JPH0715083A - Collision pulse mode synchronous semiconductor laser - Google Patents

Collision pulse mode synchronous semiconductor laser

Info

Publication number
JPH0715083A
JPH0715083A JP15339093A JP15339093A JPH0715083A JP H0715083 A JPH0715083 A JP H0715083A JP 15339093 A JP15339093 A JP 15339093A JP 15339093 A JP15339093 A JP 15339093A JP H0715083 A JPH0715083 A JP H0715083A
Authority
JP
Japan
Prior art keywords
electrode
laser
semiconductor laser
resonator
pulse mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15339093A
Other languages
Japanese (ja)
Other versions
JP3275456B2 (en
Inventor
Satoki Kawanishi
悟基 川西
Masatoshi Saruwatari
正俊 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15339093A priority Critical patent/JP3275456B2/en
Publication of JPH0715083A publication Critical patent/JPH0715083A/en
Application granted granted Critical
Publication of JP3275456B2 publication Critical patent/JP3275456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To generate a short optical pulse by making uniform the amplitude and waveform of electric field thereby realizing a stabilized CPM operation. CONSTITUTION:The collision pulse mode synchronous semiconductor laser comprises a first electrode 107 disposed in the center of the resonator of a multiple quantum well semiconductor laser 101 having Fabry-Perot structure, a plurality of second electrodes 102, 103, 104, 105 disposed symmetrically to the central part of the laser resonator while being separated, a third electrode 106 disposed at a position separated by a quarter of the length of laser resonator from the opposite edges of the laser, and means 110, 111, 112 for applying high frequency voltage to the third electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速光通信,各種光計
測に用いられる短光パルスの発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short optical pulse generator used for high-speed optical communication and various optical measurements.

【0002】[0002]

【従来の技術】図2は、従来の衝突パルスモード同期半
導体レーザ(CPM半導体レーザ)の構成を示す図であ
り、201は逆バイアス印加電極、202は順バイアス
印加電極、203は接地電極、204はInGaAsP
/InGaAs半導体レーザ活性層(光導波路層)、2
05はFeドープInP結晶成長層、206はN+ In
P基板、207は高周波印加電極である(M.C.W
u,et al.,Appl.Phys.Lett.,
vol.8,pp.759−761,1990.)。図
3はこのレーザの動作を示す図である。基本的にこのレ
ーザの構成は、通常のファブリーペロー構造(FP)の
多重量子井戸半導体レーザ(MQW−LD)の上部スト
ライプ電極を分割してその一部201をpn接合の逆バ
イアスを印加してその下部の光導波路層部分を可飽和吸
収体とし、また一部の電極207には高周波を印加して
モードロッカとして動作させる構成となっている。この
レーザの光導波路層204には、右方向に伝搬する光パ
ルス(図3(A))と左方向に伝搬する光パルス(図3
(B))が存在する。
2. Description of the Related Art FIG. 2 is a diagram showing the structure of a conventional collision pulse mode-locked semiconductor laser (CPM semiconductor laser), in which 201 is a reverse bias applying electrode, 202 is a forward bias applying electrode, 203 is a ground electrode, and 204 is a ground electrode. Is InGaAsP
/ InGaAs semiconductor laser active layer (optical waveguide layer), 2
Reference numeral 05 is an Fe-doped InP crystal growth layer, reference numeral 206 is N + In
P substrate, 207 is a high frequency applying electrode (M.C.W.
u, et al. , Appl. Phys. Lett. ,
vol. 8, pp. 759-761, 1990. ). FIG. 3 is a diagram showing the operation of this laser. Basically, the structure of this laser is such that the upper stripe electrode of an ordinary Fabry-Perot structure (FP) multiple quantum well semiconductor laser (MQW-LD) is divided and a part 201 thereof is applied with a reverse bias of a pn junction. The lower part of the optical waveguide layer is a saturable absorber, and high frequency is applied to some of the electrodes 207 to operate as a mode rocker. In the optical waveguide layer 204 of this laser, an optical pulse propagating in the right direction (FIG. 3A) and an optical pulse propagating in the left direction (FIG. 3).
(B)) exists.

【0003】高周波印加電極207に電気信号を印加す
ると、印加した電気信号の振幅に応じて電極207下部
の光導波路の損失(または利得)が変化する。すなわ
ち、電極207に電気パルスを印加することによって電
極下部を光パルスのシャッターとして作用させることが
できる。
When an electric signal is applied to the high frequency applying electrode 207, the loss (or gain) of the optical waveguide below the electrode 207 changes according to the amplitude of the applied electric signal. That is, by applying an electric pulse to the electrode 207, the lower part of the electrode can act as a shutter for a light pulse.

【0004】いま、高周波印加電極207に電気信号を
印加してシャッターを開くと、レーザの左右両端から中
央に向かって光パルスが伝搬しはめる。このレーザは左
右対称の構造を有しているため、両パルスの波形,振
幅,速度は同じであり、レーザ中央で同じ波形の2つの
パルスが衝突することになる。このとき、電極207に
印加する高周波信号の周波数fを
Now, when an electric signal is applied to the high frequency applying electrode 207 to open the shutter, an optical pulse propagates from the left and right ends of the laser toward the center. Since this laser has a bilaterally symmetrical structure, the waveforms, amplitudes, and velocities of both pulses are the same, and two pulses having the same waveform collide at the center of the laser. At this time, the frequency f of the high frequency signal applied to the electrode 207 is

【0005】[0005]

【数1】f=c/(nL) cは光速、nは半導体の屈折率、Lはレーザの物理長 とすると、レーザの一方の端面を出発した光パルスが他
方の端面に到着するときにちょうど他方の端面のシャッ
ターが開くことになるため、モード同期動作の条件が満
たされることになる。Wu et al.は32.6G
Hzの繰返し周期でトランスフォームリミットな短光パ
ルス(1.4ps)を得ている。
F = c / (nL) where c is the speed of light, n is the refractive index of the semiconductor, and L is the physical length of the laser, when an optical pulse that leaves one end face of the laser arrives at the other end face. Since the shutter on the other end face is opened, the condition for mode-locking operation is satisfied. Wu et al. Is 32.6G
Transform-limited short light pulses (1.4 ps) are obtained at a repetition rate of Hz.

【0006】電極201の下部の光可飽和吸収体は、光
の吸収損失が入射光強度が増加するに従って減少する媒
質であり、通常色素や半導体が用いられる。特に波長
1.55μm帯の光に対しては、多重量子井戸(MQ
W)構造の半導体導波路を逆バイアスで使用することに
より、可飽和吸収体の動作が確認されている(詳しく
は、Y.K.Chen,M.C.Wu,T.Tanbu
n−Ek,R.A.Logan and J.R.Si
mpson,“Monolithic collidi
ng−pulse mode−locked quan
tum well lasers,” in Tec
h.Digest of Conferenceon
Lasers and Electro−optics
(CLEO’91) No.CWK3,pp.304−
307,1991.を参照されたい)。いま、光可飽和
吸収体中で両方向に伝搬するパルスが衝突する瞬間だけ
光の定在波ができ、この光の定在波の強度は高くなるた
め、光可飽和吸収体のシャッター作用は急峻になって光
パルスは急峻となる。この原理については、藤井陽一・
西沢紘一編「先端光技術」pp.110−129(アグ
ネ承風社)中に説明されている。
The light saturable absorber below the electrode 201 is a medium in which the absorption loss of light decreases as the incident light intensity increases, and usually a dye or a semiconductor is used. Especially for light in the 1.55 μm wavelength band, multiple quantum well (MQ
The operation of the saturable absorber has been confirmed by using a semiconductor waveguide having a (W) structure with a reverse bias (specifically, YK Chen, MC Wu, T. Tanbu).
n-Ek, R.N. A. Logan and J. R. Si
mpson, “Monolithic collidi
ng-pulse mode-locked quan
tum well lasers, ”in Tec
h. Digest of Conference
Lasers and Electro-optics
(CLEO'91) No. CWK3, pp. 304-
307, 1991. See). Now, the standing wave of light is generated only at the moment when the pulses propagating in both directions collide in the saturable absorber, and the intensity of this standing wave of light becomes high, so the shutter action of the saturable absorber is sharp. Then, the optical pulse becomes steep. Regarding this principle, Yoichi Fujii
Nishizawa Koichi "Advanced Light Technology" pp. 110-129 (Agne Jofusha).

【0007】[0007]

【発明が解決しようとする課題】上述したCPM半導体
レーザには、次に示すような問題点があった。
The CPM semiconductor laser described above has the following problems.

【0008】従来のCPM半導体レーザの電極構成にお
いては、モードロック用高周波信号印加電極が、レーザ
共振器の最も外側、すなわち両端面に接した位置にあ
る。従って、モードロック用高周波信号印加電極の下の
部分は、片側は空気、他方は半導体であり、両者は誘電
率が異なるために電極に印加された信号による電界分布
が非対称となる。周波数が高くなるにしたがって非対称
電界の影響によって電界振幅および波形が対称電界のと
きに比べて空間的に不均一となり、モードロック変調効
率の低下を招く恐れがあった。
In the electrode configuration of the conventional CPM semiconductor laser, the mode-locking high-frequency signal applying electrode is located at the outermost side of the laser resonator, that is, at both end surfaces. Therefore, the lower portion of the mode-locking high-frequency signal application electrode has air on one side and a semiconductor on the other side, and since the two have different dielectric constants, the electric field distribution due to the signal applied to the electrode is asymmetric. As the frequency increases, the electric field amplitude and waveform become spatially non-uniform due to the influence of the asymmetric electric field as compared with the case of a symmetrical electric field, which may lead to a decrease in mode-lock modulation efficiency.

【0009】本発明は、このような従来の問題点に鑑み
てなされたものであり、モードロック用高周波信号印加
電極の下部を均一の構造とすることによって電界振幅お
よび波形を均一化して安定したCPM動作を実現して光
短パルスを発生させる手段を提供することを目的として
いる。
The present invention has been made in view of such conventional problems, and the lower part of the mode-locking high-frequency signal applying electrode has a uniform structure to make the electric field amplitude and waveform uniform and stable. It is an object of the present invention to provide a means for realizing a CPM operation and generating a short optical pulse.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、ファブリーペロー構造を有する多重量子
井戸半導体レーザの共振器中央部分上に設けられた第1
電極と、前記レーザ共振器中央部分に対して対称に分割
配置された複数の第2電極と、前記レーザの両端面から
それぞれレーザ共振器長の1/4だけ離れた位置に設け
られた第3電極と、該第3電極に高周波を印加する手段
とを具えたことを特徴とする。
In order to achieve the above object, the present invention provides a first structure provided on a central portion of a cavity of a multiple quantum well semiconductor laser having a Fabry-Perot structure.
An electrode, a plurality of second electrodes symmetrically divided with respect to the central portion of the laser resonator, and a third electrode provided at a position apart from both end faces of the laser by 1/4 of the laser resonator length. An electrode and a means for applying a high frequency to the third electrode are provided.

【0011】[0011]

【作用】本発明ではMQW半導体レーザ上に設けられた
モードロック用高周波信号印加電極を、レーザ共振器の
両端面ではなく、両端面から1/4共振器長離れた位置
に配置することによって、モードロック用高周波信号が
安定してレーザに印加できるようにしている。すなわ
ち、本発明は、MQW半導体レーザの電極を分割して共
振器中央部の一部分を逆バイアスしてその下部の導波路
層を光可飽和吸収体とし、共振器両端からL/4の位置
に設けられた電極を変調電極とし、その他の部分を増幅
媒質として用いることにより、同一半導体レーザチップ
上に、可飽和吸収体,モードロッカおよび増幅媒質をモ
ノリシックに集積化して安定したモードロック光パルス
を発生させることができる。
According to the present invention, the mode-locking high-frequency signal applying electrode provided on the MQW semiconductor laser is arranged not at both end faces of the laser resonator but at a position apart from both end faces by 1/4 resonator length. The high-frequency signal for mode lock can be stably applied to the laser. That is, according to the present invention, the electrode of the MQW semiconductor laser is divided, and a part of the central portion of the resonator is reverse-biased so that the waveguide layer thereunder serves as an optical saturable absorber, and is located at a position of L / 4 from both ends of the resonator. By using the provided electrode as a modulation electrode and the other portion as an amplifying medium, a saturable absorber, a mode locker and an amplifying medium are monolithically integrated on the same semiconductor laser chip to generate a stable mode-locked optical pulse. Can be generated.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0013】図1は本発明の衝突パルスモード同期MQ
W半導体レーザ装置の実施例を示す図であり、図1
(A)は上から見た平面図、(B)および(C)はその
動作を説明する図である。図1において、101はMQ
W半導体レーザであり、例えば図2の従来例と同様にn
+ InP基板上形成されたInGaAsP/InGaA
sMQW活性層(光導波層)、それを包むFeドープI
nP結晶成長層を含む。102,103,104,10
5は直流電極(ストライプ電極)、106は高周波信号
印加電極、107は逆バイアス印加電極、108,10
9,110は直流電源、111はバイアスT、112は
高周波発振器であり、また、113,114は光強度の
一部を透過する鏡でこの2つの鏡によってファブリーペ
ロー共振器が構成されて半導体レーザの動作が実現され
る。図に示すように逆バイアス印加電極107は本レー
ザ共振器の中央に位置し、高周波信号印加電極106
は、共振器長をLとすると両端面から1/4Lだけ離れ
た位置すなわち部分反射鏡113,114と電極107
の中間に位置する部分106A,106Bを有する。直
流電極102,103,104,105は必ずしも全て
必要ではなく、レーザ共振器の中央に対して対称に配置
されていればよい。たとえば103と104のみあるい
は102と105のみであってもよい。以下、図1
(B),(C)を用いて本レーザの動作を説明する。
FIG. 1 shows a collision pulse mode-locked MQ according to the present invention.
1 is a diagram showing an embodiment of a W semiconductor laser device, and FIG.
(A) is a plan view seen from above, and (B) and (C) are diagrams for explaining the operation. In FIG. 1, 101 is MQ
W semiconductor laser, for example, n as in the conventional example of FIG.
+ InGaAsP / InGaA formed on InP substrate
sMQW active layer (optical waveguide layer), Fe-doped I that wraps it
Includes nP crystal growth layer. 102, 103, 104, 10
Reference numeral 5 is a DC electrode (stripe electrode), 106 is a high frequency signal applying electrode, 107 is a reverse bias applying electrode, and 108 and 10.
Reference numerals 9 and 110 denote a DC power source, 111 a bias T, 112 a high-frequency oscillator, and 113 and 114 mirrors that transmit a part of the light intensity. These two mirrors constitute a Fabry-Perot resonator and a semiconductor laser. The operation of is realized. As shown in the figure, the reverse bias applying electrode 107 is located in the center of the laser resonator, and the high frequency signal applying electrode 106
Is a position apart from both end faces by 1 / 4L when the resonator length is L, that is, the partial reflecting mirrors 113 and 114 and the electrode 107.
Has portions 106A and 106B located in the middle. The DC electrodes 102, 103, 104, 105 are not always necessary, and may be arranged symmetrically with respect to the center of the laser resonator. For example, only 103 and 104 or only 102 and 105 may be used. Below, Figure 1
The operation of the present laser will be described with reference to (B) and (C).

【0014】図1(B),(C)は、本レーザにおい
て、共振器内における光パルスの伝搬の様子を示した図
である。本レーザにおいても従来技術と同じように、レ
ーザ共振器を右向きに伝搬する光パルス(図1(B))
と左向きに伝搬する光パルス(図1(C))が存在す
る。いま、一般に半導体レーザにおいては、ストライプ
電極の下にpn接合が形成され、バイアス電極102,
103,104および105を通してこのpn接合に数
10mA程度の順バイアス電流を流すと同時に高周波信
号印加電極106に電流振幅として数10mA程度の高
周波信号を印加する。この高周波信号の周波数fmを、
FIGS. 1B and 1C are views showing how an optical pulse propagates in a resonator in the present laser. Also in this laser, as in the prior art, an optical pulse propagating rightward in the laser resonator (FIG. 1B).
And a light pulse propagating to the left (FIG. 1C) exists. Now, generally, in a semiconductor laser, a pn junction is formed under the stripe electrode, and the bias electrode 102,
A forward bias current of about several tens of mA is supplied to the pn junction through 103, 104 and 105, and at the same time, a high frequency signal of about several tens mA is applied to the high frequency signal applying electrode 106 as a current amplitude. The frequency fm of this high frequency signal is

【0015】[0015]

【数2】fm=2c/(nLLD) LLDは、本発明のレーザの全長 nは半導体の屈折率(≒3) とすると本レーザにおいても従来技術の動作原理と同じ
動作原理によってモード同期動作が満たされることにな
る。一般に半導体レーザのレーザ長は、数100μmか
ら数mm程度である。レーザ長が10mmのときの変調
周波数は、約20GHzとなる。
Fm = 2c / (nL LD ) L LD is the total length of the laser of the present invention, where n is the refractive index of the semiconductor (≈3), this laser is also mode-locked by the same operating principle as the prior art. The motion will be satisfied. In general, the laser length of a semiconductor laser is about several 100 μm to several mm. The modulation frequency when the laser length is 10 mm is about 20 GHz.

【0016】さて、本レーザにおいてもレーザ中央に位
置する逆バイアス印加電圧107に数V程度のpn逆バ
イアスを印加すると、その下部の導波路層部分115は
光可飽和吸収体として動作し、光可飽和吸収体115中
で両方向に伝搬するパルスが衝突する瞬間だけ光の定在
波ができ、この光の定在波の強度は高くなるため、光可
飽和吸収体115のシャッター作用は急峻になって光パ
ルスは急峻となる。このとき、部分反射鏡113,11
4の透過率は同じであればレーザは完全に左右対称とな
って、左右に走行する光パルス波形は同じとなって最も
効率良く衝突パルスモード同期動作を実現でき、図2に
説明した装置と同等もしくはより短い光パルスを発生さ
せることができる。さらに、本発明のレーザにおいて
は、高周波信号印加電極106が、レーザの両端面では
なく、両端面からそれぞれLLD/4だけ離れた位置にあ
り、電極106の下部は両側ともレーザ光導波路である
から、106に印加された高周波信号による電界の形状
は左右対称となる。従って、従来技術のようにレーザ端
面における高周波の反射、インピーダンスミスマッチン
グの影響を受けることなく、より高い周波数領域におい
ても安定したモード同期動作を実現することが可能であ
る。
Also in this laser, when a pn reverse bias of about several V is applied to the reverse bias applied voltage 107 located at the center of the laser, the waveguide layer portion 115 thereunder operates as a saturable absorber, and The standing wave of light is generated only at the moment when the pulses propagating in both directions collide in the saturable absorber 115, and the intensity of this standing wave of light becomes high. Therefore, the shutter action of the light saturable absorber 115 becomes sharp. Then the light pulse becomes steep. At this time, the partial reflecting mirrors 113, 11
If the transmittance of 4 is the same, the laser becomes completely symmetrical, and the optical pulse waveforms running left and right are the same, so that the collision pulse mode locking operation can be most efficiently realized. Equal or shorter light pulses can be generated. Further, in the laser of the present invention, the high-frequency signal applying electrode 106 is not at both end faces of the laser but at positions separated by L LD / 4 from both end faces, and the lower part of the electrode 106 is a laser optical waveguide on both sides. Therefore, the shape of the electric field due to the high-frequency signal applied to 106 is bilaterally symmetric. Therefore, it is possible to realize stable mode-locking operation even in a higher frequency range without being affected by high frequency reflection at the laser end face and impedance mismatching as in the prior art.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、半
導体レーザの両端面上でなく、両端面からそれぞれ1/
4レーザ長離れた位置にモード同期用高周波印加電極を
配することによって、高周波信号が端面で反射されるこ
となくレーザに印加されるため、高周波においても安定
して衝突パルスモード同期動作を実現することができ
る。
As described above, according to the present invention, the semiconductor laser 1 /
4 By arranging the high-frequency applying electrodes for mode locking at positions apart from each other by the laser length, the high-frequency signal is applied to the laser without being reflected by the end face, so that stable collision pulse mode-locking operation is realized even at high frequencies. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】従来技術の構成図である。FIG. 2 is a configuration diagram of a conventional technique.

【図3】従来技術の動作を説明する図である。FIG. 3 is a diagram illustrating an operation of a conventional technique.

【符号の説明】[Explanation of symbols]

101 MQW半導体レーザ 102,103,104,105 直流電極 106 高周波印加電極 107 逆バイアス印加電極 108,109,110 直流電源 111 バイアスT 112 高周波発振器 113,114 部分反射鏡 101 MQW semiconductor laser 102, 103, 104, 105 DC electrode 106 High frequency applying electrode 107 Reverse bias applying electrode 108, 109, 110 DC power supply 111 Bias T 112 High frequency oscillator 113, 114 Partial reflector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ファブリーペロー構造を有する多重量子
井戸半導体レーザの共振器中央部分上に設けられた第1
電極と、前記レーザ共振器中央部分に対して対称に分割
配置された複数の第2電極と、前記レーザの両端面から
それぞれレーザ共振器長の1/4だけ離れた位置に設け
られた第3電極と、該第3電極に高周波を印加する手段
とを具えたことを特徴とする衝突パルスモード同期半導
体レーザ装置。
1. A first device provided on a central part of a cavity of a multiple quantum well semiconductor laser having a Fabry-Perot structure.
An electrode, a plurality of second electrodes symmetrically divided with respect to the central portion of the laser resonator, and a third electrode provided at a position apart from both end faces of the laser by 1/4 of the laser resonator length. A collision pulse mode-locked semiconductor laser device comprising an electrode and means for applying a high frequency to the third electrode.
JP15339093A 1993-06-24 1993-06-24 Collision pulse mode-locked semiconductor laser device Expired - Lifetime JP3275456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15339093A JP3275456B2 (en) 1993-06-24 1993-06-24 Collision pulse mode-locked semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15339093A JP3275456B2 (en) 1993-06-24 1993-06-24 Collision pulse mode-locked semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0715083A true JPH0715083A (en) 1995-01-17
JP3275456B2 JP3275456B2 (en) 2002-04-15

Family

ID=15561443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15339093A Expired - Lifetime JP3275456B2 (en) 1993-06-24 1993-06-24 Collision pulse mode-locked semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3275456B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580734B1 (en) 1999-07-07 2003-06-17 Cyoptics Ltd. Laser wavelength stabilization
US6625192B2 (en) 2000-01-20 2003-09-23 Cyoptics (Israel) Ltd. High repetition rate optical pulse generator
US6862136B2 (en) 2002-01-31 2005-03-01 Cyoptics Ltd. Hybrid optical transmitter with electroabsorption modulator and semiconductor optical amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580734B1 (en) 1999-07-07 2003-06-17 Cyoptics Ltd. Laser wavelength stabilization
US6625192B2 (en) 2000-01-20 2003-09-23 Cyoptics (Israel) Ltd. High repetition rate optical pulse generator
US6862136B2 (en) 2002-01-31 2005-03-01 Cyoptics Ltd. Hybrid optical transmitter with electroabsorption modulator and semiconductor optical amplifier

Also Published As

Publication number Publication date
JP3275456B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
FI113719B (en) modulator
JP2973943B2 (en) Mode-locked semiconductor laser and method of driving the same
US5394260A (en) Optical pulse generator
US8970948B2 (en) Method and system for operating semiconductor optical amplifiers
JPH0653592A (en) Method and apparatus related to modulation and amplification of optical beam
JP4239440B2 (en) Optical clock pulse train generator
US4743087A (en) Optical external modulation semiconductor element
KR100519922B1 (en) self-mode locked multisection semiconductor laser diode
JP3198338B2 (en) Semiconductor light emitting device
US5708671A (en) Tunable gigihertz all-optical clock generator and method using same
JPH1093184A (en) Mode-locking semiconductor laser
US9281661B2 (en) Integrated optoelectronic device comprising a Mach-Zehnder modulator and a vertical cavity surface emitting laser (VCSEL)
JPS61168980A (en) Semiconductor light-emitting element
CA1252188A (en) Single mode injection laser structure
JP3275456B2 (en) Collision pulse mode-locked semiconductor laser device
JP3227701B2 (en) Mode-locked semiconductor laser
US20030086449A1 (en) Generator of short light pulses
JPH04343283A (en) Integrated semiconductor laser ray source
JP2751558B2 (en) Integrated optical semiconductor device and driving method thereof
JPS61107781A (en) Single axial-mode semiconductor laser device
JPH04242989A (en) Semiconductor light emitting device
JPH05160519A (en) Very short light pulse generating device
JPS6334990A (en) Light pulse generator
Sato et al. High-repetition frequency pulse generation at over 40 GHz using mode-locked lasers integrated with electroabsorption modulators
JPH0964463A (en) Optical-pulse generation element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130208

EXPY Cancellation because of completion of term