JPS6046087A - Distributed bragg reflection type semiconductor laser - Google Patents

Distributed bragg reflection type semiconductor laser

Info

Publication number
JPS6046087A
JPS6046087A JP58154574A JP15457483A JPS6046087A JP S6046087 A JPS6046087 A JP S6046087A JP 58154574 A JP58154574 A JP 58154574A JP 15457483 A JP15457483 A JP 15457483A JP S6046087 A JPS6046087 A JP S6046087A
Authority
JP
Japan
Prior art keywords
layer
mesa
type inp
diffraction grating
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58154574A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58154574A priority Critical patent/JPS6046087A/en
Publication of JPS6046087A publication Critical patent/JPS6046087A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the reproducibility of element characteristics and the yield of manufacturing an element by forming a photoguide layer in series with an active layer to be photorecombined, thereby forming a diffraction grating on a semiconductor substrate having a flat surface. CONSTITUTION:A diffraction grating 2 is formed on an N type InP substrate 1, a P type InGaAsP photoguide layer 3 and an N type InP layer 4 are laminated, a photoguide mesa 5 and a mesa 6 of an active region are formed by etching, and a buried crystal growth is performed. A P type InP clad layer 9 is laminated except the top of the mesa 5, an N type InP current block layer 10 is laminated except the mesa 5 and the mesa 6 of the active region, and a P type InP buried layer 11 and a P type InGaAsP electrode layer 12 are laminated over the entire surface so that an N type InP buffer layer 7 is laminated except the top of the mesa 5 and a non-doped InGaAsP active layer 8 is independently formed on the upper surface of the mesa 6 of the active region. Then, electrodes are formed, and a distributed Bragg reflection type semiconductor laser of buried hetero structure is obtained.

Description

【発明の詳細な説明】 本発明は活性層の周囲を、当該活性層よりもエネルギー
ギャップが大きく、屈折率が小さな半導体層で埋め込ん
だ埋め込みへテロ構造半導体レーザ、特に回折格子を有
する光ガイド層が形成された分布ブラッグ反射型半導体
レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a buried heterostructure semiconductor laser in which an active layer is surrounded by a semiconductor layer having a larger energy gap and a lower refractive index than the active layer, in particular a light guide layer having a diffraction grating. The present invention relates to a distributed Bragg reflection semiconductor laser in which a distributed Bragg reflection type semiconductor laser is formed.

埋め込みへテロ構造半導体レーザ(BH−LD)は低い
発振しきい値組流、高温動作可能などの優れた特性を有
、しており光フアイバ通信用光源として注目を集めてい
る。ところで通常のBH−LDでは高速変調した場合波
長が単一でなくなり、光ファイバの材料1分散等の影@
をうけて伝送帯域を大きく制限してしまう。こわに対し
、高速変調時にも安定な単一軸モード発振を示し、した
がって伝送帯域を大きくとることのできる半導体光源と
して分布帰還型半導体レーザ(DFB−LD)、分布ブ
ラッグ反射型半導体レーザ(DBI(−LD)がある。
Buried heterostructure semiconductor lasers (BH-LDs) have excellent characteristics such as low oscillation threshold current and high temperature operation, and are attracting attention as light sources for optical fiber communications. By the way, in a normal BH-LD, when high-speed modulation is performed, the wavelength is no longer single, and the effects of optical fiber material 1 dispersion, etc.
This greatly limits the transmission band. In contrast, distributed feedback semiconductor lasers (DFB-LD) and distributed Bragg reflection semiconductor lasers (DBI (- LD).

これらの半導体レーザはいずれも適当なピッチの回折格
子を有しており、最近そのような構造の半導体レーザが
開発され、数百メガ上28フ秒で高速変調しても単一波
長で発振するという結果が得られている。その−例とし
て阿部氏らは1982年発行のエレクトロニクス・レタ
ーズ(Electronics Letters )誌
、第18巻、第10号、第410頁から第411頁に報
告しているように、埋め込み構造の直接結合型分布ブラ
ッグ反射型半導体レーザ(BH−BJB−DBR−LD
)を作製し、単一軸モード発振を得た。この半導体レー
ザは埋め込み活性層ζこ直列ζζ光ガイド層を結合し、
光ガイド層上に回折格子が形成されている。
All of these semiconductor lasers have a diffraction grating with an appropriate pitch, and semiconductor lasers with such a structure have recently been developed, and they oscillate at a single wavelength even when modulated at high speeds of several hundred megabytes and 28 microseconds. The result is as follows. As an example, as reported by Mr. Abe et al. in Electronics Letters, Vol. 18, No. 10, pp. 410 to 411, published in 1982, there is a direct coupling type of embedded structure. Distributed Bragg reflection semiconductor laser (BH-BJB-DBR-LD
) and obtained single-axis mode oscillation. This semiconductor laser combines a buried active layer ζ and a series ζζ optical guide layer,
A diffraction grating is formed on the light guide layer.

この半導体レーザは3回の液相成長工程を必要とし、製
作過程の概略は次のようである。まずはじめにn−In
P基板上にn−Ink、InGaAsP活性層、InG
aAsPメルトバック防止層、p −InP クラッド
層、p−InGaAsF電極層As法積層させて通常の
DH構造ウェファを作製する。
This semiconductor laser requires three liquid phase growth steps, and the manufacturing process is outlined as follows. First of all, n-In
n-Ink, InGaAsP active layer, InG on P substrate
A normal DH structure wafer is fabricated by laminating an aAsP meltback prevention layer, a p-InP cladding layer, and a p-InGaAsF electrode layer using the As method.

次ζこInPの〈ジ/X〉方向に平行に400μm程度
の幅の5i02マスクを形成してp−InP クラッド
層を選択的にエツチング除去する。2回目の液相成長工
程で先ζこエツチングした部分のみにInGaAsP光
ガイド層、InP 層を積層する。
Next, a 5i02 mask with a width of about 400 μm is formed parallel to the <di/X> direction of the InP, and the p-InP cladding layer is selectively etched away. In the second liquid phase growth step, an InGaAsP optical guide layer and an InP layer are laminated only on the previously etched portion.

このときにはエツチングした表面にU出しているメルト
バック防止層、活性層は光ガイド層の成長直前あるいは
成長時にメルトバックして、元ガイド層がn −’I 
n−P層上に活性層とほぼ同じ高さになる。ように下る
。続いて埋め込み構造を得るために((OV I )方
向に平行に活性層よりも深くメサエッチングを行なって
メサストライプを形成した後3回目の液相成長工程にお
いてp−InP、 n−InPの2つの電流ブロック層
を積層させる。最後に光ガイド層部分にのみ0.25μ
mのピッチの回折格子そ形成し電極形成を行なって所望
の半導体レーザを得る。阿部氏らはこのようにして作製
したI)BR−LDにおいて、0℃でのOW発振しきい
値電流138mA、外部微分量子効率11%、22℃ま
で安定な単一軸モード発振を下る素子を得た。この素子
は200 Kから260Kまでの温度範囲ζこわたって
モードのとびもなく、その発振波長の温度変化率はQ、
ttA/℃であった。
At this time, the meltback prevention layer and the active layer protruding from the etched surface melt back immediately before or during the growth of the light guide layer, and the original guide layer becomes n -'I.
It is located on the n-P layer at approximately the same height as the active layer. Go down like that. Next, in order to obtain a buried structure, mesa etching was performed deeper than the active layer in parallel to the (OV I ) direction to form a mesa stripe, and then in the third liquid phase growth process, two layers of p-InP and n-InP were formed. Laminate two current blocking layers.Finally, 0.25μ is applied only to the light guide layer.
A diffraction grating with a pitch of m is formed and electrodes are formed to obtain a desired semiconductor laser. In the I) BR-LD fabricated in this way, Mr. Abe et al. obtained a device with an OW oscillation threshold current of 138 mA at 0°C, an external differential quantum efficiency of 11%, and stable single-axis mode oscillation up to 22°C. Ta. This device has no mode skipping over the temperature range ζ from 200 K to 260 K, and the temperature change rate of its oscillation wavelength is Q,
It was ttA/°C.

ところで上述の半導体レーザにおいては元ガイド層に回
折格子を形成する際、幅3μm程度の光ガイド層のスト
ライブがInPの埋め込み半導体 1層におおわれてお
り、はじめは平坦でない部分にフォトレジストを塗布し
てレーザ干渉露光を行なうことIこなる。InPの埋め
込み層が光ガイド層よりも盛り上がっているところにフ
ォトレジストを塗布するとその部分でフォトレジストが
厚くなってしすうので回折格子がうまく作製できない。
By the way, in the above-mentioned semiconductor laser, when forming the diffraction grating on the original guide layer, the stripes of the optical guide layer with a width of about 3 μm are covered with a single layer of buried semiconductor of InP, and photoresist is first applied to the uneven portions. Then, laser interference exposure is performed. If a photoresist is applied to an area where the InP buried layer is higher than the optical guide layer, the photoresist will become thicker in that area, making it difficult to successfully fabricate a diffraction grating.

そこで埋め込みInP層を少しずつ選択エツチングして
いって、その高さが光ガイド層の高さとほぼ同じになっ
てからレーザ干渉露光を行なうということをしている。
Therefore, the buried InP layer is selectively etched little by little, and the laser interference exposure is performed after the height of the buried InP layer becomes approximately the same as the height of the light guide layer.

ざらに液相成長工程も3回にわたって行なわなければな
らす、製作工程が複雑で素子製造の歩留りが悪いという
ことが大きな欠点1こなっている。
One major drawback is that the liquid phase growth process must be performed three times, the manufacturing process is complicated, and the yield of device manufacturing is low.

Tなわち3回の液相成長工程と、回折格子作製の複雑さ
が大きなネックになっているわけで、液相成長の回数を
減らすと同時に均一な面に回折格子を形成することがで
きれは上述の問題点をかなりの程度少くすることができ
る。
In other words, the three liquid phase growth steps and the complexity of fabricating the diffraction grating are major bottlenecks, and it is possible to reduce the number of liquid phase growth steps and at the same time form a diffraction grating on a uniform surface. can reduce the above-mentioned problems to a considerable extent.

本発明の目的は上除の欠点を除夫丁べく、特性の再現性
、素子製法の歩留りが大幅に向上した埋め込みへテロ構
造の分布ブラッグ反射型半導体レーザを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above drawbacks and provide a buried heterostructure distributed Bragg reflection type semiconductor laser in which the reproducibility of characteristics and the yield of the device manufacturing process are significantly improved.

本発明による分布ブラッグ反射型半導体レーザの構成は
、半導体基板上に少くとも活性層と、前記活性層よりも
エネルギーギャップが大きく、かつ一方の面に周期がn
・λ/2(但しnは整数、λは前記活性層中の発振波長
)の回折格子が形成された光ガイド層とを有する分布ブ
ラッグ反射型半導体レーザにおいて、発光再結合する前
記活性層がメサストライプ上面に形成され、レーザ共振
軸に平行な方向に前記活性層、前記光ガイド層が直接に
結合されていることを特徴とする。
The structure of the distributed Bragg reflection type semiconductor laser according to the present invention includes at least an active layer on a semiconductor substrate, an energy gap larger than that of the active layer, and a period of n on one surface.
- In a distributed Bragg reflection type semiconductor laser having an optical guide layer in which a diffraction grating of λ/2 (where n is an integer and λ is an oscillation wavelength in the active layer) is formed, the active layer that emits light and recombines is a mesa. It is characterized in that it is formed on the upper surface of the stripe, and the active layer and the optical guide layer are directly coupled in a direction parallel to the laser resonance axis.

以下実施例を示す図面を用いて本発明をより詳細ζこ説
明する。
The present invention will be explained in more detail below using drawings showing embodiments.

第1図は本発明による埋め込みへテロ構造の分布ブラッ
グ反射型半導体レーザ(B H−D、B R−LD )
の一実施例の製作工程を示す斜視図である。このような
りH−DBR−LDを得るには、まず第1図(a)に示
したようにn −I n P 基板1上に回折格子2を
形成し、そのうえに発光波長1.2μmに相当するp 
In0,7 @ G aO,22As648 p042
 光カイド層3を厚さ0.4 μm、 n−I n P
層4そ厚さ1μm積層する。回折格子2は(100)面
方位を有するn−InP基板1上に〈ρ//〉結晶方向
にくり返すものを形成する。He −Od ガスレーザ
を用いた通常のレーザ干渉法により周期39ooX、深
さ1500Aの回折格子を形成した。エツチングはフォ
トリングラフィの手法とHBr系の混合エツチング液を
用いて行なった。液相成長時の高温保持、メルトバック
等による回折格子2の消失を防ぐためにpxno−78
Gaoat ASO411Po、112光ガイド層3は
600℃前後の低い温度で成長を行なった。特にメルト
バックを防止するために10℃程度の過飽和度をとった
スーパークーリング溶液を用いて成長した。このように
して作製した半導体へテロ構造ウェファζこ第1図(b
)に示したようなメサストライプ形状にエツチングを行
ない、光ガイドメサ5、活性領域のメサ6を形成Tる。
FIG. 1 shows a buried heterostructure distributed Bragg reflection semiconductor laser (B HD, B R-LD) according to the present invention.
FIG. 3 is a perspective view showing the manufacturing process of one embodiment of the invention. To obtain such an H-DBR-LD, first, as shown in FIG. p
In0,7 @ GaO,22As648 p042
The optical guide layer 3 has a thickness of 0.4 μm, n-I n P
Layer 4 is laminated to a thickness of 1 μm. The diffraction grating 2 is formed on an n-InP substrate 1 having a (100) plane orientation and is repeated in the <ρ//> crystal direction. A diffraction grating with a period of 39ooX and a depth of 1500A was formed by ordinary laser interferometry using a He-Od gas laser. Etching was carried out using a photolithography method and an HBr-based mixed etching solution. pxno-78 to prevent the disappearance of the diffraction grating 2 due to high temperature maintenance, meltback, etc. during liquid phase growth.
Gaoat ASO411Po,112 light guide layer 3 was grown at a low temperature of around 600°C. In particular, in order to prevent meltback, a supercooling solution with a supersaturation degree of about 10° C. was used for growth. The semiconductor heterostructure wafer ζ produced in this way is shown in Fig. 1 (b).
) Etching is performed to form a mesa stripe shape as shown in FIG. 1, to form a light guide mesa 5 and an active region mesa 6.

このようなエツチングを行なうlこはまず<’oy/>
方向に平イテに幅3μmのエツチングマスクを形成して
4μmの深さとなるようにメサストライプを形成する。
When performing this kind of etching, first
An etching mask with a width of 3 .mu.m is formed in a horizontal plane to form mesa stripes with a depth of 4 .mu.m.

エツチングは塩酸、酢酸系の混合エツチング液を用い、
サイドエツチングの現象を利用してメサトップで幅がほ
ぼO%Tなわち三角形状となるようlこした。
For etching, a mixed etching solution containing hydrochloric acid and acetic acid is used.
Utilizing the phenomenon of side etching, the mesa top was scraped so that the width was approximately O%T, that is, it had a triangular shape.

三角形状にならず、台形になってもメサトップの幅が1
μm以下と十分に狭くなっていればそれでよい。このと
き回折格子2の部分で幅が約1.5μmとなっているよ
うにエツチングを行なった。その活性Z域のメサ6とな
る部分のみn −I n P M4、pT−no、78
 Gao、HAso、、a pO052元ガイド層3を
選択エツチングを行なう。これら2つの半導体層層 は高さ1.4μm%Z辺が1.5μm程度の三角形状を
しており、これらの選択エツチングに際して他の部分は
ほとんどエツチングされない。以上のようにしてエツチ
ングを行なって光ガイドメサ5、活性領域のメサ6を形
成した半導体ウェファに埋め込み結晶成長を行なう。ま
ずn −I n Pバッファ層7を光ガイドメサ5上部
のみを除いて、発光波長1.:3μm相当のノンドープ
I n9.72 G a o 、2s−Ago、61 
PO−49活性層8を活性領域のメサ6の上面に孤立す
るように、続いてp−InP クラッド層9を光ガイド
メサ5上部を除いて、n−InP電流ブロック層10を
光がイドメサ5および活性領域のメサ6部分を除いて、
さらにp−InP埋め込み層11、発光波長1.2μm
相当のp 1n0−78−GaO,、AsO・、6 P
O,、電極層12を全面にわ7L ツで・順次積層させ
る。n −I n Pバッファ層7はスーパークーリン
グ法を用いて活性領域のメサ6上面に0.1μm、 I
 no−7! Gao、 ASo、@I Po、411
活性層8は2相溶液法により成長を行ない、やはり活性
領域のメサ6上面で0.1μmの厚さに積層した。
Even if it becomes trapezoidal instead of triangular, the width of the mesa top is 1
As long as it is sufficiently narrow, less than μm, it is sufficient. At this time, etching was performed so that the width of the diffraction grating 2 was approximately 1.5 μm. Only the part that becomes mesa 6 in the active Z region n -I n P M4, pT-no, 78
Gao, HAso, apO052 original guide layer 3 is selectively etched. These two semiconductor layers have a triangular shape with a height of 1.4 μm% and a Z side of about 1.5 μm, and when these are selectively etched, other portions are hardly etched. In the semiconductor wafer on which the optical guide mesa 5 and the active region mesa 6 have been formed by etching as described above, embedded crystal growth is performed. First, the n-I n P buffer layer 7 is formed except for the upper part of the optical guide mesa 5, and the emission wavelength is set to 1. : Non-doped I n9.72 Gao, 2s-Ago, 61 equivalent to 3 μm
The PO-49 active layer 8 is isolated on the top surface of the mesa 6 in the active region, and then the p-InP cladding layer 9 is placed on the top surface of the mesa 5 in the active region, and the n-InP current blocking layer 10 is placed so that the light guide mesa 5 and Except for the mesa 6 part of the active area,
Furthermore, p-InP buried layer 11, emission wavelength 1.2 μm
Equivalent p 1n0-78-GaO,,AsO・,6P
O. The electrode layer 12 is sequentially laminated in 7L layers over the entire surface. An n-I n P buffer layer 7 is formed on the upper surface of the mesa 6 in the active region by using a super cooling method with a thickness of 0.1 μm.
No-7! Gao, ASo, @I Po, 411
The active layer 8 was grown by a two-phase solution method, and was also laminated to a thickness of 0.1 μm on the upper surface of the mesa 6 in the active region.

このときには通常の液相温度を採用し、メサ6上の回折
格子2は消失する。同様にp−InPクラッド層9はス
ーパークーリング法、n−InP電流ブロック層10は
2相溶液法を用いて結晶成長を行なった。以上のように
してメサエッチング、埋め込み成長を行なった半導体ウ
ェファJこ電極形成、個々のレーザペレットへの切り出
しを行なって所望のBH−DBR−LDを得る(第1図
(Cン)。光ガイドメサ5の部分の素子断面図を第2図
に示す。
At this time, a normal liquidus temperature is adopted, and the diffraction grating 2 on the mesa 6 disappears. Similarly, the p-InP cladding layer 9 was grown using the super cooling method, and the n-InP current blocking layer 10 was grown using the two-phase solution method. The semiconductor wafer subjected to mesa etching and buried growth as described above is subjected to electrode formation and cutting into individual laser pellets to obtain the desired BH-DBR-LD (Fig. 1 (C)). A cross-sectional view of the device at a portion 5 is shown in FIG.

光ガイドメサ5の部分ではエビ成長層上面からp−p 
−n −p −n (基板)構造となり、同時にそれ以
外の部分でもp−p−n−p−ノンドープ活性層−n、
−n構造となって成長層側にf1基板側に負のバイアス
電圧を印加してもほとんど電流が流れない。一方活性領
域部分では埋め込まれた活性層の部分にのみ電流が流れ
ることになるのでBH−LDにおけるもれ電流を有効ζ
こ抑えることができる。
In the part of light guide mesa 5, from the upper surface of the shrimp growth layer, pp.
-n -p -n (substrate) structure, and at the same time in other parts p-p-n-p non-doped active layer -n,
-n structure, and even if a negative bias voltage is applied to the growth layer side and the f1 substrate side, almost no current flows. On the other hand, in the active region part, the current flows only in the buried active layer part, so the leakage current in the BH-LD can be effectively
This can be suppressed.

以上のようにして作製しT: I nGaAs P/I
 n PBH−DBR−LDにおいて、活性領域の長さ
、光ガイド層の長さをいずれも300μm程度に切り出
し、室温CWにおける発振しきい値電流50mA、微分
量子効率16%、0℃から50℃才での温度範囲で安定
なりBRモード発振そする素子が再現性よく得られた。
Produced as above, T: InGaAs P/I
n PBH-DBR-LD, the length of the active region and the length of the optical guide layer are both cut to about 300 μm, the oscillation threshold current is 50 mA at room temperature CW, the differential quantum efficiency is 16%, and the temperature from 0°C to 50°C is A device that is stable and exhibits BR mode oscillation in the temperature range of

その動作温度範囲で発振波長の温度変化率は0.9A/
deg、500Mb/sの高速パルス変調時にも安定な
単一軸モード発振を示した。本発明の実施例によるBH
−DBR−LDiこおいては回折格子2はn −I n
 P基板1の平坦な表面に形成することができ、液相成
長工程もたった2回で、活性層以外に流れるもれ電流も
十分小さく抑えることができた。以上のことから素子特
性の再現性もよく、製造歩留りの向上したBH−DBR
−LDを得た。
The temperature change rate of the oscillation wavelength in its operating temperature range is 0.9A/
It showed stable single-axis mode oscillation even during high-speed pulse modulation of 500 Mb/s. BH according to embodiments of the invention
-DBR-LDi In this case, the diffraction grating 2 is n -I n
It could be formed on the flat surface of the P substrate 1, the liquid phase growth process was performed only twice, and leakage current flowing to areas other than the active layer could be suppressed to a sufficiently small level. From the above, BH-DBR has good reproducibility of device characteristics and improved manufacturing yield.
-LD was obtained.

なお本発明の実施例においてはInPを基板、I n 
G a A s P層を活性層、光ガイド層とする波長
1μm帯の素子を示したが、用いる半導体材料はそれに
限ることなく、可視光領域から遠赤外領域までの波長範
囲をカバーすべく、InGaP、GaAj?A、s’S
b等他の半導体材料を用いて何らさしつかえない。また
光ガイドメサ5Gこはn−InP電流ブロック層10才
での半導体層が積層しない構造のものを示したが、p 
−n −p −n構造の電流ブロック機構が作り込めれ
ばよいので、p−InPクラッド層9、n−InP 電
流ブロック層10の2つの半導体層は元ガイドメサ58
おおうように成長してもかまわない。
In the embodiments of the present invention, InP is used as the substrate, and InP is used as the substrate.
Although we have shown an element with a wavelength of 1 μm using a GaAs P layer as an active layer and a light guide layer, the semiconductor material used is not limited thereto, and can be used to cover the wavelength range from the visible light region to the far infrared region. , InGaP, GaAj? A,s'S
There is no problem in using other semiconductor materials such as b. In addition, the light guide mesa 5G shows a structure in which the semiconductor layer is not stacked with the n-InP current blocking layer at 10 years old, but the p
Since it is only necessary to create a current blocking mechanism with a -n -p -n structure, the two semiconductor layers, the p-InP cladding layer 9 and the n-InP current blocking layer 10, are the former guide mesa 58.
It doesn't matter if it grows to cover you.

本発明の特徴はメサストライプの上面に発光再結合する
活性層を埋め込んで成長させ、それに直列にDBR用の
光ガイド層を形成したことである。
The feature of the present invention is that an active layer for light emission recombination is buried and grown on the upper surface of the mesa stripe, and a light guide layer for DBR is formed in series therewith.

これによって回折格子は平坦な表面をもつ半導体基板上
に形成Tることができ、かつ2回の液イ’lj Jy。
This allows the diffraction grating to be formed on a semiconductor substrate with a flat surface and requires two liquid injections.

長工程で高性能なりH−DBR−LDを作製することが
できた。BH−LDに対するもれ電流も十分小さくする
ことができ、素子特性の再現性、素子製造の歩留りが優
れ7.=BT−1−DBR−LDを得ることができた。
A high-performance H-DBR-LD could be produced in a long process. 7. Leakage current to BH-LD can be sufficiently reduced, and the reproducibility of device characteristics and yield of device manufacturing are excellent. =BT-1-DBR-LD could be obtained.

−L D O)製作工程を示T1こめの斜視図、第2図
は光ガイド領域の素子断面図をそれぞれ示す。図中1は
n −I n P基板、2は回折格子、し3はP−:[
no−780a、)、22 Aso、44 P層、12
光ガイド層、4はn−InP層、5は光ガイドメサ、6
は活性領域のメサ、7はn −I n Pバッファ層S
8はI no ・72oa、、28AS0.6I Po
、311 fka層、9はp −1n P層 クラッド層、10はn −I n P電流ブロック層、
11LCp −I n’P埋め込み層、12はp −I
n。、、BGa、、、2As0411 Pa−a2N流
層をそれぞれあられ丁。
-LDO) The manufacturing process is shown in a perspective view from T1 onward, and FIG. 2 is a cross-sectional view of the element in the light guide region. In the figure, 1 is an n-I n P substrate, 2 is a diffraction grating, and 3 is a P-:[
no-780a, ), 22 Aso, 44 P layer, 12
Light guide layer, 4 is n-InP layer, 5 is light guide mesa, 6
7 is the mesa of the active region, and 7 is the n-I n P buffer layer S.
8 is I no 72oa, 28AS0.6I Po
, 311 fka layer, 9 is p -1n P cladding layer, 10 is n -I nP current blocking layer,
11LCp-I n'P buried layer, 12 p-I
n. ,,BGa,,,2As0411 Pa-a2N flow layer respectively.

代理人弁理士内原 日 ギ 1 図 婆 2 mlRepresentative Patent Attorney Uchihara Day Gi 1 Diagram Granny 2ml

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上ζこ少くとも活性層と、前記活性層よりも
エネルギーギャップが大きく、かつ一方の面に周期がn
・λ/2(但しnは整数、λは前記活性層中の発振波長
)の回折格子が形成された光ガイド層とを有する分布ブ
ラッグ反射型半導体レーザにおいて、発光再結合する前
記活性層がメサストライプ上面に形成され、レーザ共振
軸に平行な方向に前記活性層、前記光ガイド層が直接に
結合されていることを特徴とする分布ブラッグ反射型半
導体レーザ。
On the semiconductor substrate
- In a distributed Bragg reflection type semiconductor laser having an optical guide layer in which a diffraction grating of λ/2 (where n is an integer and λ is an oscillation wavelength in the active layer) is formed, the active layer that emits light and recombines is a mesa. 1. A distributed Bragg reflection type semiconductor laser formed on a stripe upper surface, wherein the active layer and the optical guide layer are directly coupled in a direction parallel to a laser resonance axis.
JP58154574A 1983-08-24 1983-08-24 Distributed bragg reflection type semiconductor laser Pending JPS6046087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154574A JPS6046087A (en) 1983-08-24 1983-08-24 Distributed bragg reflection type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154574A JPS6046087A (en) 1983-08-24 1983-08-24 Distributed bragg reflection type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6046087A true JPS6046087A (en) 1985-03-12

Family

ID=15587199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154574A Pending JPS6046087A (en) 1983-08-24 1983-08-24 Distributed bragg reflection type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6046087A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274384A (en) * 1985-05-29 1986-12-04 Nec Corp Optical integrated element
JPS62245691A (en) * 1986-04-17 1987-10-26 Nec Corp Manufacure of semiconductor laser
JPS6316692A (en) * 1986-07-08 1988-01-23 Nec Corp Distributed feedback semiconductor laser
JPH02244691A (en) * 1988-08-26 1990-09-28 American Teleph & Telegr Co <Att> Manufacture and etching method for photon integrated circuit
US5185759A (en) * 1990-06-12 1993-02-09 Kabushiki Kaisha Toshiba Phase-shifted distributed feedback type semiconductor laser device
KR100266836B1 (en) * 1991-04-22 2000-09-15 이데이 노부유끼 Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274384A (en) * 1985-05-29 1986-12-04 Nec Corp Optical integrated element
JPS62245691A (en) * 1986-04-17 1987-10-26 Nec Corp Manufacure of semiconductor laser
JPS6316692A (en) * 1986-07-08 1988-01-23 Nec Corp Distributed feedback semiconductor laser
JPH02244691A (en) * 1988-08-26 1990-09-28 American Teleph & Telegr Co <Att> Manufacture and etching method for photon integrated circuit
US5185759A (en) * 1990-06-12 1993-02-09 Kabushiki Kaisha Toshiba Phase-shifted distributed feedback type semiconductor laser device
KR100266836B1 (en) * 1991-04-22 2000-09-15 이데이 노부유끼 Semiconductor laser

Similar Documents

Publication Publication Date Title
JP2746326B2 (en) Semiconductor optical device
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JPH04397B2 (en)
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JPH069280B2 (en) Semiconductor laser device
JPS6046087A (en) Distributed bragg reflection type semiconductor laser
JP2000012963A (en) Manufacture of optical semiconductor device
JPH0716079B2 (en) Semiconductor laser device
JPH09199791A (en) Optical semiconductor device and its manufacture
JP2894186B2 (en) Optical semiconductor device
US6734464B2 (en) Hetero-junction laser diode
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPS61220389A (en) Integrated type semiconductor laser
JPS60178685A (en) Single-axial mode semiconductor laser device
JP2771276B2 (en) Semiconductor optical integrated device and manufacturing method thereof
JPS6057692A (en) Distributed bragg-reflector type semiconductor laser
JP2947702B2 (en) Tunable laser device and manufacturing method thereof
JPS59125660A (en) Monitor integrated type semiconductor light emitting element
JPS59184585A (en) Semiconductor laser of single axial mode
JPH07202316A (en) Selectively grown waveguide optical control element
JP2687404B2 (en) Distributed feedback semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JPH0446477B2 (en)
JPS59165478A (en) Distributed feedback type semiconductor laser
JPH0467355B2 (en)