JPH08248363A - Waveguide type multiple quantum well optical control element - Google Patents

Waveguide type multiple quantum well optical control element

Info

Publication number
JPH08248363A
JPH08248363A JP4804795A JP4804795A JPH08248363A JP H08248363 A JPH08248363 A JP H08248363A JP 4804795 A JP4804795 A JP 4804795A JP 4804795 A JP4804795 A JP 4804795A JP H08248363 A JPH08248363 A JP H08248363A
Authority
JP
Japan
Prior art keywords
layers
quantum well
layer
thickness
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4804795A
Other languages
Japanese (ja)
Inventor
Koichi Wakita
紘一 脇田
Takayuki Yamanaka
孝之 山中
Susumu Kondo
進 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4804795A priority Critical patent/JPH08248363A/en
Publication of JPH08248363A publication Critical patent/JPH08248363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To obtain an optical control element which operates on a low voltage, has a broad band width, is low in insertion loss, has high performance and is small in size by specifying the thickness of well layers and introducing a specific tensile stress into these well layers. CONSTITUTION: A non-doped InP clad layer 2 is grown at 0.5μm, MQW optical waveguide layers 3 consisting of 20 layers of quantum well structures consisting of InGaAsP layers of a thickness of 11 to 14mn introduced with 0.3 to 0.5% tensile stress as the well layers and InP layers of a thickness of 5nm as barrier layers and a non-doped InP clad layer 4 at 1 to 2μm and an InGaAs cap layer 5 at 0.5μm by an org. metal vapor growth method, etc., on an insulatable InP substrate 1. Next, parts 6 added with a P type impurity and parts 7 added with an (n) type impurity are so formed that voltage can be impressed on the MQW layers 3 in parallel therewith from outside by growing the crystals added with the impurities in such a manner that the one electrical conductivity shape varies from the other across a width of 1 to 4μm within the plane perpendicular to the respective layers with an SiN film as a mask.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光変調や光スイッチ等
を行い、特に超高速で低電圧駆動が可能な高光結合効率
をもつ、高性能小形の導波形多重量子井戸光制御素子に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance compact waveguide type multiple quantum well optical control device which performs optical modulation, optical switching, etc., and has a high optical coupling efficiency that enables particularly high speed and low voltage driving. Is.

【0002】[0002]

【従来の技術】光変調や光スイッチ等を行う光デバイス
は、高速性、低電圧駆動、低挿入損失、の3点が
重要である。これらは互いに独立でなく相互に依存し合
っており、デバイスの用途に応じて設計されている。近
年の結晶成長技術の進展により良好な特性をもつ半導体
多重量子井戸(Multiple Quantum Well;以下MQW
という)構造が作製され、その量子サイズ効果を利用す
ることによって、従来のバルクを用いた素子よりも高効
率で小形の光変調器や光スイッチ等が報告されている
(例えば、電子情報通信学会論文誌C‐1、J74‐C
‐1巻、pp.414‐420)が、上記3項目を同時に
は満たしておらず、3dB帯域は40GHz以上と広いの
に対し消光比20dBを得るのに必要な電圧は7Vと高
く、挿入損失も13dBと大きな値になっている。通
常、この種のデバイスでは帯域幅は素子容量で制限され
ており、電圧を小さくするにはMQW層を薄くすればよ
いが、その結果、素子容量が増加し帯域は狭くなってし
まう(図5)。これは図3に示すように、MQW層13
の両側をP,Nの高ドープされた層12,14で挾んで
MQW層13に垂直な方向に電界を印加し、量子閉じ込
めシュタルク効果を利用しているためである。また、M
QW層を薄くすれば光の閉じ込めは弱くなり、Pおよび
Nが高ドープされた層に光がもれ、そこでフリーキャリ
ア吸収を受けて伝搬損失が図6に示すように増加してし
まう。
2. Description of the Related Art Optical devices that perform optical modulation, optical switching, etc. are important in terms of high speed, low voltage driving, and low insertion loss. These are not independent of each other but depend on each other and are designed according to the application of the device. Due to the progress of crystal growth technology in recent years, a semiconductor multiple quantum well (MQW) having good characteristics
By making use of the quantum size effect, it has been reported that optical modulators and optical switches that are more efficient and smaller than conventional devices using bulk (for example, the Institute of Electronics, Information and Communication Engineers) Journal C-1, J74-C
-1, Volume pp. 414-420) does not satisfy the above three items at the same time, and the 3 dB band is as wide as 40 GHz or more, but the voltage required to obtain an extinction ratio of 20 dB is as high as 7 V and the insertion loss is as large as 13 dB. Has become. Normally, in this type of device, the bandwidth is limited by the element capacitance. To reduce the voltage, the MQW layer may be thinned, but as a result, the element capacitance increases and the bandwidth becomes narrower (FIG. 5). ). This is as shown in FIG.
This is because the quantum confined Stark effect is utilized by sandwiching the P and N highly-doped layers 12 and 14 on both sides of and applying an electric field in a direction perpendicular to the MQW layer 13. Also, M
If the QW layer is made thinner, the light confinement becomes weaker, and light leaks to the layer heavily doped with P and N, where it is absorbed by free carriers and the propagation loss increases as shown in FIG.

【0003】一方、上記MQW層に対して平行な方向に
電界を印加する試みがD,C,Chemmla らによって米
国応用物理学会誌(Applied Physics Letters.)4
2巻、pp.864‐866(1983年)に報告されて
いる(図4)が、500V以上の電圧を要し、到底実用
にはならなかった。これはMQW層に平行な方向に電界
を印加するのに図4に示すような構造を採用したため、
電界がクラッド層にもかかり、また、MQW層に対して
電界強度が不均一にかかってしまったためである。
On the other hand, an attempt to apply an electric field in a direction parallel to the MQW layer has been made by D, C, and Chemmla et al., Applied Physics Letters. 4
Volume 2, pp. Although it was reported in 864-866 (1983) (FIG. 4), it required a voltage of 500 V or more, and was not practically usable at all. This is because the structure shown in FIG. 4 is adopted to apply the electric field in the direction parallel to the MQW layer.
This is because the electric field was applied to the clad layer and the electric field strength was nonuniformly applied to the MQW layer.

【0004】これを解決するため、われわれは先に第1
と第2のバンドギャップをそれぞれもつ第1と第2の半
導体層からなり、その厚さがボーア半径より薄い多層異
種構造から構成される、いわゆる多重量子井戸(MQ
W)半導体装置における上記多重量子井戸層の両側を、
図7に示すように第1の半導体と同等か、それより小さ
い屈折率をもつ第3の半導体で挾んだ、いわゆる導波構
造を形成し、この導波構造を上記各層に垂直な面内で挾
み、互いに一方が他方とその導電形を異なるように不純
物を添加して、外部から上記多重量子井戸層に平行に電
圧が印加できるようにした導波形多重量子井戸光制御素
子を提案した(特開平05‐259567)。これは、
所期のとおり素子容量が低減でき、高速動作、高結合効
率は達成できたが、励起子吸収の振動子強度が小さく、
また、不純物添加を拡散またはイオン打ち込みで行って
いたため、導波路の幅が一定でなく、印加電界が不均一
で低電圧動作はできなかった。
To solve this, we first
, And a second semiconductor layer having a second band gap, respectively, and a so-called multi-quantum well (MQ
W) on both sides of the multiple quantum well layer in the semiconductor device,
As shown in FIG. 7, a so-called waveguide structure is formed by sandwiching a third semiconductor having a refractive index equal to or smaller than that of the first semiconductor, and the waveguide structure is formed in a plane perpendicular to the above layers. We proposed a waveguide-type multi-quantum well optical control device in which impurities are added so that one of them has a different conductivity type from the other, and a voltage can be applied in parallel to the multi-quantum well layer from the outside. (Japanese Patent Laid-Open No. 05-259567). this is,
As expected, the device capacitance could be reduced, high-speed operation and high coupling efficiency could be achieved, but the exciton absorption oscillator strength was small,
Further, since the impurities are added by diffusion or ion implantation, the width of the waveguide is not constant, the applied electric field is non-uniform, and low voltage operation cannot be performed.

【0005】[0005]

【発明が解決しようとする課題】MQW構造に電界を加
えたときに、その吸収係数がどのように変化するかを図
2に示すが、図2(a)は層に垂直、(b)は層に平行
の場合をそれぞれ示す。MQW構造では励起子と呼ばれ
る鋭い吸収線が室温でも存在し、これが電界印加によっ
て、図2(a)ではその半値幅をやや広げながら長波長
側にシフトするのに対して、図2(b)ではピーク位置
が変わらずに低電界でその半値幅を大きく広げる。な
お、図2における実線、破線、点線は印加電界の程度を
それぞれ示すものである。この電界の強さは(a)の場
合に比べて1桁以上小さく、これまでは前記従来の技術
に記したように、図2(a)の機構が多く用いられてき
た。上記機構ではMQW層に垂直に電界を印加するため
に、ノンドープMQW層をP形およびN形不純物がドー
プされた層で挾む構造(いわゆるPIN構造)が採用さ
れた。そのため図5に示すようにMQW層の厚さで素子
容量および電圧の大きさが制限され、一定の電界の強さ
を得るにはMQW層の厚さを薄くせざるを得ず、その結
果、素子容量やフリーキャリア吸収の増大をもたらし、
周波数応答特性が伸びずに伝搬損失が増加するという問
題があった。また、周波数応答特性をある程度保持する
にはMQW層の厚さを一定の厚さ以上にするため、導波
路を伝搬する光のスポット径が小さくなり、光ファイバ
との結合損失が大きいという問題があった(図6)。さ
らに、光吸収に伴い生成されるキャリアは多くのヘテロ
界面を越えねばならず、動作速度がこのキャリアの掃引
時間に律速されるおそれがあった。特にヘテロ障壁が高
い材料の組合せ(例えばInPとInGaAs)ではホール
のパイルアップがヘテロ界面で生じ、高光入力下での応
答速度の劣化が問題になっていた。これを防止するため
にヘテロ障壁が低い材料を用いねばならず、量子サイズ
効果を低減する羽目になっていた。
FIG. 2 shows how the absorption coefficient changes when an electric field is applied to the MQW structure. FIG. 2 (a) is perpendicular to the layer, and FIG. 2 (b) is The cases parallel to the layers are shown. In the MQW structure, a sharp absorption line called an exciton exists even at room temperature, and it shifts to the long wavelength side while slightly widening its half-value width in FIG. 2 (a) by applying an electric field, whereas in FIG. 2 (b). In, the peak position does not change and the half-value width is greatly widened at a low electric field. The solid line, the broken line, and the dotted line in FIG. 2 indicate the degree of the applied electric field. The strength of this electric field is smaller than that in the case of (a) by one digit or more, and so far, as described in the above-mentioned conventional technique, the mechanism of FIG. 2 (a) has been widely used. In the above mechanism, in order to apply an electric field perpendicularly to the MQW layer, a structure (so-called PIN structure) in which the non-doped MQW layer is sandwiched by layers doped with P-type and N-type impurities is adopted. Therefore, as shown in FIG. 5, the thickness of the MQW layer limits the magnitude of the element capacitance and the voltage, and in order to obtain a constant electric field strength, the thickness of the MQW layer must be reduced. Brings about an increase in device capacity and free carrier absorption,
There is a problem that the frequency response characteristic does not extend and the propagation loss increases. Further, in order to maintain the frequency response characteristic to some extent, the thickness of the MQW layer is set to a certain thickness or more, so that the spot diameter of the light propagating in the waveguide becomes small and the coupling loss with the optical fiber is large. There was (Fig. 6). Furthermore, the carriers generated by light absorption must cross many hetero interfaces, and the operating speed may be limited by the sweep time of the carriers. In particular, in the case of a combination of materials having a high hetero barrier (for example, InP and InGaAs), pile-up of holes occurs at the hetero interface, and the deterioration of the response speed under high light input has been a problem. In order to prevent this, a material having a low hetero barrier must be used, which results in reduction of the quantum size effect.

【0006】本発明では、MQW層に平行な電界を印加
できるようにし、従来のこの種の変調器やスイッチ等に
固有のMQW層厚で規定された素子容量、スポット径を
それぞれ独立に最適化し、かつ、励起子吸収の振動子強
度を大きくして低電圧で動作し、広帯域幅をもち低挿入
損失である高性能で小形の光制御素子を実現するのを目
的とする。
In the present invention, an electric field parallel to the MQW layer can be applied, and the element capacitance and the spot diameter specified by the MQW layer thickness peculiar to the conventional modulators and switches of this type are optimized independently. In addition, it is an object of the present invention to realize a high-performance and small-sized light control element which has a high exciter absorption oscillator strength, operates at a low voltage, has a wide bandwidth and has a low insertion loss.

【0007】[0007]

【課題を解決するための手段】上記目的は、第1と第2
のバンドギャップを、それぞれ有する第1と第2の半導
体層からなり、その厚さがボーア半径より薄い多層異種
構造から構成される多重量子井戸半導体装置における上
記多重量子井戸層の両側を、第1の半導体と同等かそれ
より小さい屈折率をもつ第3の半導体で挾んだ導波構造
を形成し、上記導波構造を上記各層に垂直な面内で挾ん
で、互いに一方を他方とはその導電形が異なるように不
純物を添加して、外部から上記多重量子井戸層に平行に
電圧を印加できるようにした導波形多重量子井戸光制御
素子において、上記井戸層の厚さを11nmから14nm
とし、かつ、この井戸層に引っ張りの応力を0.3%か
ら0.5%導入することにより達成される。
[Means for Solving the Problems] The above-mentioned objects are the first and the second.
The first and second semiconductor layers having the respective band gaps, and the both sides of the multiple quantum well layer in the multiple quantum well semiconductor device having a multilayer heterostructure having a thickness smaller than the Bohr radius. Forming a sandwiched waveguide structure with a third semiconductor having a refractive index equal to or smaller than that of the semiconductor, and sandwiching the waveguide structure in a plane perpendicular to each of the layers, one of the other being the other. In a waveguide type multi-quantum well optical control device in which impurities are added so as to have different conductivity types and a voltage can be externally applied in parallel to the multi-quantum well layer, the well layer has a thickness of 11 nm to 14 nm.
And by introducing a tensile stress of 0.3% to 0.5% into this well layer.

【0008】また、上記導波構造は、不純物が添加され
ていない幅を1〜4μmとし、その厚さを0.05〜0.
6μmとして、上記導波構造を伝搬する光波の光導波構
造における、横方向のスポット径と上下方向のスポット
径とを、ほぼ等しくすることによって達成される。
In the above waveguide structure, the width not doped with impurities is 1 to 4 μm, and the thickness is 0.05 to 0.5.
6 μm is achieved by making the lateral spot diameter and the vertical spot diameter in the optical waveguide structure of the light wave propagating through the waveguide structure substantially equal.

【0009】すなわち、不純物を添加した導波構造にお
ける屈折率、エネルギバンドを、不純物を添加しない部
分より、それぞれ小さくまたは大きくして、横方向での
光の閉じ込めを良好にし、かつ、縦方向での光の閉じ込
めをMQW層の厚さを制御することによって、上記導波
構造を伝搬する光波の光導波構造横方向のスポット径
と、上下方向のスポット径をほぼ等しくする。さらに、
井戸層に引っ張り応力を0.3%から0.5%導入し、か
つ、井戸層の厚さを11nmから14nmとし励起子吸収
の振動子強度を大きくする。また、ヘテロ障壁が高い材
料を障壁層に導入して励起子吸収の振動子強度を大きく
する。
That is, the refractive index and the energy band in the waveguide structure doped with impurities are made smaller or larger than those in the undoped region, respectively, to confine light in the lateral direction well and in the longitudinal direction. By controlling the thickness of the MQW layer for confining light, the spot diameter in the lateral direction of the optical waveguide structure and the spot diameter in the vertical direction of the light wave propagating in the waveguide structure are made substantially equal. further,
A tensile stress of 0.3% to 0.5% is introduced into the well layer, and the thickness of the well layer is set to 11 nm to 14 nm to increase the exciton absorption oscillator strength. Further, a material having a high hetero barrier is introduced into the barrier layer to increase the exciton absorption oscillator strength.

【0010】[0010]

【作用】本発明では、先の出願である特開平05‐25
9567号の目的、すなわち、低電界で吸収係数変化が
大きい点、かつ素子容量がMQW層厚に依存せず、した
がって導波路を伝搬する光のスポット径がMQW層厚を
薄くすることにより大きくでき、光ファイバとの結合損
失を低減できる点(図6参照)と、MQW層厚を薄くす
ることで光の閉じ込めが弱くなっても高ドープされた層
がMQW層の上下にないため、フリーキャリア吸収が増
加しない点を当然包含し、かつ、励起子吸収の増大をは
かり低電圧動作にも注目して、図2(b)に示す構成を
採用した。詳細な論理検討を行った結果を図8に示す
が、井戸の厚さをパラメータとして量子井戸層に応力を
導入したときの励起子吸収の振動子強度の変化を示すも
のである。引っ張り応力導入により励起子吸収の振動子
強度は格段に向上している。このとき井戸の厚さを11
nmから14nmの間とし、この井戸層に引っ張り応力を
0.3%から0.5%導入すればよいことがわかる。
In the present invention, the prior application, Japanese Patent Laid-Open No. 05-25, is used.
The purpose of No. 9567, namely, a large change in absorption coefficient at a low electric field, and the device capacitance does not depend on the MQW layer thickness, and therefore the spot diameter of light propagating in the waveguide can be increased by reducing the MQW layer thickness. , The point that the coupling loss with the optical fiber can be reduced (see FIG. 6) and that the highly doped layer is not above and below the MQW layer even if the light confinement is weakened by reducing the MQW layer thickness, The structure shown in FIG. 2B is adopted, which naturally includes the fact that the absorption does not increase, and also pays attention to the low voltage operation by increasing the exciton absorption. The result of a detailed logic study is shown in FIG. 8. This shows a change in oscillator strength of exciton absorption when stress is introduced into the quantum well layer using the well thickness as a parameter. By introducing the tensile stress, the oscillator strength of exciton absorption is significantly improved. At this time, the well thickness is 11
It is understood that it is only necessary to set the distance between nm and 14 nm and to introduce the tensile stress into this well layer from 0.3% to 0.5%.

【0011】図6はシングルモード光ファイバとMQW
導波路との光の結合損失のMQW層厚依存性を示したも
ので、MQW導波路を伝搬する光のスポット径はMQW
層厚が薄くなるにしたがい大きくなって、シングルモー
ド光ファイバを伝搬する光のスポット径に近くなって、
結合損失を低減できることがわかる。
FIG. 6 shows a single mode optical fiber and MQW.
The MQW layer thickness dependence of the coupling loss of light with the waveguide is shown. The spot diameter of the light propagating in the MQW waveguide is MQW.
As the layer thickness becomes thinner, it becomes larger and becomes closer to the spot diameter of the light propagating in the single mode optical fiber.
It can be seen that the coupling loss can be reduced.

【0012】本発明の構造ではMQW層を導波構造に用
い、電界のかかる方向がMQW層と平行になるようにな
っているため、低電界で大きな吸収係数変化、屈折率変
化が得られ、かつ、素子容量はMQW層厚によらず、そ
の幅によって決まるので応答速度の制限要因である素子
容量は小さく、高速応答が可能である。また、MQW層
厚を厚くも薄くもできるので、これを導波する光のモー
ドスポット径は広げられ、シングルモードファイバとの
結合損失が低減でき、素子の挿入損失は小さい。さらに
MQW層に平行に電圧を印加できるようにするために設
けられたP,Nの不純物添加層は、不純物が添加されて
いない部分より、その屈折率やバンドギャップエネルギ
をそれぞれ同じか小さく、または同じか大きくできるの
で、横方向での光の閉じ込めは良好となる。さらに、井
戸層に引っ張り応力を0.3%から0.5%導入し、か
つ、井戸層の厚さを11nmから14nmとして励起子吸
収の振動子強度を大きくし、また、ヘテロ障壁が高い材
料を障壁層に導入して励起子吸収の振動子強度を大きく
しているので、低電界で大きな吸収係数変化、屈折率変
化が得られ、かつ、高光入力下での応答速度に劣化がな
く、ヘテロ障壁が高い材料を用いることができ、量子サ
イズ効果を有効に利用することができる。
In the structure of the present invention, the MQW layer is used for the waveguide structure, and the direction in which the electric field is applied is parallel to the MQW layer. Therefore, a large change in absorption coefficient and a large change in refractive index can be obtained in a low electric field. In addition, since the element capacitance is determined by the width of the MQW layer, not by the MQW layer thickness, the element capacitance which is the limiting factor of the response speed is small and a high speed response is possible. Further, since the MQW layer can be made thicker or thinner, the mode spot diameter of light guided therethrough can be widened, the coupling loss with the single mode fiber can be reduced, and the insertion loss of the element is small. Further, the P and N impurity-added layers provided to enable the voltage to be applied in parallel to the MQW layer have the same or smaller refractive index and bandgap energy than those of the undoped portion, or The light confinement in the lateral direction is good because it can be the same or larger. Furthermore, a tensile stress of 0.3% to 0.5% is introduced into the well layer, and the thickness of the well layer is set to 11 nm to 14 nm to increase the exciton absorption oscillator strength and a material having a high hetero barrier. Is introduced into the barrier layer to increase the exciton absorption oscillator strength, a large absorption coefficient change and refractive index change can be obtained in a low electric field, and the response speed under high light input does not deteriorate. A material having a high hetero barrier can be used, and the quantum size effect can be effectively used.

【0013】[0013]

【実施例】つぎに、本発明の実施例を図面とともに説明
する。図1は本発明による導波形多重量子井戸光制御素
子の一実施例を示す図である。絶縁性InP基板1の上
に有機金属気相成長法(MOVPE)または分子線エピ
タキシャル法(MBE)により、ノンドープInPクラ
ッド層2を0.5μm、厚さ12nmの引っ張り応力0.
4%を導入したInGaAsP層を井戸層とし、厚さ5nm
のInP層を障壁層とする量子井戸構造20層からなる
MQW光導波層3、ノンドープInPクラッド層4を1
〜2μm,InGaAsキャップ層5を0.5μm成長し
た。なお、上記それぞれのInPクラッド層2および4
が第3半導体層に該当する。つぎに、SiN膜をマスク
として各層に垂直な面内で幅1〜4μmを挾んで、互い
に一方を他方とその導電形が異なるように不純物を添加
した結晶を成長して、外部から上記MQW層に平行に電
圧を印加できるように、p形不純物を添加した部分6お
よびn形不純物を添加した部分7を形成する。このと
き、上記不純物を添加した部分の屈折率やバンドギャッ
プエネルギを、上記不純物が添加されていない部分より
も、それぞれ同じか小さく、あるいは同じか大きくして
おく。つぎに、不純物がない領域上のキャップ層5を選
択的に除去して、不純物を添加した領域6および7の部
分に、それぞれp電極18およびn電極19を形成す
る。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a waveguide type multiple quantum well light control device according to the present invention. On the insulating InP substrate 1, a non-doped InP clad layer 2 having a tensile stress of 0.5 μm and a thickness of 12 nm is formed by metalorganic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE).
The InGaAsP layer containing 4% is used as a well layer and has a thickness of 5 nm.
The MQW optical waveguide layer 3 and the non-doped InP clad layer 4 each consisting of 20 quantum well structure layers using the InP layer as a barrier layer
˜2 μm, InGaAs cap layer 5 was grown to 0.5 μm. In addition, each of the above InP clad layers 2 and 4
Corresponds to the third semiconductor layer. Next, using the SiN film as a mask, a width of 1 to 4 μm is sandwiched in a plane perpendicular to each layer to grow crystals doped with impurities such that one has a conductivity type different from the other, and the MQW layer is externally applied. A portion 6 to which a p-type impurity has been added and a portion 7 to which an n-type impurity has been added are formed so that a voltage can be applied in parallel with. At this time, the refractive index and the band gap energy of the portion to which the impurities are added are set to be the same, smaller, or the same or larger than those of the portions to which the impurities are not added. Next, the cap layer 5 on the impurity-free region is selectively removed, and the p-electrode 18 and the n-electrode 19 are formed in the impurity-added regions 6 and 7, respectively.

【0014】上記実施例はInGaAsP/InP系MQW
構造に対して記載したが、本発明は他のMQW構造、例
えばInGaAs/InAlAs,InGaAsP/InGaAs
P,InGaAs/InGaAsP,InGaAlAs/InAlA
s,GaAs/AlGaAs等のMQW構造にも、それぞれ適
用できることはいうまでもない。
The above embodiment is an InGaAsP / InP MQW.
Although described with respect to structures, the present invention is not limited to other MQW structures, such as InGaAs / InAlAs, InGaAsP / InGaAs.
P, InGaAs / InGaAsP, InGaAlAs / InAlA
It goes without saying that the present invention can be applied to MQW structures such as s, GaAs / AlGaAs and the like.

【0015】[0015]

【発明の効果】上記のように、本発明による導波形多重
量子井戸光制御素子は、第1と第2のバンドギャップを
それぞれ有する第1と第2の半導体層からなり、その厚
さがボーア半径より薄い多層異種構造から構成される多
重量子井戸半導体装置における上記多重量子井戸層の両
側を、第1の半導体と同等かそれより小さい屈折率をも
つ第3の半導体で挾んだ導波構造を形成し、上記導波構
造を上記各層に垂直な面内で挾んで、互いに一方を他方
とはその導電形が異なるように不純物を添加して、外部
から上記多重量子井戸層に平行に電圧を印加できるよう
にした導波形多重量子井戸光制御素子において、上記井
戸層の厚さを11nmから14nmとし、かつ、上記井戸
層に引っ張り応力を0.3%から0.5%導入したことに
より、導波路の幅を1〜4μm程度に設定しておけばM
QW層にかかる電界の強さを適当にすることができ、か
つ、駆動電圧は最大数Vで動作する。このとき素子容量
は導波路の幅で規定できるので、MQW層に垂直に電界
をかけていた従来の素子に比べ、数倍から1桁以上の高
速応答が観測される。また、MQW層の厚さを素子容量
とは無関係にできるので、MQW層厚を0.05〜0.6
μmと薄くあるいは厚くして、光ファイバとの結合効率
を、これまでのMQW層と垂直に電界をかけていた素子
に比べ数倍良好にすることができる。さらに、井戸層に
引っ張り応力を0.3%から0.5%導入し、かつ、井戸
層の厚さを11nmから14nmとして励起子吸収の振動
子強度を大きくし、また、ヘテロ障壁が高い材料を障壁
層に導入して励起子吸収の振動子強度を大きくしている
ので、低電界で大きな吸収係数変化や屈折率変化が得ら
れ、かつ、高光入力下での応答速度の劣化がなく、ヘテ
ロ障壁が高い材料を用いることができ、量子サイズ効果
を有効に利用することができる。
As described above, the waveguide type multi-quantum well optical control device according to the present invention comprises the first and second semiconductor layers having the first and second band gaps, respectively, and has a thickness of Bohr. A waveguide structure in which both sides of the multi-quantum well layer in a multi-quantum well semiconductor device composed of multi-layered heterostructures thinner than the radius are sandwiched by a third semiconductor having a refractive index equal to or smaller than that of the first semiconductor. And sandwiching the waveguide structure in a plane perpendicular to the layers, adding impurities so that one of them has a different conductivity type from the other, and a voltage is applied in parallel to the multiple quantum well layer from the outside. In the waveguide-type multi-quantum well optical control device capable of applying a voltage, the thickness of the well layer is set to 11 nm to 14 nm, and the tensile stress is introduced to the well layer from 0.3% to 0.5%. , The width of the waveguide If set to about 1 to 4 μm, M
The strength of the electric field applied to the QW layer can be made appropriate, and the drive voltage operates at a maximum of several volts. At this time, since the element capacitance can be defined by the width of the waveguide, a high speed response of several times to one digit or more is observed as compared with the conventional element in which an electric field is applied perpendicularly to the MQW layer. Since the thickness of the MQW layer can be made independent of the device capacitance, the MQW layer thickness is set to 0.05 to 0.6.
By making the thickness as thin or thick as μm, the coupling efficiency with the optical fiber can be made several times better than that of an element in which an electric field was perpendicularly applied to the MQW layer. Furthermore, a tensile stress of 0.3% to 0.5% is introduced into the well layer, and the thickness of the well layer is set to 11 nm to 14 nm to increase the exciton absorption oscillator strength and a material having a high hetero barrier. Is introduced into the barrier layer to increase the oscillator strength of exciton absorption, a large absorption coefficient change and refractive index change can be obtained in a low electric field, and there is no deterioration in response speed under high light input. A material having a high hetero barrier can be used, and the quantum size effect can be effectively used.

【0016】さらにまた、本発明は吸収係数変化を利用
した強度変調器を対象に説明したが、吸収係数変化は屈
折率変化とクラマース・クレーニッヒの関係により結び
つけられており、屈折率変化を利用した位相変調器や、
屈折率変化に伴う干渉を利用した強度変調器にも適用で
きることはいうまでもない。
Furthermore, although the present invention has been described for the intensity modulator using the change of the absorption coefficient, the change of the absorption coefficient is linked by the relationship between the change of the refractive index and the Kramers-Krenig, and the change of the refractive index is used. Phase modulator,
It goes without saying that the present invention can also be applied to an intensity modulator using interference caused by a change in refractive index.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による導波形多重量子井戸光制御素子の
一実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a waveguide type multiple quantum well light control device according to the present invention.

【図2】多重量子井戸構造に電界を印加したときの吸収
係数の変化を示す図で、(a)は垂直方向に印加したと
き、(b)は平行方向に印加したときを示す図である。
2A and 2B are diagrams showing a change in absorption coefficient when an electric field is applied to a multiple quantum well structure, wherein FIG. 2A is a vertical application and FIG. 2B is a parallel application. .

【図3】従来の多重量子井戸構造に垂直な方向に電界を
印加する導波形多重量子井戸光制御素子の構成を示す図
である。
FIG. 3 is a diagram showing a configuration of a waveguide-type multi-quantum well optical control device that applies an electric field in a direction perpendicular to a conventional multi-quantum well structure.

【図4】従来の多重量子井戸構造に平行な方向に電界を
印加する導波形多重量子井戸光制御素子の構成を示す図
である。
FIG. 4 is a diagram showing a configuration of a waveguide-type multi-quantum well optical control element that applies an electric field in a direction parallel to a conventional multi-quantum well structure.

【図5】従来の多重量子井戸構造の垂直方向に電界を印
加した際の、導波形多重量子井戸光制御素子の素子性能
を示す図である。
FIG. 5 is a diagram showing device performance of a waveguide type multiple quantum well optical control device when an electric field is applied in the vertical direction of a conventional multiple quantum well structure.

【図6】従来の多重量子井戸構造の垂直方向に電界を印
加した際の、導波形多重量子井戸光制御素子の結合損失
の変化を示す図である。
FIG. 6 is a diagram showing changes in coupling loss of a waveguide type multiple quantum well optical control device when an electric field is applied in the vertical direction of a conventional multiple quantum well structure.

【図7】多重量子井戸層の両側を導電形が異なる半導体
層で挾み導波構造を形成した導波形多重量子井戸光制御
素子の構成例を示す図である。
FIG. 7 is a diagram showing a configuration example of a waveguide type multiple quantum well optical control device in which a waveguide structure is formed by sandwiching both sides of a multiple quantum well layer with semiconductor layers having different conductivity types.

【図8】本発明の原理を説明するための図である。FIG. 8 is a diagram for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

2,4…第3半導体(InPクラッド層) 3…多重量子井戸層 6…p形不純物領域 7…n形不純物領域 2, 4 ... Third semiconductor (InP cladding layer) 3 ... Multiple quantum well layer 6 ... P-type impurity region 7 ... N-type impurity region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1と第2のバンドギャップを、それぞれ
有する第1と第2の半導体層からなり、その厚さがボー
ア半径より薄い多層異種構造から構成される多重量子井
戸半導体装置における上記多重量子井戸層の両側を、第
1の半導体と同等か、それより小さい屈折率をもつ第3
の半導体で挾んだ導波構造を形成し、上記導波構造を上
記各層に垂直な面内で挾んで、互いに一方を他方とはそ
の導電形が異なるように不純物を添加して、外部から上
記多重量子井戸層に平行に電圧を印加できるようにした
導波形多重量子井戸光制御素子において、上記井戸層の
厚さを11nmから14nmとし、かつ、上記井戸層に引
っ張り応力を0.3%から0.5%導入したことを特徴と
する導波形多重量子井戸光制御素子。
1. A multi-quantum well semiconductor device comprising a first and second semiconductor layers having first and second band gaps, respectively, and having a multi-layered heterostructure having a thickness smaller than a Bohr radius. A third semiconductor layer having a refractive index equal to or smaller than that of the first semiconductor is formed on both sides of the multiple quantum well layer.
Form a sandwiched waveguide structure, sandwich the waveguide structure in a plane perpendicular to each layer, and add impurities so that one of them has a different conductivity type from the other, In a waveguide type multi-quantum well optical control device capable of applying a voltage in parallel to the multi-quantum well layer, the well layer has a thickness of 11 nm to 14 nm and a tensile stress of 0.3%. A waveguide type multi-quantum well optical control device characterized by being introduced from 0.5% to 0.5%.
【請求項2】上記導波構造は、不純物が添加されていな
い幅を1〜4μmとし、その厚さを0.05〜0.6μm
として、上記導波構造を伝搬する光波の、光導波構造に
おける横方向のスポット径と上下方向のスポット径と
を、ほぼ等しくしたことを特徴とする請求項1記載の導
波形多重量子井戸制御素子。
2. The waveguide structure has a width not doped with impurities of 1 to 4 μm and a thickness of 0.05 to 0.6 μm.
2. The waveguide type multiple quantum well control device according to claim 1, wherein the spot diameter in the lateral direction and the spot diameter in the vertical direction of the light wave propagating in the waveguide structure are made substantially equal to each other. .
JP4804795A 1995-03-08 1995-03-08 Waveguide type multiple quantum well optical control element Pending JPH08248363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4804795A JPH08248363A (en) 1995-03-08 1995-03-08 Waveguide type multiple quantum well optical control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4804795A JPH08248363A (en) 1995-03-08 1995-03-08 Waveguide type multiple quantum well optical control element

Publications (1)

Publication Number Publication Date
JPH08248363A true JPH08248363A (en) 1996-09-27

Family

ID=12792423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4804795A Pending JPH08248363A (en) 1995-03-08 1995-03-08 Waveguide type multiple quantum well optical control element

Country Status (1)

Country Link
JP (1) JPH08248363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798552B2 (en) 2002-02-18 2004-09-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor light modulator
JP2013222844A (en) * 2012-04-17 2013-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor element
CN103985799A (en) * 2014-06-05 2014-08-13 天津三安光电有限公司 Light-emitting diode and manufacturing method thereof
JP2015015396A (en) * 2013-07-05 2015-01-22 日本電信電話株式会社 Optical semiconductor element
JP2016171173A (en) * 2015-03-12 2016-09-23 日本電信電話株式会社 Semiconductor optical element
JP2019054107A (en) * 2017-09-14 2019-04-04 日本電信電話株式会社 Semiconductor optical element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798552B2 (en) 2002-02-18 2004-09-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor light modulator
JP2013222844A (en) * 2012-04-17 2013-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor element
JP2015015396A (en) * 2013-07-05 2015-01-22 日本電信電話株式会社 Optical semiconductor element
CN103985799A (en) * 2014-06-05 2014-08-13 天津三安光电有限公司 Light-emitting diode and manufacturing method thereof
JP2016171173A (en) * 2015-03-12 2016-09-23 日本電信電話株式会社 Semiconductor optical element
JP2019054107A (en) * 2017-09-14 2019-04-04 日本電信電話株式会社 Semiconductor optical element

Similar Documents

Publication Publication Date Title
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
JPH0715093A (en) Optical semiconductor element
EP0549132B1 (en) Article comprising a semiconductor body and means for modulating the optical transparency of the same
EP0790521B1 (en) Electro-absorption optical modulator
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JPH08146365A (en) Semiconductor mach-zehnder modulation device and its production
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JP3145718B2 (en) Semiconductor laser
JPH033384A (en) Semiconductor optical element
JP3208418B2 (en) Semiconductor quantum well optical modulator
JP2762490B2 (en) Optical element
JPS623221A (en) Optical modulator
JPH0728104A (en) Light modulation element
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
JP2760276B2 (en) Selectively grown waveguide type optical control device
JPH05259567A (en) Waveguide type multiple quantum well light control element
JPH07191288A (en) Waveguide type single quantum well optical control element
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JP4103490B2 (en) Light modulator
JP3527078B2 (en) Light control element
JPH06102476A (en) Semiconductor optical modulator, semiconductor photodetector and integrated light source and its production
JPH09101491A (en) Semiconductor mach-zehnder modulator and its production
JPH1062732A (en) Semiconductor quantum well optical modulator
JPH0961764A (en) Semiconductor optical phase modulator and its use method