, and 6As barrier layers 25 were alternately stacked in 30 cycles to form a thin film structure.

この上に厚さ2.0層mのBeドープp型Al、4Ga
o、6Asクラッド層26、厚さ     ′0.5層
mのBeドープP型GaAs コンタクト層27を成長
     ・′して多層構造を製作した。次にこれを5
層5mm程度の大きさにし、上面および下面に電極28
を製作した後、円形に上面および下面のGaAs層まで
選択的にエツチングにより除去したものである。
On top of this, Be-doped p-type Al with a thickness of 2.0 m, 4Ga
A multilayer structure was fabricated by growing a 6As cladding layer 26 and a Be-doped P-type GaAs contact layer 27 with a thickness of 0.5 m. Next, add this to 5
The layer has a size of about 5 mm, and electrodes 28 are placed on the top and bottom surfaces.
After fabrication, the GaAs layers on the top and bottom surfaces were selectively etched away in a circular pattern.

この円形の「窓部」に垂直方向に光を入射し、電圧を上
記電極間に印加して、吸収係数スペクトルの電圧依存性
を調べた所、第1図(C)のような傾向がはっきりと出
現した。そして無電界時の吸収端より上のエネルギーを
有する光(波長的800nm)の透過率は無電界時には
約3%、5Vの逆バイアス電圧印加時には約80%と、
消光比にして約14dBと非常に良好な値が得られた。
When light was incident perpendicularly into this circular "window" and a voltage was applied between the electrodes, the voltage dependence of the absorption coefficient spectrum was investigated, and a tendency as shown in Figure 1 (C) was clearly observed. appeared. The transmittance of light having energy above the absorption edge (wavelength: 800 nm) in the absence of an electric field is approximately 3% in the absence of an electric field, and approximately 80% when a reverse bias voltage of 5V is applied.
A very good extinction ratio of about 14 dB was obtained.

高速変調特性としては、約300MHzまで良好な強度
変調がかかった。この上限は電極間の寄性容量によるも
のである。
As for high-speed modulation characteristics, good intensity modulation was applied up to about 300 MHz. This upper limit is due to the parasitic capacitance between the electrodes.

次に本発明第2の実施例について説明する。第3図に本
実施例の斜視図を示す。これは、薄膜構造は量子井戸層
とバリヤ層の積層周期が8周期であること以外は第1の
実施例と同一である。次に基板の上面および下面に電極
31を製作し、基板上面にCVD法によりSio2膜を
付着させた後、通常のフォトリソグラフィー法により1
.5μm幅のストライプ状に8102膜を残して他の部
分を除去し、しかる後、SiO2膜の付着していない部
分をn型A10.4GaO,6Asクラッド層23まで
エツチングにより除去してから残っていたSiO2を除
去して導波路構造を形成したものである。
Next, a second embodiment of the present invention will be described. FIG. 3 shows a perspective view of this embodiment. This is the same as the first embodiment except that the thin film structure has eight stacking periods of quantum well layers and barrier layers. Next, electrodes 31 are fabricated on the upper and lower surfaces of the substrate, and after a Sio2 film is attached to the upper surface of the substrate by CVD method, 1
.. The 8102 film was left in a stripe shape with a width of 5 μm and the other parts were removed, and then the part to which the SiO2 film was not attached was removed by etching up to the n-type A10.4GaO,6As cladding layer 23, and the remaining part was removed. A waveguide structure is formed by removing SiO2.

この導波路長を200pmとし、波長800nmのレー
ザ光を入射して電界印加による透過率を測定した所、無
電界時には約0.5%、IVの逆バイアス電圧印加時に
は約40%となり、消光比に−して約20dBと非常に
良好な値が得られた。高速変調特性としても、約3GH
z以上まで良好な強度変調特性が得られた。
When this waveguide length was set to 200 pm and a laser beam with a wavelength of 800 nm was incident, the transmittance by applying an electric field was measured, and the extinction ratio was approximately 0.5% when no electric field was applied, and approximately 40% when a reverse bias voltage of IV was applied. A very good value of about 20 dB was obtained. Approximately 3GH high speed modulation characteristics
Good intensity modulation characteristics were obtained up to z and above.

しかも、これは素子の寄生容量によって決定されるもの
であった。
Moreover, this was determined by the parasitic capacitance of the element.

以上ここでは2つの実施例について述べたが、本発明は
量子井戸層の禁制帯幅が積層方向に関してはじめは広が
り途中から狭くなることに特徴があり、この変化のしか
た、変化のピークの位置、材料系、半導体成長方法等に
は何ら限定されないことは明らかである。そして上記禁
制帯幅の変化のしかたも第4図(a)のごとく空間的に
2次曲線的であってもよいし、第4図(b)のようにス
テップ状に変化していても本質的な効果は同様である。
Although two embodiments have been described here, the present invention is characterized in that the forbidden band width of the quantum well layer initially widens in the stacking direction and narrows midway through. It is clear that there are no limitations to the material system, semiconductor growth method, etc. The manner in which the forbidden band width changes may be spatially quadratic as shown in FIG. 4(a), or stepwise as shown in FIG. 4(b). The effect is similar.

(発明の効果) 本発明による光変調器は、低電圧で高い消光比を得るこ
とができ、原理的に数十GHzの強度変調を行なうこと
ができるという特徴を有する。
(Effects of the Invention) The optical modulator according to the present invention is characterized in that it can obtain a high extinction ratio with a low voltage and can theoretically perform intensity modulation at several tens of GHz.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はそれぞれ本発明による光変調器
の多層薄膜構造の電界印加のない場合のバンド図、およ
び電界印加時のバンド図であり、第1図(コ)はこの2
つの場合における吸収係数スペクトルを示す図である。 第2図(a)、(b)はそれぞれ第1の実施例の斜視図
、およびバンド図である。第3図は第2の実施例の斜視
図である。第4図(a)、(b)は量子井戸内のバンド
構造の変形例を示すバンド図である。 図において 11・・・電子の波動関数 12・・・正孔の波動関数
13・・・電子のエネルギー準位 14・・・正孔のエネルギー準位 1仄−1−…111v%/7−1 〒 ÷ 11、七−
16−0,無電界時の吸収係数スペクトル17・・・電
界印加時の吸収係数スペクトル1800.吸収端よりや
や大きいエネルギー21・・・n型GaAs基板  2
2・・・n型GaAsバッファ一層23・n型A1o、
4GaO,6Asクラッド層24−0.ノンドープA1
xGat−xAs(x;0−0.15−0)量子井戸層 25−・・ノンドープAI。、4Gao6AsGa型層
26・、、p型A1o、4Gao、s Asクラッド層
27・・・p型GaAsコンタクト層 28・・・電極      31・・・電極木1図 (C) 、1−2  図 (a) 2日 オ 2 図 (b) 、?3  図 オ 4 図 (b)
FIGS. 1(a) and (b) are the band diagrams of the multilayer thin film structure of the optical modulator according to the present invention when no electric field is applied, and when an electric field is applied, respectively, and FIG. 2
FIG. 3 is a diagram showing absorption coefficient spectra in two cases. FIGS. 2(a) and 2(b) are a perspective view and a band diagram of the first embodiment, respectively. FIG. 3 is a perspective view of the second embodiment. FIGS. 4(a) and 4(b) are band diagrams showing modified examples of the band structure within the quantum well. In the figure, 11... Wave function of electron 12... Wave function of hole 13... Energy level of electron 14... Energy level of hole 1-1-...111v%/7-1 〒 ÷ 11, 7-
16-0, Absorption coefficient spectrum when no electric field 17...Absorption coefficient spectrum when electric field is applied 1800. Energy slightly larger than absorption edge 21...n-type GaAs substrate 2
2... n-type GaAs buffer layer 23, n-type A1o,
4GaO, 6As cladding layer 24-0. Non-doped A1
xGat-xAs (x; 0-0.15-0) quantum well layer 25--non-doped AI. , 4Gao6AsGa type layer 26..., p-type A1o, 4Gao,s As cladding layer 27...p-type GaAs contact layer 28...electrode 31...electrode tree Figure 1 (C), Figure 1-2 (a ) 2nd O 2 Figure (b) ,? 3 Figure O 4 Figure (b)

Claims (1)

【特許請求の範囲】[Claims] 膜厚が電子の平均自由行程以下の半導体層を1層または
多層積層した半導体薄膜構造と、該半導体薄膜構造に積
層方向に電界を印加する手段とを有し、さらに該半導体
薄膜構造を構成する半導体層のうち狭い禁制帯幅を有す
る半導体層の禁制帯幅が積層方向に関して中央部近傍で
最大値をとり両端部に近づくにつれ減少することを特徴
とする光変調器。
A semiconductor thin film structure comprising one or more laminated semiconductor layers having a film thickness equal to or less than the mean free path of an electron, and means for applying an electric field to the semiconductor thin film structure in the lamination direction, further comprising the semiconductor thin film structure. An optical modulator characterized in that the forbidden band width of a semiconductor layer having a narrow forbidden band width among the semiconductor layers takes a maximum value near the center in the stacking direction and decreases as it approaches both ends.
JP14173085A 1985-06-28 1985-06-28 Optical modulator Granted JPS623221A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14173085A JPS623221A (en) 1985-06-28 1985-06-28 Optical modulator
US06/878,741 US4727341A (en) 1985-06-28 1986-06-26 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14173085A JPS623221A (en) 1985-06-28 1985-06-28 Optical modulator

Publications (2)

Publication Number Publication Date
JPS623221A true JPS623221A (en) 1987-01-09
JPH0545003B2 JPH0545003B2 (en) 1993-07-08

Family

ID=15298872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14173085A Granted JPS623221A (en) 1985-06-28 1985-06-28 Optical modulator

Country Status (1)

Country Link
JP (1) JPS623221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191822A (en) * 1986-02-18 1987-08-22 Nippon Telegr & Teleph Corp <Ntt> Quantum well type optical modulator and its production
JPS6456413A (en) * 1987-03-25 1989-03-03 Toshiba Corp Semiconductor optical element
JPH01179125A (en) * 1988-01-11 1989-07-17 Nippon Telegr & Teleph Corp <Ntt> Optical space modulating element
JPH02239222A (en) * 1989-01-26 1990-09-21 Cselt Spa (Cent Stud E Lab Telecomun) Electrooptical modulator having cantum well
US5359679A (en) * 1992-06-11 1994-10-25 Kokusai Denshin Denwa Kabushiki Kaisha Optical modulator
KR100500097B1 (en) * 2002-03-01 2005-07-11 미쓰비시덴키 가부시키가이샤 Optical modulator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191822A (en) * 1986-02-18 1987-08-22 Nippon Telegr & Teleph Corp <Ntt> Quantum well type optical modulator and its production
JPS6456413A (en) * 1987-03-25 1989-03-03 Toshiba Corp Semiconductor optical element
JPH01179125A (en) * 1988-01-11 1989-07-17 Nippon Telegr & Teleph Corp <Ntt> Optical space modulating element
JPH02239222A (en) * 1989-01-26 1990-09-21 Cselt Spa (Cent Stud E Lab Telecomun) Electrooptical modulator having cantum well
JPH0529888B2 (en) * 1989-01-26 1993-05-06 Kuseruto Chentoro Suteyudei E Lab Terekomyunikatsuiooni Spa
US5359679A (en) * 1992-06-11 1994-10-25 Kokusai Denshin Denwa Kabushiki Kaisha Optical modulator
KR100500097B1 (en) * 2002-03-01 2005-07-11 미쓰비시덴키 가부시키가이샤 Optical modulator

Also Published As

Publication number Publication date
JPH0545003B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
US5680411A (en) Integrated monolithic laser-modulator component with multiple quantum well structure
US6281030B1 (en) Fabrication of semiconductor Mach-Zehnder modulator
US5016990A (en) Method of modulating an optical beam
JPH09512138A (en) Strain-compensated composite quantum well laser structure
JPH08220496A (en) Semiconductor optical modulation element
US5363393A (en) Surface emitting semiconductor laser
US4727341A (en) Optical modulator
US4847573A (en) Optical modulator
JPH02103021A (en) Quantum well optical device
JPH08146365A (en) Semiconductor mach-zehnder modulation device and its production
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JPS623220A (en) Optical modulator
US5001522A (en) Optical semiconductor device
JPS623221A (en) Optical modulator
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JP2513265B2 (en) Light modulator
JPH0530254B2 (en)
JPS61184516A (en) Light modulator
JP2670051B2 (en) Quantum well type optical modulator
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JPH07193210A (en) Semiconductor photointegrated element
JPH11109298A (en) Semiconductor element
JP3529072B2 (en) Optical phase modulator and optical modulator
JPH05259567A (en) Waveguide type multiple quantum well light control element