JPH0530254B2 - - Google Patents

Info

Publication number
JPH0530254B2
JPH0530254B2 JP1085686A JP1085686A JPH0530254B2 JP H0530254 B2 JPH0530254 B2 JP H0530254B2 JP 1085686 A JP1085686 A JP 1085686A JP 1085686 A JP1085686 A JP 1085686A JP H0530254 B2 JPH0530254 B2 JP H0530254B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
well structure
electric field
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1085686A
Other languages
Japanese (ja)
Other versions
JPS62169115A (en
Inventor
Sukya Hiroshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1085686A priority Critical patent/JPS62169115A/en
Publication of JPS62169115A publication Critical patent/JPS62169115A/en
Publication of JPH0530254B2 publication Critical patent/JPH0530254B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低電圧で駆動して高い消光比が得ら
れ、かつ高速変調が可能な光変調器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical modulator that can be driven at low voltage to obtain a high extinction ratio and that can perform high-speed modulation.

(従来の技術) 電界印加により生じる量子井戸内の電子もしく
は正孔のエネルギー準位の変化を利用する光変調
器が、山西氏により提案され、ジヤパニーズ・ジ
ヤーナル・オブ・アプライド・フイジツクス
(Japanese Journal of Applied Physics)誌
1983年22巻 L22ページに報告されている。これ
は、電界を印加することによつて量子井戸層の光
吸収スペクトルを全体として長波長側にずらし、
これにより生じる長波長領域の光吸収係数の増大
を利用するものである。
(Prior art) An optical modulator that utilizes changes in the energy level of electrons or holes in a quantum well caused by the application of an electric field was proposed by Dr. Yamanishi and published in the Japanese Journal of Applied Physics. Applied Physics) magazine
Reported in Volume 22, page L22, 1983. This is done by shifting the optical absorption spectrum of the quantum well layer as a whole toward longer wavelengths by applying an electric field.
This makes use of the increase in the light absorption coefficient in the long wavelength region that results from this.

(発明が解決しようとする問題点) 上述の従来の光変調器は、電界により光吸収ス
ペクトルが長波長側にずれる場合、同時に電子と
正孔の波動関数が相互に空間的に分離し、光吸収
確率が小さくなり、このために長波長側に移動し
た光吸収端付近の吸収係数が小さくなるという欠
点を有する。また、高い消光比を得るために必要
となる駆動電圧も実用上はまだ高めである。
(Problems to be Solved by the Invention) In the conventional optical modulator described above, when the optical absorption spectrum shifts to the long wavelength side due to an electric field, the wave functions of electrons and holes are spatially separated from each other at the same time, and the optical This has the disadvantage that the absorption probability becomes small, and therefore the absorption coefficient near the optical absorption edge shifted to the long wavelength side becomes small. Furthermore, the driving voltage required to obtain a high extinction ratio is still high in practice.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供す
る光変調器は、少なくとも3角つの導体層を順次
に積層してなり、これらの層の層厚の和が電子の
平均自由行程より小さい量子井戸層と、この量子
井戸層を構成するいずれの半導体層よりも大きな
禁制帯幅を有する半導体層からなる障壁層とを交
互に積層してなる多重量子井戸構造を含み、この
多重量子井戸構造の積層方向に電界を印加する手
段を有する光変調器において、前記量子井戸層を
構成する複数の半導体層のうち前記障壁層と隣接
していない少なくとも1つの半導体層がこの半導
体層に接接する半導体層より狭い禁制帯幅を有す
る狭禁制帯幅層であり、前記量子井戸層のこの狭
禁制帯幅層を除く部分の禁制帯幅が積層方向に関
して単調に変化していることに特徴がある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, an optical modulator provided by the present invention is made up of at least three conductor layers laminated in sequence, and the thickness of these layers is A multiple quantum well formed by alternately stacking quantum well layers whose sum is smaller than the mean free path of an electron and barrier layers made of semiconductor layers having a larger forbidden band width than any of the semiconductor layers constituting the quantum well layers. structure, and has means for applying an electric field in the stacking direction of the multi-quantum well structure, at least one semiconductor which is not adjacent to the barrier layer among the plurality of semiconductor layers constituting the quantum well layer. The layer is a narrow bandgap layer having a narrower bandgap width than a semiconductor layer in contact with this semiconductor layer, and the bandgap width of a portion of the quantum well layer excluding this narrow bandgap layer changes monotonically with respect to the stacking direction. There is something special about what you do.

(作用) 以下、図面を参照して本発明の作用を説明す
る。以下の説明は、理解を容易にするるため、多
重量子井戸構造に含まれている一つの量子井戸構
造(1つの量子井戸層と、その両側の2つの障壁
層から成る)に注目する。ただし、他の量子井戸
構造についても全く同様の作用が生ずる。
(Function) Hereinafter, the function of the present invention will be explained with reference to the drawings. For ease of understanding, the following description focuses on one quantum well structure (consisting of one quantum well layer and two barrier layers on both sides thereof) included in the multiple quantum well structure. However, exactly the same effect occurs with other quantum well structures.

第1図a,bは、電界を印加しないとき(本図
a)、及び電界を積層方向に印加したとき(本図
b)の、本発明による量子井戸構造の模式的なバ
ンド構造と、電子及び正孔の波動関数を示す図で
ある。第2図a,bは電界を印加しないとき(本
図a)、及び電界を積層方向に印加したとき(本
図b)の従来の矩形量子井戸構造の模式的なバン
ド構造と、電子及び正孔の波動関数を示す図であ
る。
Figures 1a and 1b show the schematic band structure of the quantum well structure according to the present invention and electron FIG. 3 is a diagram showing wave functions of and holes. Figures 2a and b show the schematic band structure of a conventional rectangular quantum well structure when no electric field is applied (Figure a), and when an electric field is applied in the stacking direction (Figure b), and the electron and positive It is a figure which shows the wave function of a hole.

このような量子井戸内の電子状態の解析に広く
用いられている通常の有効質量近似による解析の
結果、本発明の量子井戸構造では、積層方向への
電界印加によつて光吸収端の長波長化が容易で、
従来の矩形量子井戸構造に比べて同一電界を印加
したときの波長移動量が大きいことが示された。
第4図は、積層方向に電界を印加したときにおけ
る光吸収端のシフト量を示す図である(本図にお
いて符号41は、本発明の量子井戸構造の特性線
を示し、また符号42は従来の矩形量子井戸構造
の特性線を示す)。この第4図より、本発明の量
子井戸構造は、従来の矩形量子井戸構造にくらべ
て小さな電界強度において大きい光吸収端変化を
誘起することがわかる。ただしこの計算例では量
子井戸層厚は100Åとした。また、本発明の量子
井戸構造においては、量子井戸層内の狭禁制帯幅
層厚は10Åとした。第4図での電界の方向は第1
図b及び第2図bに示した方向である。
As a result of analysis using the ordinary effective mass approximation that is widely used to analyze the electronic state in quantum wells, it was found that in the quantum well structure of the present invention, the long wavelength of the optical absorption edge can be adjusted by applying an electric field in the stacking direction. It is easy to convert
It was shown that the amount of wavelength shift when the same electric field is applied is larger than that of the conventional rectangular quantum well structure.
FIG. 4 is a diagram showing the amount of shift of the optical absorption edge when an electric field is applied in the stacking direction (in this figure, reference numeral 41 indicates the characteristic line of the quantum well structure of the present invention, and reference numeral 42 indicates the conventional ) shows the characteristic line of a rectangular quantum well structure. From FIG. 4, it can be seen that the quantum well structure of the present invention induces a large optical absorption edge change at a small electric field intensity compared to the conventional rectangular quantum well structure. However, in this calculation example, the quantum well layer thickness was set to 100 Å. Further, in the quantum well structure of the present invention, the narrow bandgap layer thickness in the quantum well layer was 10 Å. The direction of the electric field in Figure 4 is the first
This is the direction shown in Figure b and Figure 2b.

近似的に光吸収係数の比例するところの重なり
積分の2乗|Mcv|2の電界依存性を第5図に示
した。ここでMcvは電子の波動関数をΨe〈Z〉,
正孔の波動関数をΨh〈Z〉としたとき、 Mcv=∫ -∞dZΨe〈Z〉Ψh〈Z〉 で与えられる(第5図において符号51は本発明
の量子井戸構造の特性線を示し、符号52は従来の
矩形量子井戸構造の特性線を示す)。第4図と第
5図から、同じだけの光吸収端の長波長化を行な
う電界強度においては、重なり積分2乗|Mcv
2の値は、本発明の量子井戸構造における方が、
従来の矩形量子井戸構造におけるものよりも大き
いことがわかる。ただし、この計算例では量子井
戸層厚は100Å、また本発明の量子井戸構造にお
いては量子井戸層内の狭禁制帯幅層厚は10Åとし
た。また、第5図での電界の方向は第1図b及び
第2図bに示した方向である。
Figure 5 shows the electric field dependence of the square of the overlap integral |Mcv| 2 , which is approximately proportional to the light absorption coefficient. Here, Mcv is the electron wave function Ψ e 〈Z〉,
When the wave function of a hole is Ψ h 〈Z〉, it is given by Mcv=∫ -∞ dZΨ e 〈Z〉Ψ h 〈Z〉 (In Fig. 5, the symbol 51 indicates the characteristics of the quantum well structure of the present invention. 52 indicates a characteristic line of a conventional rectangular quantum well structure). From Figures 4 and 5, it can be seen that for the electric field strength that lengthens the wavelength of the optical absorption edge by the same amount, the square of the overlap integral | Mcv
| The value of 2 is higher in the quantum well structure of the present invention.
It can be seen that this is larger than that in the conventional rectangular quantum well structure. However, in this calculation example, the quantum well layer thickness was 100 Å, and in the quantum well structure of the present invention, the narrow bandgap layer thickness in the quantum well layer was 10 Å. Further, the direction of the electric field in FIG. 5 is the direction shown in FIG. 1b and FIG. 2b.

第6図は、電界による光吸収係数の変化を、本
発明の量子井戸構造について模式的に示す図であ
る。
FIG. 6 is a diagram schematically showing the change in light absorption coefficient due to an electric field for the quantum well structure of the present invention.

なお、量子井戸層が一層だけからなり、単に、
その禁制帯幅が単調に変化しているだけのものよ
り、本発明の量子井戸構造は大きな光吸収係数を
持つ。第4図の特性線43及び第5図の特性線5
3は、それぞれ量子井戸層が一層だけからなり、
単にその禁制帯幅が単調に変化している量子井戸
構造の積層方向に電界を印加したときにおける光
吸収端のシフト量及び重なり積分の2乗|Mcv
2の値の電界依存性を示す。第3図a,bはこ
の量子井戸構造において電界を印加しないとき
(本図a)と、電界を印加したとき(本図b)の
模式的なバンド構造と、電子及び正孔の波動関数
を示す図である。この計算例では量子井戸層厚は
100Åとした。第4図と第5図から量子井戸層が
一層だけからなり単にその禁制帯幅が単調に変化
しているだけの量子井戸構造では、電界による光
吸収端のシフト量は本発明の量子井戸構造とほぼ
同程度であるが、重なり積分2乗|Mcv|2の値
は本発明の量子井戸構造におけるものより電界印
加により大きく低減し、よつて光吸収確率が小さ
くなる欠点を有することがわかる。本発明におけ
る量子井戸構造では、その中に狭禁制帯幅層を設
けることにより、上記の欠点を回避する。すなわ
ち、量子井戸層内の狭禁制帯幅は電子の波動関数
を補捉する役割を果たすから、電界印加によつて
も電子の波動関数の拡がりは抑制され、従つて重
なり積分の2乗|Mcv|2の値は小さくなりにく
い。また、この狭禁制帯幅層は、電子の波動関数
をわずかに捕捉する役割を果たせばよいから、単
一でなく複数であつてもよく、またその位置は中
央付近であれば必ずしも量子井戸層の中央にある
必要はない。
Note that the quantum well layer consists of only one layer, and is simply
The quantum well structure of the present invention has a larger optical absorption coefficient than one in which the forbidden band width simply changes monotonically. Characteristic line 43 in Figure 4 and characteristic line 5 in Figure 5
3, each quantum well layer consists of only one layer,
The amount of shift of the optical absorption edge and the square of the overlap integral when an electric field is simply applied in the stacking direction of a quantum well structure whose forbidden band width changes monotonically | Mcv
| Shows the electric field dependence of the value of 2 . Figures 3a and 3b show the schematic band structure and wave functions of electrons and holes in this quantum well structure when no electric field is applied (Figure a) and when an electric field is applied (Figure b). FIG. In this calculation example, the quantum well layer thickness is
It was set to 100Å. From FIGS. 4 and 5, it is clear that in a quantum well structure in which the quantum well layer consists of only one layer and its forbidden band width simply changes monotonically, the amount of shift of the light absorption edge due to the electric field is the same as in the quantum well structure of the present invention. However, it can be seen that the value of the square of the overlap integral |Mcv| 2 is reduced by applying an electric field to a greater extent than in the quantum well structure of the present invention, which has the disadvantage that the probability of light absorption is reduced. The quantum well structure of the present invention avoids the above-mentioned drawbacks by providing a narrow bandgap layer therein. In other words, since the narrow bandgap in the quantum well layer plays the role of capturing the electron wave function, the broadening of the electron wave function is suppressed even when an electric field is applied, and therefore the square of the overlap integral |Mcv | The value of 2 is difficult to become small. In addition, since this narrow bandgap layer only has to play the role of slightly trapping the wave function of electrons, it is possible to have multiple layers instead of a single layer, and if the narrow bandgap layer is located near the center, it does not necessarily correspond to the quantum well layer. It doesn't have to be in the center.

最後に本発明の光変調器の基本動作をまとめ
る。まず光変調器に入射する光の周波数に対応す
るエネルギーを、電界印加を行なわない場合の光
吸収端よりわずかに低エネルギー側にしておき、
光変調器は光を通過できる状態にしておく。次に
電界(電界の方向は第1図bと同じ)を印加する
ことにより光吸収端を低エネルギー側へずらせ、
光を吸収させて光変調器が光を透過できない状態
にする。
Finally, the basic operation of the optical modulator of the present invention will be summarized. First, the energy corresponding to the frequency of light incident on the optical modulator is set to be slightly lower than the optical absorption edge when no electric field is applied.
The optical modulator is left in a state that allows light to pass through it. Next, by applying an electric field (the direction of the electric field is the same as in Figure 1b), the optical absorption edge is shifted to the lower energy side.
It absorbs light and makes it impossible for the optical modulator to transmit the light.

以上の一連の動作で、本発明の量子井戸構造を
もつ光変調器は、低電圧駆動による電界印加によ
つて入射光を有効に遮断する機能を有する。
Through the above series of operations, the optical modulator having a quantum well structure of the present invention has a function of effectively blocking incident light by applying an electric field by low voltage driving.

(実施例) 次に本発明の実施例を挙げ説明する。(Example) Next, examples of the present invention will be described.

第7図aに本発明の第1の実施例を斜視図で示
し、同図bにこの実施例における多重量子井戸構
造を拡大断面図で示す。この実施例は、分子線エ
ピタキシー(MBE)法により製作したものであ
る。この実施例の製作に当つては、まずSiドープ
n型GaAs基板71上に厚さ1.0μmのSiドープn
型GaAsバツフアー層72、厚さ2.0μmのSiドー
プn型Al0.4Ga0.6Asクラツド層73を積層する。
次にAl組成比xを0から0.075まで連続的に変化
させた厚さ45ÅのノンドープAlxGa1-xAs層74
1と、厚さ10ÅのノンドープGaAs層742と、
Al組成比xを0.075から0.15まで連続的に変化さ
せた厚さ45ÅのノンドープAlxGa1-xAs層743
の3つの層をこの順に積層してなり全体として厚
さが100Åである量子井戸層74と、厚さ80Åの
ノンドープAl0.4Ga0.6As障壁層75とを交互に30
周期積層する。その上に厚さ2.0μmのBeドープ
p型Al0.4Ga0.6Asクラツド層76、厚さ0.5μmの
Beドープp型GaAsコンタクト層77を成長して
多層構造を製作した。第7図bの多重量子井戸構
造の部分断面図は同図aに符号で示す円内の一
部である。次にこれを5×5mm程度の大きさに
し、上面及び下面のGaAs層を選択エツチングに
より円形に除去し、それ以外のGaAs層上に電極
78を形成してこの実施例の製作を完了した。
FIG. 7a shows a first embodiment of the present invention in a perspective view, and FIG. 7b shows an enlarged sectional view of a multiple quantum well structure in this embodiment. This example was manufactured using the molecular beam epitaxy (MBE) method. In manufacturing this example, first, a 1.0 μm thick Si-doped n
A type GaAs buffer layer 72 and a Si-doped n-type Al 0.4 Ga 0.6 As cladding layer 73 having a thickness of 2.0 μm are laminated.
Next, a non-doped Al x Ga 1-x As layer 74 with a thickness of 45 Å was formed in which the Al composition ratio x was continuously changed from 0 to 0.075.
1, a non-doped GaAs layer 742 with a thickness of 10 Å,
Non-doped Al x Ga 1-x As layer 743 with a thickness of 45 Å with the Al composition ratio x continuously changed from 0.075 to 0.15
A quantum well layer 74 having a total thickness of 100 Å and a non-doped Al 0.4 Ga 0.6 As barrier layer 75 having a thickness of 80 Å are alternately stacked in this order.
Layer periodically. On top of that is a Be-doped p-type Al 0.4 Ga 0.6 As cladding layer 76 with a thickness of 2.0 μm, and a cladding layer 76 with a thickness of 0.5 μm.
A Be-doped p-type GaAs contact layer 77 was grown to fabricate a multilayer structure. The partial cross-sectional view of the multiple quantum well structure in FIG. 7b is a part of the circle indicated by the reference numeral in FIG. 7a. Next, this was made into a size of about 5 x 5 mm, the upper and lower GaAs layers were removed in a circular shape by selective etching, and electrodes 78 were formed on the remaining GaAs layers to complete the fabrication of this example.

この円形のGaAs層を除去した部分に垂直方向
に光を入射し、電圧を上記電極間に印加して透過
光スペクトルの電圧依存性を調べた。電圧を正方
向、つまりn側の電極を接地し、p側の電極に負
の電圧を印加した際には、光吸収端は長波長化し
た。+2Vから0Vまでの電圧を印加した際の光吸
収端の変化量は−6meVから0meVであり、光吸
収端近傍の光吸収率がほとんど変動しなかつた。
そして光変調性は良好であつた。
Light was incident perpendicularly to this circular portion where the GaAs layer was removed, and a voltage was applied between the electrodes to examine the voltage dependence of the transmitted light spectrum. When the voltage was applied in the positive direction, that is, when the n-side electrode was grounded and a negative voltage was applied to the p-side electrode, the light absorption edge became longer wavelength. When a voltage from +2 V to 0 V was applied, the amount of change in the optical absorption edge was from -6 meV to 0 meV, and the optical absorption rate near the optical absorption edge hardly changed.
And the light modulation properties were good.

次に本発明の第2の実施例について説明する。
第8図aは本実施例の斜視図、同図bはこの実施
例における多重量子井戸構造の拡大断面図であ
る。この実施例の製作に当つてはまず気相成長法
によりSドープn型InP基板81上に厚さ2.0μm
のSドープn型InPバツフアー層82を積層し、
次にAs組成比xを0.50から0.55まで連続的に変化
させた厚さ50ÅのノンドープIn0.75Ga0.25ASxP1-x
層831と、厚さ20ÅのノンドープIn0.75Ga0.25
As0.50P0.50層832とAs組成比xを0.55から0.60
まで連続的に変化させた厚さ50Åのノンドープ
In0.75Ga0.25AsxP1-x層833の3つの層をこの順
に積層してなり全体として厚さが120Åの量子井
戸層83と、厚さ60ÅのノンドープInP障壁層8
4を交互に6周期積層し、その上に厚さ2.5μmの
Zoドープp型InPクラツド層85、厚さ0.5μmの
Zoドープp型InGaAsPコンタクト層86を積層
した基板を製作した。第8図bに示す多重量子井
戸構造の部分断面図は、同図aに符号Iで示す円
内の一部である。次に基板の両面に電極87を形
成し、そして基板上面にCVD法によりSiO2膜を
付着させた後に通常のフオトリソグラフイー法に
より、1.5μm幅のストライプ状にSiO2を残して他
のSiO2を除去し、しかる後にSiO2の付着してい
ない部分をn型InPバツフアー層82までエツチ
ングにより除去してから、残つていたSiO2を取
り去つて導波路構造を形成し、実施例を完成し
た。
Next, a second embodiment of the present invention will be described.
FIG. 8a is a perspective view of this embodiment, and FIG. 8b is an enlarged sectional view of the multiple quantum well structure in this embodiment. In manufacturing this example, first, a film with a thickness of 2.0 μm was deposited on an S-doped n-type InP substrate 81 using a vapor phase growth method.
An S-doped n-type InP buffer layer 82 is laminated,
Next, a non-doped In 0.75 Ga 0.25 AS x P 1-x with a thickness of 50 Å was prepared by changing the As composition ratio x continuously from 0.50 to 0.55.
layer 831 and 20 Å thick undoped In 0.75 Ga 0.25
As 0.50 P 0.50 layer 832 and As composition ratio x from 0.55 to 0.60
A non-doped film with a thickness of 50 Å that was continuously varied up to
Three layers, In 0.75 Ga 0.25 As x P 1-x layer 833, are laminated in this order to form a quantum well layer 83 with a total thickness of 120 Å and a non-doped InP barrier layer 8 with a thickness of 60 Å.
4 was laminated alternately for 6 cycles, and on top of that, a 2.5 μm thick
Z o doped p-type InP cladding layer 85, 0.5 μm thick
A substrate on which a Z o doped p-type InGaAsP contact layer 86 was laminated was manufactured. The partial sectional view of the multiple quantum well structure shown in FIG. 8b is a part of the circle indicated by the symbol I in FIG. 8a. Next, electrodes 87 are formed on both sides of the substrate, and after a SiO 2 film is deposited on the top surface of the substrate by CVD, a 1.5 μm wide stripe of SiO 2 is left and other SiO 2 is deposited using a normal photolithography method. 2 was removed, and then the portion to which SiO 2 was not attached was removed by etching up to the n-type InP buffer layer 82, and the remaining SiO 2 was removed to form a waveguide structure. completed.

この道波路構造に光を入射し、導波させた光の
透過スペクトルの印加電圧依存性を測定したとこ
ろ、印加電圧が+1V,0V,−1Vの際の光吸収端
は、それぞれ1295nm,1305nm,1314nmであつ
た。そして導波路長を200μmとし、波長1300nm
のレーザ光を入射し、上記電圧を変調して印加し
たところ、+1V印加時にはもとのレーザ光強度の
約1%、−1Vでは70%の光が取り出された。この
際の消光比は約18dBであり、非常に高い消光比
であつた。そして、この印加電圧の変調により光
の強度変調を行なつたところ、変調可能であつた
最高周波数は約3GHgであり、しかもこれは電
極間の寄生容量により決定されたものであつて、
素子構造によるものではなかつた。
When light was incident on this waveguide structure and the dependence of the transmission spectrum of the guided light on the applied voltage was measured, the optical absorption edges were 1295 nm, 1305 nm, and 1305 nm, respectively, when the applied voltage was +1V, 0V, and -1V. It was 1314nm. The waveguide length is 200μm, and the wavelength is 1300nm.
When the above voltage was modulated and applied, about 1% of the original laser light intensity was extracted when +1V was applied, and 70% when -1V was applied. The extinction ratio at this time was approximately 18 dB, which was a very high extinction ratio. When the intensity of light was modulated by modulating this applied voltage, the highest frequency that could be modulated was approximately 3 GHg, and this was determined by the parasitic capacitance between the electrodes.
This was not due to the element structure.

以上ここでは2つの実施例について述べたが、
本発明は量子井戸での禁制帯幅の変化のしかた、
材料系、半導体成長方法等において上述の実施例
に何ら限定されない。
Two examples have been described above, but
The present invention describes a method for changing the forbidden band width in a quantum well,
The material system, semiconductor growth method, etc. are not limited to the above-mentioned embodiments.

(発明の効果) 本発明による光変調器は、以上に述べたよう
に、低電圧で高い消光比を得ることができ、かつ
高速変調が可能である。
(Effects of the Invention) As described above, the optical modulator according to the present invention can obtain a high extinction ratio at low voltage and can perform high-speed modulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の原理を説明するための
バンド構造ならびに電子と正孔の波動関数を示す
模式図である。第2図a,bの従来の量子井戸構
造のバンド構造ならびに電子と正孔の波動関数を
示す模式図である。第3図a,bは、量子井戸層
が一層だけからなり、単にその禁制帯幅が単調に
変化しているだけの量子井戸構造のバンド構造な
らびに電子と正孔の波動関数を示す模式図であ
る。第4図は量子井戸構造における電界による光
吸収端の変化量を示す図である。第5図は量子井
戸構造における電界による重なり積分の2乗|
Mcv|2の値の変化を示す図である。第6図は本
発明の量子井戸構造において、電界により光吸収
係数が変化する様子を示す模式図である。第7図
aは本発明の第1の実施例を示す斜視図、同図b
はその実施例における多重量子井戸構造の部分を
示す断面図である。第8図aは本発明の第2の実
施例を示す斜視図、同図bは本図aの実施例にお
ける多重量子井戸構造の部分を示す断面図であ
る。 11,21,31…量子井戸層、12,22,
32…障壁層、13…狭禁制帯幅、41…本発明
の量子井戸構造における光吸収端シフトの電界依
存性を示す特性線、42…従来の矩形量子井戸構
造における光吸収端シフトの電界依存性を示す特
性線、43…量子井戸層が一層だけからなり、単
にその禁制帯幅が単調に変化しているだけの量子
井戸構造における光吸収端シフトの電界依存性を
示す特性線、51…本発明の量子井戸構造におけ
る重なり積分の2乗|Mcv|2の電界依存性を示
す特性線、52…従来の矩形量子井戸構造におけ
る重なり積分の2乗|Mcv|2の電界依存性を示
す特性線、53…量子井戸層が一層だけからな
り、単にその禁制帯幅が単調に変化しているだけ
の量子井戸構造における重なり積分の2乗|
Mcv|2の電界依存性を示す特性線、71…n型
GaAs基板、72…n型GaAsバツフアー層、7
3…n型Al0.4Ga0.6Asクラツド層、74…ノンド
ープ量子井戸層、75…ノンドープAl0.4Ga0.6As
障壁層、76…p型Al0.4Ga0.6Asクラツド層、7
7…p型GaAsコンタクト層、78…電極、74
1…ノンドープAlxGa1-xAs層(0x0.075)、
742…ノンドープGaAs層、743…ノンドー
プAlxGa1-xAs層(0.075x0.15)、81…n型
InP基板、82…n型InPバツフアー層、83…
ノンドープ量子井戸層、84…ノンドープInP障
壁層、85…p型InPクラツド層、86…p型
InGaAsPコンタクト層、87…電極、831…
ノンドープIn0.75Ga0.25AsxP1-x層(0.50x
0.55)、832…ノンドープIn0.75Ga0.25As0.50P0.50
層、833…ノンドープIn0.75Ga0.25AsxP1-x
(0.55x0.60)。
FIGS. 1a and 1b are schematic diagrams showing a band structure and wave functions of electrons and holes for explaining the principle of the present invention. FIG. 2 is a schematic diagram showing the band structure and wave functions of electrons and holes of the conventional quantum well structure shown in FIGS. 2a and 2b. Figures 3a and 3b are schematic diagrams showing the band structure and wave functions of electrons and holes of a quantum well structure in which the quantum well layer consists of only one layer and its forbidden band width simply changes monotonically. be. FIG. 4 is a diagram showing the amount of change in the optical absorption edge due to the electric field in the quantum well structure. Figure 5 is the square of the overlap integral due to the electric field in a quantum well structure |
FIG. 2 is a diagram showing changes in the value of Mcv| 2 . FIG. 6 is a schematic diagram showing how the light absorption coefficient changes depending on the electric field in the quantum well structure of the present invention. Fig. 7a is a perspective view showing the first embodiment of the present invention, Fig. 7b
is a sectional view showing a portion of a multiple quantum well structure in the example. FIG. 8a is a perspective view showing a second embodiment of the present invention, and FIG. 8b is a sectional view showing a portion of the multiple quantum well structure in the embodiment of FIG. 8a. 11, 21, 31...quantum well layer, 12, 22,
32... Barrier layer, 13... Narrow forbidden band width, 41... Characteristic line showing electric field dependence of optical absorption edge shift in quantum well structure of the present invention, 42... Electric field dependence of optical absorption edge shift in conventional rectangular quantum well structure Characteristic line showing the electric field dependence of the optical absorption edge shift in a quantum well structure in which the quantum well layer consists of only one layer and the forbidden band width thereof simply changes monotonically, 51... Characteristic line showing the electric field dependence of the square of the overlap integral |Mcv| 2 in the quantum well structure of the present invention, 52...Characteristic showing the electric field dependence of the square of the overlap integral |Mcv| 2 in the conventional rectangular quantum well structure Line, 53...The square of the overlap integral in a quantum well structure in which the quantum well layer consists of only one layer and its forbidden band width simply changes monotonically |
Characteristic line showing electric field dependence of Mcv| 2 , 71...n type
GaAs substrate, 72...n-type GaAs buffer layer, 7
3...n-type Al 0.4 Ga 0.6 As cladding layer, 74... non-doped quantum well layer, 75... non-doped Al 0.4 Ga 0.6 As
Barrier layer, 76...p-type Al 0.4 Ga 0.6 As cladding layer, 7
7...p-type GaAs contact layer, 78...electrode, 74
1...Non-doped Al x Ga 1-x As layer (0x0.075),
742... Non-doped GaAs layer, 743... Non-doped Al x Ga 1-x As layer (0.075x0.15), 81... N-type
InP substrate, 82... n-type InP buffer layer, 83...
Non-doped quantum well layer, 84... Non-doped InP barrier layer, 85... P-type InP cladding layer, 86... P-type
InGaAsP contact layer, 87...electrode, 831...
Non-doped In 0.75 Ga 0.25 As x P 1-x layer (0.50x
0.55), 832...Non-doped In 0.75 Ga 0.25 As 0.50 P 0.50
Layer, 833...Non-doped In 0.75 Ga 0.25 As x P 1-x layer (0.55x0.60).

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも3つの半導体層を順次に積層して
なりこれらの層の層厚の和が電子の平均自由行程
より小さい量子井戸層と、この量子井戸層を構成
するいずれの半導体層よりも大きな禁制帯幅を有
する半導体層からなる障壁層とを交互に積層して
なる多重量子井戸構造を含み、この多重量子井戸
構造の積層方向に電界を印加する手段を有する光
変調器において、前記量子井戸層を構成する複数
の半導体層のうち前記障壁層と隣接していない少
なくとも1つの半導体層がこの半導体層に接する
半導体層より狭い禁制帯幅を有する狭禁制帯幅層
であり、前記量子井戸層のこの狭禁制帯幅層を除
く部分の禁制帯幅が積層方向に関して単調に変化
していることを特徴とする光変調器。
1. A quantum well layer consisting of at least three semiconductor layers stacked one after another, where the sum of the layer thicknesses of these layers is smaller than the mean free path of an electron, and a forbidden band larger than any of the semiconductor layers constituting this quantum well layer. In an optical modulator, the optical modulator includes a multiple quantum well structure formed by alternately laminating barrier layers made of semiconductor layers having a width, and has means for applying an electric field in the lamination direction of the multiple quantum well structure. Among the plurality of semiconductor layers that constitute the semiconductor layer, at least one semiconductor layer that is not adjacent to the barrier layer is a narrow bandgap layer that has a narrower bandgap than the semiconductor layer that is in contact with this semiconductor layer; An optical modulator characterized in that the forbidden band width of a portion excluding the narrow band gap layer changes monotonically in the lamination direction.
JP1085686A 1986-01-21 1986-01-21 Optical modulator Granted JPS62169115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085686A JPS62169115A (en) 1986-01-21 1986-01-21 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085686A JPS62169115A (en) 1986-01-21 1986-01-21 Optical modulator

Publications (2)

Publication Number Publication Date
JPS62169115A JPS62169115A (en) 1987-07-25
JPH0530254B2 true JPH0530254B2 (en) 1993-05-07

Family

ID=11761995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085686A Granted JPS62169115A (en) 1986-01-21 1986-01-21 Optical modulator

Country Status (1)

Country Link
JP (1) JPS62169115A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456413A (en) * 1987-03-25 1989-03-03 Toshiba Corp Semiconductor optical element
JP2670051B2 (en) * 1987-07-31 1997-10-29 日本電信電話株式会社 Quantum well type optical modulator
JPH01179125A (en) * 1988-01-11 1989-07-17 Nippon Telegr & Teleph Corp <Ntt> Optical space modulating element
IT1232381B (en) * 1989-01-26 1992-02-17 Cselt Centro Studi Lab Telecom DOUBLE WELL ELECTRO-OPTICAL MODULATOR
US7443561B2 (en) * 2005-06-08 2008-10-28 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Deep quantum well electro-absorption modulator

Also Published As

Publication number Publication date
JPS62169115A (en) 1987-07-25

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
JP3866836B2 (en) Nonlinear optical device
US6437361B1 (en) Semiconductor device and method of using the same
JPH0878786A (en) Strained quantum well structure
US5363393A (en) Surface emitting semiconductor laser
JPH0650366B2 (en) Light modulator
JPH0530254B2 (en)
JP2001281609A (en) Optical modulator, semiconductor laser with optical modulator, and optical communications equipment
JPH07333660A (en) Nonlinear optical element
US20040052282A1 (en) Semiconductor laser device
JPH0545003B2 (en)
JP2513265B2 (en) Light modulator
JPH09171162A (en) Semiconductor optical modulator
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof
JP4103490B2 (en) Light modulator
JPH0823631B2 (en) Light modulator
JPH07209618A (en) Exciton erasure type semiconductor optical modulation device and its manufacture
JP3437372B2 (en) Reflective multilayer film for semiconductor spatial light modulator
JP2706263B2 (en) Light modulator
JP2591445B2 (en) Light modulation element
US5283688A (en) Optical amplifier having a semiconductor with a short switching time
JPH04245492A (en) Quantum well optical modulator
JPH0682852A (en) Semiconductor device
JPH07283489A (en) Semiconductor light-emitting element
JPH08264895A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term