JPS60178685A - Single-axial mode semiconductor laser device - Google Patents
Single-axial mode semiconductor laser deviceInfo
- Publication number
- JPS60178685A JPS60178685A JP59034265A JP3426584A JPS60178685A JP S60178685 A JPS60178685 A JP S60178685A JP 59034265 A JP59034265 A JP 59034265A JP 3426584 A JP3426584 A JP 3426584A JP S60178685 A JPS60178685 A JP S60178685A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- diffraction gratings
- diffraction
- oscillation
- inp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、ガラスファイバを用いた光通信方式において
光源として使用される発光素子で高速変調時にも単−縦
モードで発振しうる分布帰還形又は分布反射形半導体レ
ーザ素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention is a light emitting element used as a light source in an optical communication system using glass fiber, and is a distributed feedback type or The present invention relates to a distributed reflection type semiconductor laser device.
(従来の技術分野)
光通信用光源として用いられる半導体レーザには、発振
波長と発振モードが高速の変調時にも安定であることが
要求される。このような要求をみたす半導体レーザとし
ては、その内部に半導体結晶層の膜厚が周期的に変化す
る周期構造が形成されており、この周期構造に光の反射
機能をもたせレーザ発振を得るいわゆる分布帰還形半導
体レーザおよび分布反射形半導体レーザとが知られてい
た。(Prior Art Field) Semiconductor lasers used as light sources for optical communications are required to have stable oscillation wavelengths and oscillation modes even during high-speed modulation. Semiconductor lasers that meet these requirements have a periodic structure in which the thickness of a semiconductor crystal layer periodically changes, and this periodic structure has a light reflection function to obtain a so-called distributed laser oscillation. Feedback type semiconductor lasers and distributed reflection type semiconductor lasers have been known.
このうち分布帰還形(以後DFBと称する)レーザは活
性層又は活性層と接して形成される光ガイド層に光の発
振する方向に沿って前記の周期構造をつくりつけるもの
である。Among these, distributed feedback (hereinafter referred to as DFB) lasers have the above-mentioned periodic structure formed in an active layer or a light guide layer formed in contact with the active layer along the direction in which light oscillates.
この形のレーザの製作技術は近年大きく進展し、室温で
連続動作する素子が得られているが、単一軸モードで発
振する素子の得られる歩留りは100チではない。これ
はコーゲルニック氏等の解析でも明らかなように(Jo
urnal of Applied Physics+
43炸、5月刊、 2327負−2335頁、 197
2年)、DFBレーザは本質的にしきい値利得の等しい
発振モードを2本ずつ有するためである。しかし、現実
の素子構造では、素子端面での回折格子の位相や導波路
に沿った回折格子、結晶組成、結晶厚み等の不均一の影
響により、上記の対称なスペクトル構造が変化して非対
称となっているため、単一1T11モ一ド発振が可能上
なっている。このような技術については、ストライファ
ー氏の論文(IEEEJournal of Quan
tum EJectronjcs r QE −118
,4月号、154貞−161頁、 1975年)や多田
氏の論文(′祇子通信学会、光・量子エレク) rコニ
クス研究会管料、資料番号OQE 77−88 (19
78−01) K詳細に述べられている。The manufacturing technology for this type of laser has made great progress in recent years, and devices that operate continuously at room temperature have been obtained, but the yield of devices that oscillate in a single-axis mode is not 100 inches. This is clear from the analysis of Kogelnick et al. (Jo
urnal of Applied Physics+
43 Haku, May issue, 2327 negative - 2335 pages, 197
2), this is because DFB lasers essentially have two oscillation modes with the same threshold gain. However, in actual device structures, the above-mentioned symmetrical spectral structure changes and becomes asymmetric due to the influence of the phase of the diffraction grating at the device end face, the diffraction grating along the waveguide, the crystal composition, the crystal thickness, etc. Therefore, single 1T11 mode oscillation is possible. Regarding such technology, please refer to Mr. Streifer's paper (IEEE Journal of Quan
tum EJectronjcs r QE-118
, April issue, pp. 154-161, 1975) and Mr. Tada's paper ('Giko Communication Society, Optical/Quantum Electronics) rConics Research Group Management Fee, Material No. OQE 77-88 (19
78-01) K is described in detail.
従って単一軸モードで発振するDFBレーザを得るため
には、そのスペクトルを非対称にするような構造を積極
的にと9入れる必要があり、そのだめの提案が数多くな
されてきた。Therefore, in order to obtain a DFB laser that oscillates in a single axis mode, it is necessary to actively incorporate a structure that makes the spectrum asymmetric, and many proposals have been made to avoid this.
その内Q一つとして多田氏等により提案されたものに、
DFBレーザの導波路構造に沿って設置される回折格子
の空間的位相に素子の左右で差をもたせる形の素子があ
る。電子通信学会、光・量子エレクトロニクス研究会資
料・資料番号OQE 77−84の107頁に述べられ
ている如く、この構造のDFBレーザは第1図に示す如
き回折格子構造を有し、特に両側の回折格子の位相差θ
がπの値をとるときスペクトルの非対称性が最も強くな
り容易に単−dll+モード発振を得ることができる。Among them, one of the Qs proposed by Mr. Tada et al.
There is an element in which the spatial phase of a diffraction grating installed along the waveguide structure of a DFB laser differs between the left and right sides of the element. As stated on page 107 of the Institute of Electronics and Communication Engineers, Optical and Quantum Electronics Study Group Material/Reference No. OQE 77-84, a DFB laser with this structure has a diffraction grating structure as shown in Figure 1, and in particular, the Phase difference θ of diffraction grating
When takes the value of π, the asymmetry of the spectrum becomes the strongest and single-dll+ mode oscillation can be easily obtained.
このようにDFBレーザは有用な素子ではあるが、一方
製作のためのプロセスを考えると大きな困難が存在する
。従来DFBレーザやDBRレーザの製作のための回折
格子は、ガスレーザ光の2光束干渉を利用して形成され
てきた。この方法は大きな面積の半導体基板上に均一な
回折格子を形成するには極めてすぐれているが、第1図
に示すような構造の回折格子を形成することは不’aJ
能に近い。Although the DFB laser is thus a useful element, there are significant difficulties when considering the manufacturing process. Conventionally, diffraction gratings for manufacturing DFB lasers and DBR lasers have been formed using two-beam interference of gas laser light. Although this method is extremely excellent for forming a uniform diffraction grating on a large area semiconductor substrate, it is difficult to form a diffraction grating with the structure shown in Figure 1.
Close to Noh.
現在実用”I能な技術の内、周期2000〜5ooo
Aという微細な回折格子に第1図のような空間的位相差
を制御性良く与え得るTIIJ能性を有するのは電子ビ
ーム露光法である。しかし、この方法では回折格子の露
光面積2周ノυノの安定性等に難点があり、すぐれた特
性の素子を安定に11)男性良く製作するKは不適当で
ある。Among the currently practical technologies, the period is 2000~5ooo
The electron beam exposure method has the TIIJ capability of giving a fine diffraction grating A a spatial phase difference as shown in FIG. 1 with good controllability. However, this method has drawbacks such as the stability of the exposed area of the diffraction grating for two rotations, making it unsuitable for stably producing elements with excellent characteristics.
(発明の目的及び特徴)
本発明は、以上に述べた空間的位相差を内蔵する回折格
子を有するI) F Bレーザの製作」二の困難さを克
服するためになされた単一・軸モード半導体レーザ装置
を提供することを目的とし、その特徴は空間的位相差を
与えるに、2つの回折格子形成導波路の中間に設置され
た回折格子をもたない位相側?1111用導波路への1
5.流注入を利用する仁とにある。(Objectives and Features of the Invention) The present invention has been made to overcome the difficulties of I) fabrication of an FB laser having a diffraction grating incorporating a spatial phase difference as described above. The purpose is to provide a semiconductor laser device, and its feature is that the phase side without a diffraction grating is installed between two diffraction grating forming waveguides to provide a spatial phase difference. 1 to waveguide for 1111
5. There is a method that uses ryuin.
(発明の4i+1成及び作用) jソ士本発明の詳細な説明する。(4i+1 composition and action of invention) A detailed explanation of the present invention will be given below.
第2図は本発明の原理を示す断面図であって、lはn形
InP基板、2はn形InGaAsP光ガイド層、3は
p形InGaAsP活性層、4はp形InPクラッド層
、5はp形InGaAsP電極層、6はn形オーミック
電極、7,8.9はp形オーミックW、極である。FIG. 2 is a sectional view showing the principle of the present invention, where l is an n-type InP substrate, 2 is an n-type InGaAsP optical guide layer, 3 is a p-type InGaAsP active layer, 4 is a p-type InP cladding layer, and 5 is a A p-type InGaAsP electrode layer, 6 is an n-type ohmic electrode, and 7, 8.9 are p-type ohmic W and poles.
又10と11はInP基板基板衣面に形成された回折格
子である。本素子の構成を実現するには、まずn形In
P表面に2つの回折格子の間の距離に相当するり鴨のS
j 02や513N4等の薄膜ストライブを選択的に何
本か形成する。この上にフォトレジスト膜を1形成し、
その上から全面にガスレーザ光の2光束干渉を利用した
回折格子パターンを露光する。レジストを現像後、残っ
たレンストパターンをエツチングマスクとして適当な手
段によりInPのみをエツチングし、しかる後レジスト
と誘電体薄膜を取り去る。こうした工程により、ストラ
イブ状に回折格子形成部分のある1nP基板】が得られ
る。この上に液相成長、気相成長、MOCVD法。Further, 10 and 11 are diffraction gratings formed on the surface of the InP substrate. In order to realize the configuration of this device, first, an n-type In
Rikamo's S corresponding to the distance between two diffraction gratings on the P surface
Selectively form some thin film stripes such as j02 or 513N4. A photoresist film is formed on this,
A diffraction grating pattern using two-beam interference of gas laser light is exposed on the entire surface from above. After developing the resist, the remaining resist pattern is used as an etching mask to etch only the InP by appropriate means, and then the resist and dielectric thin film are removed. Through these steps, a 1nP substrate having a stripe-shaped diffraction grating forming portion is obtained. On top of this, liquid phase growth, vapor phase growth, and MOCVD methods are applied.
MBE法などの適当な結晶成長の手段柁より結晶層2〜
5を積層し、さらに蒸着などの手段により電極を形成す
る。Crystal layer 2 ~ by using an appropriate crystal growth method such as MBE method
5 are laminated, and further electrodes are formed by means such as vapor deposition.
こうして得られたベテロ構造素子の電極7と9から2つ
の回折格子形成部分のpn接合に対して同じ1S、流密
度となるように正方向筒、流を流し、その値を徐々に増
大させていった場合について考察する。電極7の下の部
分と電極9の下の部分の構成は、分布帰還形レーザとし
て動作するように回折格子の周期と結晶層の厚みとを選
んであるものとする。すなわち、Aを回折格子の周期、
λを発振波長、n+を回折格子の次数、nを結晶J※1
〜4で構成される光導波路の実効屈折率とすれば、A
= (mλ/2n)なる関係が必要である。注入された
電流が、電極7と9の下に構成されている分布帰還形【
/−ザの発振しきい値を越えれば、2つの領域A(7の
下の領域)とB(9の下の領域)でレーザ発振が生じる
。このときレーザ光は導波路に沿って伝ばんするので、
Aの領域で発振した光は13の領域へ、Bの領域で発振
した光はAの領域へ達し相互作用が生じる。このとき領
域A及びBで発振した光は、各々の領域にとどまってい
る限り空間的に同位相であるが、導波路のない領域C(
8の下の領域)を通過するとき、この領域の実効屈折率
は領域A及びBでの値と異なるため実効屈折率の差と領
域Cの長さに応じた位相の変化を生じる。従って、第2
図の構成で領域AとBの構造を同一にし領域AとBに同
時に同一の電流を注入するようにすれば、多田氏の提案
する素子の左右で回折格子の空間的位相に差をもった分
布帰還形7−ザが実現できる。しかし、このままでは位
相の差θは先にも述べた如く領域Cの長さと領域A、B
とCの間の実効屈折率の差で決められてしまい、θ−π
という理想的な条件を実現することは偶然を待つ以外に
ない。さらに領域Cに電流を注入しないいわゆる非励起
の状態では、領域AとBとで発振した光に対して領域C
が可飽和吸収体として作用し光の損失を与えるとともに
、光双安俺などと言った分布帰還形レーザの単一軸モー
ド発振には好ましくない現象を生じる。この難点は電極
8から領域CのpH接合に正方向電流を注入することで
解決される。領域Cの導波路に注入されたキャリヤはそ
の欲に応じてこの部分の光の吸収q゛、1性を変化させ
、領域A、!=13とで発振したレーザ光に対する透明
度を増大させるとともに屈折率をも変化させる。従って
、非励起の場合にくらべて光の損失は減少し、又注入…
゛に応じて前記の位相の差θを調節できる。こうした事
実?利用すれば、領域Cの導波路の厚さ1組成、長さ又
領域AとBとの動作状態等に応じてここに注入するキャ
リヤの川を制御することによりAとBの2つの領域での
回折格子の間にπの大きさの空間的位相差を与えるよう
にすることができることが明白である。A flow is caused to flow in the positive direction from the electrodes 7 and 9 of the betaro structure element thus obtained to the pn junction of the two diffraction grating forming portions so that the same 1S and flow density are obtained, and the value is gradually increased. Let's consider the case where In the structure of the portion under the electrode 7 and the portion under the electrode 9, the period of the diffraction grating and the thickness of the crystal layer are selected so as to operate as a distributed feedback laser. That is, A is the period of the diffraction grating,
λ is the oscillation wavelength, n+ is the order of the diffraction grating, n is the crystal J*1
If the effective refractive index of the optical waveguide is 4, then A
= (mλ/2n) is required. The injected current is distributed under the electrodes 7 and 9.
/- laser oscillation occurs in two regions A (region below 7) and B (region below 9) when the oscillation threshold of laser is exceeded. At this time, the laser light propagates along the waveguide, so
The light oscillated in region A reaches region 13, and the light oscillated in region B reaches region A, where interaction occurs. At this time, the light oscillated in regions A and B has the same spatial phase as long as it remains in each region, but in region C (where there is no waveguide)
8), the effective refractive index of this region is different from the values in regions A and B, so that a phase change occurs depending on the difference in effective refractive index and the length of region C. Therefore, the second
In the configuration shown in the figure, if the structures of regions A and B are made the same and the same current is injected into regions A and B at the same time, there will be a difference in the spatial phase of the diffraction grating on the left and right sides of the element proposed by Mr. Tada. A distributed feedback type 7-the can be realized. However, as mentioned above, the phase difference θ is the length of area C and areas A and B.
It is determined by the difference in effective refractive index between and C, and θ−π
The only way to achieve this ideal condition is to wait for coincidence. Furthermore, in a so-called unexcited state where no current is injected into region C, the region C
acts as a saturable absorber, causing optical loss, and also causes unfavorable phenomena for single-axis mode oscillation of distributed feedback lasers such as optical twin beams. This difficulty is solved by injecting a positive current from electrode 8 to the pH junction in region C. The carriers injected into the waveguide in region C change the light absorption q゛, unity of this portion according to their desires, and the carriers injected into the waveguide in region A, ! =13, the transparency to the oscillated laser light is increased and the refractive index is also changed. Therefore, the optical loss is reduced compared to the case of non-excitation, and the injection...
The phase difference θ can be adjusted according to the phase difference θ. These facts? If utilized, the flow of carriers injected into the waveguide in region C can be controlled in accordance with the thickness, composition, length, and operating conditions of regions A and B. It is clear that it is possible to provide a spatial phase difference of magnitude π between the diffraction gratings.
次に具体的な数値について検討する。今対象としている
レーザ素子から発振する光の空気中での波長をλ8、レ
ーザ素子中での波長をλ1、導波路、の実効Jot折率
をnとすれば、次の関係が成立つ。Next, we will consider specific numbers. If the wavelength of the light emitted from the currently targeted laser element in the air is λ8, the wavelength in the laser element is λ1, and the effective Jot refractive index of the waveguide is n, then the following relationship holds true.
λ
λ −−!0+
−n
一方、半導体結晶中でのキャリヤ注入による屈折率変化
係数は次の(3)式で表わされる。λ λ −−! 0+ -n On the other hand, the refractive index change coefficient due to carrier injection into a semiconductor crystal is expressed by the following equation (3).
ここで、Nは注入キャリヤ数、eは電荷素置、n。Here, N is the number of injected carriers, e is the charge element, and n.
は注入キャリヤのない時の屈折率、ωは発振光の周波数
、ε0は真空中の誘電率、Jは電子の有効質量、mζは
正孔の有効質量である。InP/ InGaAsP系拐
料よりなる発振波長1.55μm付近のDFBレーザの
$/l 造を考えて(3)式を用いて81算すれば、I
X 10I8crn−3の注入キャリヤ数の変化で引
き起される屈折率の変化量は0.2%程度である。この
屈折率の変化、&1は(2)式の関係からλ1の値に1
0λ程度の変化を引き起すことがわかる。λ1はおよそ
4800Xであるため、その位相のπ、すなわち光波長
の−の変化H2400XをI X 1018crf3の
キャリヤ注入で得るには、Cの領域の導波路長の必要値
は次式で与えられる。is the refractive index when there are no injected carriers, ω is the frequency of oscillation light, ε0 is the permittivity in vacuum, J is the effective mass of electrons, and mζ is the effective mass of holes. Considering the $/l structure of a DFB laser with an oscillation wavelength of around 1.55 μm made of InP/InGaAsP based material and calculating 81 using equation (3), I
The amount of change in refractive index caused by a change in the number of injected carriers in X 10I8crn-3 is about 0.2%. This change in refractive index, &1, is 1 for the value of λ1 from the relationship in equation (2).
It can be seen that a change of about 0λ is caused. Since λ1 is approximately 4800X, the required value of the waveguide length in the C region is given by the following equation in order to obtain the phase π, that is, the - change in optical wavelength H2400X by carrier injection of I x 1018 crf3.
−X 4800A = 115.2 pm (a)0
2400Xは1次回折格子の位相の2πに相当するので
、ここでの目的には充分である。なおInk/InGa
AsP系4Jネ;lのキャリヤのライフタイムからみて
、l X 10”z−3の注入キャリヤ密度を得るに要
求される%I流値は10〜100mAの範囲となりこれ
らの値は極めて実用的である。-X 4800A = 115.2 pm (a)0 Since 2400X corresponds to 2π of the phase of the first-order diffraction grating, it is sufficient for our purpose. In addition, Ink/InGa
Considering the carrier lifetime of AsP system 4JN, the %I current value required to obtain an injection carrier density of l x 10"z-3 is in the range of 10 to 100 mA, and these values are extremely practical. be.
以上の設刷思想のもとに、1.55μn1で発振するI
nP/ InGaAsP埋めこみ型分布帰還レーザの製
作を行った。結晶成長には液相成長法を用い、その詳し
い条(Llと結晶層の構成は論文で既に本X!+2発明
者が明らかにしているとおりである( E]ecLon
icsLetters 、 18巻、27頁−29頁、
[182年)。その活4/1層を通る断面図は、第2図
と全く同様であり、領域Aと13における回折格子形成
部分の長さは200μm 、領域Cの3F坦な導波路層
の長さも200/1m。Based on the above printing concept, I
We fabricated an nP/InGaAsP buried distributed feedback laser. The liquid phase growth method was used for crystal growth, and the detailed structure (Ll) and the structure of the crystal layer were already clarified by the inventor of Book X!+2 in the paper (E]ecLon
icsLetters, Volume 18, Pages 27-29,
[182]. The cross-sectional view through the active 4/1 layer is exactly the same as FIG. 2, and the length of the diffraction grating forming portion in regions A and 13 is 200 μm, and the length of the 3F flat waveguide layer in region C is also 200 μm. 1m.
、活性層3の厚さは01μm、光ガイド層2の厚さは1
1.1μm11.活性層3と光ガイド層20幅は15μ
n1とした。同1J1格子は、2次で周期は4805A
、深さむ」、!+5(IAである。, the thickness of the active layer 3 is 01 μm, and the thickness of the light guide layer 2 is 1 μm.
1.1μm11. The width of the active layer 3 and light guide layer 20 is 15μ
It was set as n1. The same 1J1 lattice is second-order and has a period of 4805A.
,Deep”,! +5 (IA.
ヒートシンク上にマウントしたこの素子の電極7と9の
みに同時に直流で正方向電流を同じ電流密度で流して行
ったところ、両方の和が78mAに達した点でレーザ発
振した。第3図に示すのはその時の光出力−電流特性で
あるが、いわゆるキンクが存在しておりスペクトルを測
定してみると、しきい値から95mA伺近1では単−縦
モードで発振したが、それ以上の電流注入では2本の縦
モードで発振した。When a forward direct current was simultaneously applied to electrodes 7 and 9 of this device mounted on a heat sink at the same current density, laser oscillation occurred when the sum of both reached 78 mA. Figure 3 shows the optical output vs. current characteristics at that time, but there was a so-called kink, and when we measured the spectrum, it oscillated in a single-longitudinal mode at 95 mA from the threshold. , when the current was injected higher than that, oscillation occurred in two longitudinal modes.
次に、電、極8にあらかじめ一定電流を流しておいて第
3図と同じ特性を測定したところ、電極8かもの正方向
注入電流の値に応じて特性の変化をすることが認められ
た。第4図に示すのは電極8からの正方向注入電流が3
7mAのときの特性で、電極7と9からの電流の和でき
捷る発振しきい値は69mAである。光出力−電流特性
はなめらかで、スペクトルを測定してみると、しきい値
から312mAまで単−縦モード発振であった。このと
き光出力としては23mWを得た。Next, when we measured the same characteristics as shown in Figure 3 by passing a constant current through electrode 8 in advance, we found that the characteristics of electrode 8 changed depending on the value of the positive direction injection current. . Figure 4 shows that the positive injection current from electrode 8 is 3.
With the characteristics at 7 mA, the oscillation threshold at which the sum of the currents from electrodes 7 and 9 breaks is 69 mA. The optical output-current characteristic was smooth, and when the spectrum was measured, single-longitudinal mode oscillation was observed from the threshold value to 312 mA. At this time, a light output of 23 mW was obtained.
(発明の効果)
以上説明したように、本発明によれば従来の製作技術を
そのまま月4いて91−縦モード発振する歩留りの高い
分布帰還形半導体レーザを得ることができ、大容量光通
イ8方式の実現等に向けてイ〕用である。(Effects of the Invention) As explained above, according to the present invention, it is possible to obtain a high-yield distributed feedback semiconductor laser that oscillates in the 91-longitudinal mode using conventional manufacturing techniques, and it is possible to obtain a high-yield distributed feedback semiconductor laser that oscillates in the 91-longitudinal mode. This is useful for the realization of the 8 system.
なお、本発明の構成はGaAs/ GaAAAs等他の
利ネIで、又、InP/ InGaAsP系でも1.5
5 pm以外の1:3μmη、12μm域についても有
用である。Note that the structure of the present invention can be used for other alloys such as GaAs/GaAAAs, and also for InP/InGaAsP systems.
1:3 μmη and 12 μm ranges other than 5 pm are also useful.
又素子構成上、回折格子はあらかじめエピタキシャル成
長した光ガイド層上に形成することもできる。回41r
格子の次数として2次以夕)にも1次。Furthermore, depending on the device configuration, the diffraction grating can be formed on a light guide layer that has been epitaxially grown in advance. Round 41r
The order of the lattice is 2nd order and 1st order.
3次1tのものが使用できることも明白である。It is also clear that tertiary 1t can be used.
第1図は従来から4〃案されている装置の回折格rの構
造を示す略図、第2図は本発明による装置iftの柘■
7、を示す縦断面図、第:3図と第4図は第2図の装置
の一実施例の光出力−箱、流偶性図である。
I −n形1nl)基板、 2− n形1nGaAsP
光ガ〔ド層、:う”’p形InGaAsP活性層、4−
p形InPクラッド層、5− p形InGaAsP電
極層、6・・・n形オーミック電極、7.8.9・・・
p形オーミック電極、10、II・・・回折格子。
特許出願人 日本電信電話公社
代理人 白水常雄
外1名
禾3 図
t L (DCs mA)
第4図
’E’ t (DC,mA)Fig. 1 is a schematic diagram showing the structure of the diffraction grating r of a conventionally proposed device.
7, and FIGS. 3 and 4 are optical output-box and flux diagrams of an embodiment of the device shown in FIG. 2. I-n-type 1nl) substrate, 2-n-type 1nGaAsP
Optical guard layer, p-type InGaAsP active layer, 4-
p-type InP cladding layer, 5- p-type InGaAsP electrode layer, 6... n-type ohmic electrode, 7.8.9...
P-type ohmic electrode, 10, II...diffraction grating. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent Tsuneo Shiramizu and one other person 3 Figure t L (DCs mA) Figure 4 'E' t (DC, mA)
Claims (1)
結晶薄膜からなる半導体結晶の一部゛分にレーザ光の発
振方向に沿って膜厚が周期的に変化している周期構造が
形成されている分布帰還の機能を有する半導体レーザ装
置において、周期構造を有する2つの領域にはさまれて
周期構造を有しない1つの光導波路領域が存在し、これ
らの3つの91域は各々に対応した互いに独立の1b、
原注入用′tb、極をイjし、該3つの電極から注入す
る電流の値を調節することにより単−輔モード発振を容
易にし又発Jk4 i1’l長を変化させ1(Iるよう
に構成されたことを114.徴とするQi−1伯モ一ド
半導体レーザ装置。A periodic structure in which the film thickness changes periodically along the oscillation direction of a laser beam is formed in a part of a semiconductor crystal consisting of a plurality of single crystal thin films including at least an active layer formed on a semiconductor substrate. In a semiconductor laser device having a distributed feedback function, there is one optical waveguide region without a periodic structure sandwiched between two regions with a periodic structure, and these three 91 regions correspond to each other. 1b independent of each other,
By adjusting the current injected from the three electrodes, single-mode oscillation is facilitated, and the length of the oscillation is changed to make it 1(I). 114. A Qi-1 monochrome semiconductor laser device having the following structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59034265A JPS60178685A (en) | 1984-02-27 | 1984-02-27 | Single-axial mode semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59034265A JPS60178685A (en) | 1984-02-27 | 1984-02-27 | Single-axial mode semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60178685A true JPS60178685A (en) | 1985-09-12 |
Family
ID=12409337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59034265A Pending JPS60178685A (en) | 1984-02-27 | 1984-02-27 | Single-axial mode semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60178685A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6332988A (en) * | 1986-07-25 | 1988-02-12 | Nec Corp | Distributed feedback semiconductor laser |
JPH0766501A (en) * | 1993-08-31 | 1995-03-10 | Nec Corp | Semiconductor laser |
US6330268B1 (en) | 1998-08-27 | 2001-12-11 | Nec Corporation | Distributed feedback semiconductor laser |
US6574261B2 (en) | 1998-08-27 | 2003-06-03 | Nec Corporation | Distributed feedback semiconductor laser |
CN1333500C (en) * | 2005-07-27 | 2007-08-22 | 清华大学 | Multi-sectional-distribution feedback semiconductor laser |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844785A (en) * | 1981-08-27 | 1983-03-15 | Kokusai Denshin Denwa Co Ltd <Kdd> | Semiconductor laser |
JPS5878488A (en) * | 1981-11-05 | 1983-05-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
-
1984
- 1984-02-27 JP JP59034265A patent/JPS60178685A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844785A (en) * | 1981-08-27 | 1983-03-15 | Kokusai Denshin Denwa Co Ltd <Kdd> | Semiconductor laser |
JPS5878488A (en) * | 1981-11-05 | 1983-05-12 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6332988A (en) * | 1986-07-25 | 1988-02-12 | Nec Corp | Distributed feedback semiconductor laser |
JPH0766501A (en) * | 1993-08-31 | 1995-03-10 | Nec Corp | Semiconductor laser |
US6330268B1 (en) | 1998-08-27 | 2001-12-11 | Nec Corporation | Distributed feedback semiconductor laser |
US6574261B2 (en) | 1998-08-27 | 2003-06-03 | Nec Corporation | Distributed feedback semiconductor laser |
CN1333500C (en) * | 2005-07-27 | 2007-08-22 | 清华大学 | Multi-sectional-distribution feedback semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3611593B2 (en) | Method for fabricating semiconductor optical device | |
JP2619057B2 (en) | Manufacturing method of semiconductor laser | |
JPH0770791B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP6510391B2 (en) | Semiconductor laser | |
JPH0629622A (en) | Laser device | |
JP6588859B2 (en) | Semiconductor laser | |
US6594298B2 (en) | Multi-wavelength semiconductor laser array and method for fabricating the same | |
JPH1154832A (en) | Distributed feedback semiconductor laser | |
JP2003046190A (en) | Semiconductor laser | |
US4589117A (en) | Butt-jointed built-in semiconductor laser | |
EP0641053A1 (en) | Method and apparatus for control of lasing wavelength in distributed feedback lasers | |
JP6588858B2 (en) | Semiconductor laser | |
JPH09270568A (en) | Multiple wavelength oscillation laser | |
JPS60178685A (en) | Single-axial mode semiconductor laser device | |
JP3166836B2 (en) | Semiconductor laser | |
US11557876B2 (en) | Semiconductor laser | |
JP2804502B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0555689A (en) | Distributed reflection type semiconductor laser provided with wavelength control function | |
JPH0147031B2 (en) | ||
JPS6046087A (en) | Distributed bragg reflection type semiconductor laser | |
US20030094617A1 (en) | Laser diode | |
JP2630035B2 (en) | Tunable semiconductor laser | |
JP2947702B2 (en) | Tunable laser device and manufacturing method thereof | |
JPS60152086A (en) | Semiconductor laser device | |
JPH09307179A (en) | Phase shift type distributed feedback semiconductor laser |