JP2771276B2 - Semiconductor optical integrated device and manufacturing method thereof - Google Patents

Semiconductor optical integrated device and manufacturing method thereof

Info

Publication number
JP2771276B2
JP2771276B2 JP1226776A JP22677689A JP2771276B2 JP 2771276 B2 JP2771276 B2 JP 2771276B2 JP 1226776 A JP1226776 A JP 1226776A JP 22677689 A JP22677689 A JP 22677689A JP 2771276 B2 JP2771276 B2 JP 2771276B2
Authority
JP
Japan
Prior art keywords
region
layer
integrated device
quantum well
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1226776A
Other languages
Japanese (ja)
Other versions
JPH0391282A (en
Inventor
茂 村田
昌幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1226776A priority Critical patent/JP2771276B2/en
Publication of JPH0391282A publication Critical patent/JPH0391282A/en
Application granted granted Critical
Publication of JP2771276B2 publication Critical patent/JP2771276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体光集積素子の構造と製造方法に関し、
特に多重量子井戸(MQW)構造を利用した半導体光集積
素子の構造と製造方法に関する。
The present invention relates to the structure and manufacturing method of a semiconductor optical integrated device,
In particular, the present invention relates to a structure and a manufacturing method of a semiconductor optical integrated device using a multiple quantum well (MQW) structure.

〔従来の技術〕[Conventional technology]

一つの半導体基板上に、発光領域と、発光領域から放
出された光を変調する変調領域とが集積化された半導体
光集積素子は、高速の光ファイバー通信における小型で
高性能な光源として重要である。その中でも、分布帰還
型半導体レーザ(以下DFBレーザ)と吸収型光変調器と
を集積化した半導体集積素子は、数Gb/s以上の光ファイ
バー通信の光源として中心的な役割を果たすことが期待
されている。従来のDFBレーザと光変調器の集積素子
は、大まかに言って次の3種類があり、それぞれ光変調
器の部分に特徴がある。第1は、光変調器にフランツケ
ルディッシュ効果を利用したもので、光変調器領域に形
成されたDFBレーザのエネルギーに対してわずかにエネ
ルギーギャップの大きな半導体層に、電界を印加するこ
とで通過するレーザ光を変調する。この半導体光集積素
子については、例えば鈴木らの報告がある(M.Suzuki e
tal.,IEEE J.Lightwave Tech.LT−5,(1987)1277)。
第2は、光変調器に量子閉じ込めシュタルク効果を利用
したもので、光変調器領域に形成されたMQW層に電界を
印加することで透過するDFBレーザ光を変調する。この
半導体光集積素子については、川村らの報告がある(Y.
Kawamura et al.IEEE J.Quantum Electron.QE−23,(19
87)915)。上述の第1と第2の従来例は、DFBレーザ領
域と光変調器領域が異なる組成の半導体層で構成されて
いる。このため製造にあたっては、まず半導体基板上に
DFBレーザ領域を結晶成長した後、光変調器領域を選択
的に結晶成長するという方法を用いている。第3の従来
例は、光変調器に利得変調を利用したもので、光変調器
領域はDFBレーザ領域と同じ組成をもつ活性層を有して
おり、光変調器領域の活性層へ注入する電流を変調する
ことで利得を変え、透過するDFBレーザ光を変調する。
この半導体光集積素子については、例えば山口らの報告
がある(M.Yamaguchi et al.,Electron.Lett.23,(198
7)190)。第3の従来例では、DFBレーザ領域と光変調
器領域とが同じ組成の半導体層で構成されているため
に、2つ領域の活性層を同時に結晶成長でき、選択的な
結晶成長は不用である。
A semiconductor optical integrated device in which a light emitting region and a modulation region for modulating light emitted from the light emitting region are integrated on one semiconductor substrate is important as a small and high performance light source in high-speed optical fiber communication. . Among them, a semiconductor integrated device that integrates a distributed feedback semiconductor laser (hereinafter referred to as DFB laser) and an absorption type optical modulator is expected to play a central role as a light source for optical fiber communication of several Gb / s or more. ing. There are roughly the following three types of integrated elements of a conventional DFB laser and an optical modulator, each of which is characterized by an optical modulator. The first is the use of the Franz-Keldysh effect in the optical modulator, which passes by applying an electric field to the semiconductor layer with a slightly larger energy gap than the energy of the DFB laser formed in the optical modulator area. Modulates the laser light. This semiconductor optical integrated device is reported by, for example, Suzuki et al. (M. Suzuki e
tal., IEEE J. Lightwave Tech. LT-5, (1987) 1277).
Second, the optical modulator utilizes the quantum confined Stark effect, and modulates the DFB laser light transmitted by applying an electric field to the MQW layer formed in the optical modulator region. Kawamura et al. Reported on this semiconductor optical integrated device (Y.
Kawamura et al. IEEE J. Quantum Electron. QE-23, (19
87) 915). In the first and second conventional examples described above, the DFB laser region and the optical modulator region are composed of semiconductor layers having different compositions. Therefore, in manufacturing, first, on a semiconductor substrate
After the crystal growth of the DFB laser region, a method of selectively growing the optical modulator region is used. The third conventional example uses gain modulation in an optical modulator. The optical modulator region has an active layer having the same composition as the DFB laser region, and is injected into the active layer in the optical modulator region. The gain is changed by modulating the current to modulate the transmitted DFB laser light.
This semiconductor optical integrated device is reported, for example, by Yamaguchi et al. (M. Yamaguchi et al., Electron. Lett. 23, (198
7) 190). In the third conventional example, since the DFB laser region and the optical modulator region are composed of semiconductor layers having the same composition, the active layers in the two regions can be crystal-grown at the same time, and selective crystal growth is unnecessary. is there.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来例には以下のような問題点がある。まず
第1と第2の従来例では、光変調器領域を形成する際に
選択的な結晶成長を用いる必要があるために、製造が難
しく、かつ光変調器からの光出力が小さいという問題点
がある。選択的な結晶成長には、液相エピタキシャル成
長(LPE)法や気相エピタキシャル成長(VPE)法や分子
線エピタキシャル成長(MBE)法などが用いられるが、
いずれの方法でもDFBレーザ領域と光変調器領域の境界
部分に異常成長が起こり易い。また境界部分では均一な
半導体層の結晶成長が難しいため、DFBレーザ領域と光
変調器領域の光学的な結合効率は10%から50%程度と小
さい。このため境界部分でのレーザ光の散乱損失が大き
くなり、光変調器からの光出力が小さくなるのである。
一方第3の従来例では、選択的な結晶成長を用いていな
いために、製造が比較的容易で結合効率も100%近い値
が実現できる。しかしながら、光変調器が電流注入によ
る利得変化を利用しているために、変調帯域は1GHz以下
に制限されている。
The conventional example described above has the following problems. First, in the first and second conventional examples, since it is necessary to use selective crystal growth when forming the optical modulator region, the production is difficult and the optical output from the optical modulator is small. There is. Liquid crystal epitaxial growth (LPE), vapor phase epitaxial growth (VPE), molecular beam epitaxial growth (MBE), etc. are used for selective crystal growth.
Either method tends to cause abnormal growth at the boundary between the DFB laser region and the optical modulator region. Further, since it is difficult to grow a uniform crystal of the semiconductor layer at the boundary, the optical coupling efficiency between the DFB laser region and the optical modulator region is as small as about 10% to 50%. As a result, the scattering loss of the laser light at the boundary increases, and the light output from the optical modulator decreases.
On the other hand, in the third conventional example, since selective crystal growth is not used, manufacture is relatively easy, and a coupling efficiency close to 100% can be realized. However, the modulation band is limited to 1 GHz or less because the optical modulator uses a gain change due to current injection.

本発明の目的は、上述の従来例における問題点を解決
し、製造が容易し、かつ100%に近い光学的な結合効率
が実現でき、さらに数Gb/s以上の変調が可能な、発光素
子と光変調器を集積した半導体光集積素子の構造と製造
方法とを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the conventional example, to facilitate manufacture, realize an optical coupling efficiency close to 100%, and to perform modulation of several Gb / s or more. To provide a structure and a manufacturing method of a semiconductor optical integrated device in which the optical modulator and the optical modulator are integrated.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体光集積素子は、半導体基板上に少なく
とも多重量子井戸層を有し、発光領域と光変調領域で前
記多重量子井戸層の層厚が異なる半導体光集積素子にお
いて、前記発光領域には前記基板と前記多重量子井戸層
との間に回折格子が設けられ、前記発光領域及び光変調
領域に多重量子井戸層が一括して積層され、前記発光領
域の多重量子井戸層が光変調領域の多重量子井戸層より
もエネルギーギャップが小さいことを特徴とする。
The semiconductor optical integrated device of the present invention includes a semiconductor optical integrated device having at least a multiple quantum well layer on a semiconductor substrate, and a layer thickness of the multiple quantum well layer is different between a light emitting region and a light modulation region. A diffraction grating is provided between the substrate and the multiple quantum well layer, a multiple quantum well layer is collectively stacked on the light emitting region and the light modulation region, and the multiple quantum well layer of the light emitting region is a light modulation region. The energy gap is smaller than that of the multiple quantum well layer.

本発明の半導体光集積素子の製造方法は、半導体基板
上に少なくとも多重量子井戸層が形成され、発光領域と
光変調領域で前記多重量子井戸層の層厚が異なる半導体
光集積素子の製造方法において、前記発光領域の前記基
板と前記多重量子井戸層との間に回折格子を形成し、前
記回折格子の成長領域の両側にマスクを設け、前記マス
ク以外の箇所に多重量子井戸層を成長することを特徴と
する。
The method of manufacturing a semiconductor optical integrated device according to the present invention is directed to a method of manufacturing a semiconductor optical integrated device in which at least a multiple quantum well layer is formed on a semiconductor substrate and the thickness of the multiple quantum well layer is different between a light emitting region and a light modulation region. Forming a diffraction grating between the substrate and the multiple quantum well layer in the light emitting region, providing masks on both sides of the growth region of the diffraction grating, and growing the multiple quantum well layer in a portion other than the mask. It is characterized by.

本発明の半導体光集積素子の製造方法は、半導体基板
上に少なくとも多重量子井戸層が形成され、発光領域と
光変調領域で前記多重量子井戸層の層厚が異なる半導体
光集積素子の製造方法において、前記発光領域の成長領
域にレーザ光を照射しながら前記発光領域と光変調領域
に多重量子井戸層を成長することを特徴とする。
The method of manufacturing a semiconductor optical integrated device according to the present invention is directed to a method of manufacturing a semiconductor optical integrated device in which at least a multiple quantum well layer is formed on a semiconductor substrate and the thickness of the multiple quantum well layer is different between a light emitting region and a light modulation region. And irradiating the growth region of the light emitting region with a laser beam to grow a multiple quantum well layer in the light emitting region and the light modulation region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の半導体光集積素子の実施例を表す斜
視図、第2図は第1図のAA′線断面図である。この実施
例は一つの半導体基板上に集積化されたDFBレーザ領域1
00と光変調器領域200とから構成されている。構造上の
特徴は、DFBレーザ領域100は第1のMQW層30からなる活
性層を含み、光変調器領域200は第1のMQW層よりもエネ
ルギーギャップが大きい第2のMQW層40を含むことであ
る。互いにエネルギーギャップが異なる第1のMQW層と
第2のMQW層は、結晶成長によって同時に形成される。
ただし、第1のMQW層の井戸層は第2のMQW層の井戸層よ
りもわずかに厚い層厚を持ち、組成は同じである。また
2つのMQW層の障壁層も互いに異なる層厚を持ち、同じ
組成から構成されている。第2のMQW層に電界を印加す
ると、量子閉じ込めシュタルク効果によってDFBレーザ
領域100から放射されたレーザ光が変調される。DFBレー
ザ領域100の活性層となる第1のMQW層30は、光変調器領
域200の第2のMQW層40と光学的に連続してつながってい
るために、従来例の欠点であるDFBレーザ領域100と光変
調領域200の境界部での光学的な散乱はほとんどなく、1
00%に近い結合効率が実現できる。そのため光変調器領
域200からの光出力が大きい。
FIG. 1 is a perspective view showing an embodiment of a semiconductor optical integrated device of the present invention, and FIG. 2 is a sectional view taken along the line AA 'in FIG. In this embodiment, the DFB laser region 1 integrated on one semiconductor substrate is used.
00 and an optical modulator area 200. A structural feature is that the DFB laser region 100 includes an active layer composed of the first MQW layer 30, and the optical modulator region 200 includes a second MQW layer 40 having a larger energy gap than the first MQW layer. It is. The first MQW layer and the second MQW layer having different energy gaps are formed simultaneously by crystal growth.
However, the well layer of the first MQW layer has a slightly thicker layer thickness than the well layer of the second MQW layer, and has the same composition. Further, the barrier layers of the two MQW layers also have different layer thicknesses and have the same composition. When an electric field is applied to the second MQW layer, the laser light emitted from the DFB laser region 100 is modulated by the quantum confinement Stark effect. The first MQW layer 30, which is the active layer of the DFB laser region 100, is optically connected to the second MQW layer 40 of the optical modulator region 200. There is almost no optical scattering at the boundary between the region 100 and the light modulation region 200.
A coupling efficiency close to 00% can be realized. Therefore, the light output from the light modulator region 200 is large.

以下、製造手順を追いながら素子構造について詳しく
説明する。まず回折格子80を部分的に形成したn型InP
基板10の上に、有機金属気相エピタキシャル成長(MOVP
E)法によって、n型InGaAsP光ガイド層20、第1と第2
のMQW層30,40、p型InPクラッド層50、p型InGaAsPキャ
ップ層60を順次成長する。ここで第1と第2のMQW層30,
40は、ともに10周期のInGaAs井戸層とInGaAsP障壁層
(フォトルミネッセンス波長λ=1.15μm)とからな
る。この結晶成長において、第1のMQW層30と第2のMQW
層40の層厚を変え、それぞれのエネルギーギャップを変
えるわけだが、この結晶成長方法については後ほど製造
方法の実施例を説明するところで詳しく述べる。次に横
モードを制御するための埋め込み構造を形成する。まず
DFBレーザ領域100と光変調器領域200の中央部分をメサ
形状にエッチングした後、鉄をドープした高抵抗InP埋
め込み層90をMOVPE法でメサの両側に成長する。次に電
極70をつけた後、2つの領域の間にエッチングによる分
離溝300を形成する。最後にへきかいによって素子を切
り出し、光変調器領域200の端面に無反射コート膜95を
形成する。DFBレーザ領域100と光変調器領域200の長さ
は、それぞれ300μmと200μmである。またDFBレーザ
光の波長は約1.55μm、光変調領域200の第2のMQW層の
フォトルミネッセンス波長は約1.48μmである。この実
施例では、いずれの構造も従来例に用いられたような選
択的な結晶成長は不用であるため、製造が容易で、かつ
DFBレーザ領域100と光変調器領域200との光学的な結合
効率は100%に近い。このため光変調器領域200から10mW
以上の光出力が得られる。また変調方法として量子閉じ
込めシュタルク効果を利用しているため、数Gb/s以上の
高速変調が可能である。
Hereinafter, the element structure will be described in detail while following the manufacturing procedure. First, an n-type InP in which the diffraction grating 80 is partially formed
Metalorganic vapor phase epitaxial growth (MOVP)
E) method, the n-type InGaAsP light guide layer 20, the first and second
The MQW layers 30, 40, the p-type InP clad layer 50, and the p-type InGaAsP cap layer 60 are sequentially grown. Here, the first and second MQW layers 30,
40 is composed of a both 10 periods of InGaAs well layers InGaAsP barrier layer (photoluminescence wavelength λ g = 1.15μm). In this crystal growth, the first MQW layer 30 and the second MQW
The thickness of the layer 40 is changed to change the energy gap of each layer. This crystal growth method will be described later in detail when an example of a manufacturing method is described later. Next, an embedded structure for controlling the lateral mode is formed. First
After etching the central portions of the DFB laser region 100 and the optical modulator region 200 into a mesa shape, a high-resistance InP buried layer 90 doped with iron is grown on both sides of the mesa by MOVPE. Next, after attaching the electrode 70, an isolation groove 300 is formed between the two regions by etching. Finally, the element is cut out by cleavage, and an anti-reflection coating film 95 is formed on the end face of the optical modulator region 200. The lengths of the DFB laser region 100 and the optical modulator region 200 are 300 μm and 200 μm, respectively. The wavelength of the DFB laser light is about 1.55 μm, and the photoluminescence wavelength of the second MQW layer in the light modulation region 200 is about 1.48 μm. In this embodiment, since any structure does not require selective crystal growth as used in the conventional example, manufacture is easy, and
The optical coupling efficiency between the DFB laser region 100 and the optical modulator region 200 is close to 100%. For this reason, the optical modulator area 200 to 10 mW
The above light output is obtained. Further, since the quantum confined Stark effect is used as a modulation method, high-speed modulation of several Gb / s or more is possible.

以上では、第3図を用いて本発明の半導体光集積素子
の製造方法をの一実施例を説明する。第3図(a)は本
発明の製造方法を用いた、DFBレーザと光変調器の光集
積素子の製造工程において、MQW層の結晶成長前の半導
体基板の表面を表す平面図である。また第3図(b)は
結晶成長後のBB′軸断面図である。この実施例のポイン
トは、結晶成長の際、各層の成長速度が成長領域の面積
に応じて異なることを利用している点である。第3図
(a)に示すように、DFBレーザ領域100における誘電体
膜500で覆われた領域に挾まれた幅の細い回折格子領域4
00の成長速度は、光変調器領域200における誘電体膜500
のない領域の成長速度より速い。このため第3図(a)
のように一部分を誘電体膜500で覆った半導体基板の上
に、MOVPE法などを用いてMQW層を結晶成長すると、DFB
レーザ領域100(つまり回折格子領域400)に成長する第
1のMQW層の井戸層の層厚は、光変調器領域200に成長す
る第2のMQW層の井戸層の層厚よりも厚くなる。したが
って第1のMQW層のエネルギーギャップは、第2のMQW層
のエネルギーギャップよりも小さくなる。以下に具体的
な製造手順を述べる。まず回折格子80を部分的に形成し
たn型InP基板10の上に、SiO2のような誘電体膜500を第
3図(a)のように形成する。誘電体膜500で覆われた
領域に挾まれた回折格子領域400の幅は10μmである。
次にこの基板の上にMOVPE法によって、n型InGaAsP光ガ
イド層20、第1と第2のMQW層30,40、p型InPクラッド
層50、p型InGaAsP層60を順次成長する(第3図
(b))。ここで第1と第2のMQW層30,40は、ともに10
周期のInGaAs井戸層とInGaAsP障壁層(λ=1.15μ
m)とからなる。第1のMQW層30の井戸層の厚さは約8nm
で、フォトルミネッセンス波長は1.53μmである。第2
のMQW層40の井戸層の厚さは約5nmで、フォトルミネッセ
ンス波長は1.48μmである。後の製造工程は第1図に示
した実施例のところで述べた製造方法と同じである。な
おこの成長方法においては、MQW層以外の光ガイド層20
などの層厚もDFBレーザ領域100と光変調器領域200とで
異なるが、これら層厚の違いは素子の特性に大きな影響
を与えない。
An embodiment of the method of manufacturing a semiconductor optical integrated device according to the present invention will be described below with reference to FIG. FIG. 3 (a) is a plan view showing a surface of a semiconductor substrate before crystal growth of an MQW layer in a process of manufacturing an optical integrated device of a DFB laser and an optical modulator using the manufacturing method of the present invention. FIG. 3B is a sectional view taken along the BB 'axis after the crystal growth. The point of this embodiment is that the fact that the growth rate of each layer differs depending on the area of the growth region during crystal growth is utilized. As shown in FIG. 3 (a), the narrow diffraction grating region 4 sandwiched between the regions covered with the dielectric film 500 in the DFB laser region 100
The growth rate of the dielectric film 500 in the light modulator region 200
Faster than the growth rate of the region without. Therefore, FIG. 3 (a)
When a MQW layer is crystal-grown using MOVPE or the like on a semiconductor substrate partially covered with a dielectric film 500 as shown in
The thickness of the well layer of the first MQW layer grown in the laser region 100 (that is, the diffraction grating region 400) is larger than the thickness of the well layer of the second MQW layer grown in the optical modulator region 200. Therefore, the energy gap of the first MQW layer is smaller than the energy gap of the second MQW layer. The specific manufacturing procedure will be described below. First, a dielectric film 500 such as SiO 2 is formed on the n-type InP substrate 10 on which the diffraction grating 80 is partially formed as shown in FIG. The width of the diffraction grating region 400 sandwiched between the regions covered with the dielectric film 500 is 10 μm.
Next, an n-type InGaAsP optical guide layer 20, first and second MQW layers 30, 40, a p-type InP cladding layer 50, and a p-type InGaAsP layer 60 are sequentially grown on this substrate by MOVPE (third type). Figure (b). Here, the first and second MQW layers 30, 40 are both 10
InGaAs well layers and InGaAsP barrier layers of the period (λ g = 1.15μ
m). The thickness of the well layer of the first MQW layer 30 is about 8 nm
And the photoluminescence wavelength is 1.53 μm. Second
The thickness of the well layer of the MQW layer 40 is about 5 nm, and the photoluminescence wavelength is 1.48 μm. The subsequent manufacturing process is the same as the manufacturing method described in the embodiment shown in FIG. In this growth method, the light guide layer 20 other than the MQW layer is used.
Although the layer thickness such as that differs between the DFB laser region 100 and the optical modulator region 200, the difference in these layer thicknesses does not significantly affect the characteristics of the device.

半導体基板上に異なった井戸層厚を持つMQW層を同時
に結晶成長する方法は、上述のようなパターン化した誘
電体膜400を用いる方法の他にもいくつかあり、それら
の結晶成長の方法を用いても本発明の半導体光集積素子
を製造できる。例えば、MOVPE法による結晶成長中に、D
FBレーザ領域200にだけレーザ光を照射すると、照射さ
れた領域の成長速度が大きくなって、照射しない領域の
層厚よりも厚くなることを利用する製造方法等もある。
There are several methods for simultaneously crystal-growing MQW layers having different well layer thicknesses on a semiconductor substrate in addition to the method using the patterned dielectric film 400 as described above. Even when used, the semiconductor optical integrated device of the present invention can be manufactured. For example, during crystal growth by MOVPE, D
There is also a manufacturing method that utilizes the fact that, when laser light is irradiated only to the FB laser region 200, the growth rate of the irradiated region increases and becomes larger than the layer thickness of the region not irradiated.

以上、本発明の半導体光集積素子の構造と製造方法に
ついて、DFBレーザと光変調器の半導体光集積素子を実
施例として詳しく説明してきたが、本発明の構造と製造
方法は、これ以外の半導体光集積素子、例えば波長可変
分布ブラッグ反射型半導体レーザと光変調器の光集積素
子などにも適用できる、また結晶成長の点では、MOVPE
法以外の、例えばハイドライドVPE法などを用いること
もできる。また結晶材料の点では、InGaAlAsなどの他の
材料系を用いた半導体集積素子にも適用可能である。
As described above, the structure and manufacturing method of the semiconductor optical integrated device of the present invention have been described in detail using the semiconductor optical integrated device of the DFB laser and the optical modulator as an example. It can be applied to optical integrated devices, such as an optical integrated device such as a tunable distributed Bragg reflection semiconductor laser and an optical modulator. In terms of crystal growth, MOVPE
Other than the method, for example, a hydride VPE method can be used. In terms of crystal material, the present invention can be applied to a semiconductor integrated device using another material system such as InGaAlAs.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、発光領域と光変調領域
とに、結晶成長で同時に形成したMQW層を用いているた
めに、製造が容易で高い光学的な結合効率が得られる、
半導体光集積素子を実現する効果がある。DFBレーザと
光変調器とを一つの半導体基板上に集積化した実施例で
は、選択的な結晶成長のような難しい製造方法を使用せ
ずに、100%近い結合効率を有する半導体光集積素子が
得られた。
As described above, the present invention uses the MQW layer formed simultaneously by crystal growth in the light emitting region and the light modulation region, so that high optical coupling efficiency can be obtained easily and with high manufacturing efficiency.
This has the effect of realizing a semiconductor optical integrated device. In an embodiment in which a DFB laser and an optical modulator are integrated on a single semiconductor substrate, a semiconductor optical integrated device having a coupling efficiency close to 100% can be obtained without using a difficult manufacturing method such as selective crystal growth. Obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体光集積素子の構造の実施例を表
す斜視図、第2図は第1図のAA′線断面図、第3図は本
発明の半導体光集積素子の製造方法を説明するための図
である。 図において、100……DFBレーザ領域、200……光変調器
領域、300……分離溝、400……回折格子領域、500……
誘電体膜、10……基板、20……光ガイド層、30……第1
のMQW層、40……第2のMQW層、50……クラッド層、60…
…キャップ層、70……電極、80……回折格子、90……埋
め込み層、95……無反射コート膜である。
FIG. 1 is a perspective view showing an embodiment of the structure of a semiconductor optical integrated device of the present invention, FIG. 2 is a sectional view taken along line AA 'of FIG. 1, and FIG. It is a figure for explaining. In the figure, 100: DFB laser area, 200: Optical modulator area, 300: Separation groove, 400: Diffraction grating area, 500:
Dielectric film, 10 substrate, 20 light guide layer, 30 first
MQW layer, 40 ... second MQW layer, 50 ... clad layer, 60 ...
... cap layer, 70 ... electrode, 80 ... diffraction grating, 90 ... buried layer, 95 ... non-reflective coating film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−321677(JP,A) 特開 平1−319986(JP,A) 特開 昭61−107781(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-321677 (JP, A) JP-A-1-319986 (JP, A) JP-A-61-107781 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に少なくとも多重量子井戸層
を有し、発光領域と光変調領域で前記多重量子井戸層の
層厚が異なる半導体光集積素子において、前記発光領域
には前記基板と前記多重量子井戸層との間に回折格子が
設けられ、前記発光領域及び光変調領域に多重量子井戸
層が一括して積層され、前記発光領域の多重量子井戸層
が光変調領域の多重量子井戸層よりもエネルギーギャッ
プが小さいことを特徴とする半導体光集積素子。
1. A semiconductor optical integrated device having at least a multiple quantum well layer on a semiconductor substrate, wherein a thickness of the multiple quantum well layer is different between a light emitting region and a light modulation region. A diffraction grating is provided between the light emitting region and the light modulation region, and a multiple quantum well layer is collectively laminated on the light emitting region and the light modulation region. A semiconductor optical integrated device having a smaller energy gap than that of a semiconductor optical integrated device.
【請求項2】半導体基板上に少なくとも多重量子井戸層
が形成され、発光領域と光変調領域で前記多重量子井戸
層の層厚が異なる半導体光集積素子の製造方法におい
て、前記発光領域の前記基板と前記多重量子井戸層との
間に回折格子を形成し、前記回折格子の成長領域の両側
にマスクを設け、前記マスク以外の箇所に多重量子井戸
層を成長することを特徴とする半導体光集積素子の製造
方法。
2. A method of manufacturing a semiconductor optical integrated device in which at least a multiple quantum well layer is formed on a semiconductor substrate and a thickness of the multiple quantum well layer is different between a light emitting region and a light modulation region. Forming a diffraction grating between the substrate and the multiple quantum well layer, providing masks on both sides of a growth region of the diffraction grating, and growing the multiple quantum well layer in a portion other than the mask. Device manufacturing method.
【請求項3】半導体基板上に少なくとも多重量子井戸層
が形成され、発光領域と光変調領域で前記多重量子井戸
層の層厚が異なる半導体光集積素子の製造方法におい
て、前記発光領域の成長領域にレーザ光を照射しながら
前記発光領域と光変調領域に多重量子井戸層を成長する
ことを特徴とする半導体光集積素子の製造方法。
3. A method of manufacturing a semiconductor optical integrated device in which at least a multiple quantum well layer is formed on a semiconductor substrate and a thickness of the multiple quantum well layer is different between a light emitting region and a light modulation region. Forming a multiple quantum well layer in the light emitting region and the light modulation region while irradiating the semiconductor light with a laser beam.
JP1226776A 1989-09-01 1989-09-01 Semiconductor optical integrated device and manufacturing method thereof Expired - Fee Related JP2771276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226776A JP2771276B2 (en) 1989-09-01 1989-09-01 Semiconductor optical integrated device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226776A JP2771276B2 (en) 1989-09-01 1989-09-01 Semiconductor optical integrated device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0391282A JPH0391282A (en) 1991-04-16
JP2771276B2 true JP2771276B2 (en) 1998-07-02

Family

ID=16850433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226776A Expired - Fee Related JP2771276B2 (en) 1989-09-01 1989-09-01 Semiconductor optical integrated device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2771276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606250B2 (en) 2001-10-29 2005-01-05 日産自動車株式会社 Body front structure
JP5084883B2 (en) 2009-12-28 2012-11-28 株式会社ヨロズ Suspension subframe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069280B2 (en) * 1988-06-21 1994-02-02 松下電器産業株式会社 Semiconductor laser device
JP2836822B2 (en) * 1988-06-23 1998-12-14 日本電信電話株式会社 Method for manufacturing waveguide type semiconductor optical device

Also Published As

Publication number Publication date
JPH0391282A (en) 1991-04-16

Similar Documents

Publication Publication Date Title
US5250462A (en) Method for fabricating an optical semiconductor device
JPH0256837B2 (en)
JPH0794833A (en) Semiconductor laser and its manufacturing method
JPH08271743A (en) Semiconductor optical waveguide and its production
JP2000277869A (en) Modulator integrated type semiconductor laser and manufacturing method
JP3141854B2 (en) Method for manufacturing optical semiconductor device
JP2746326B2 (en) Semiconductor optical device
CA2139140C (en) A method for fabricating a semiconductor photonic integrated circuit
US6327413B1 (en) Optoelectronic device and laser diode
JP2587628B2 (en) Semiconductor integrated light emitting device
JP2937751B2 (en) Method for manufacturing optical semiconductor device
JP2814906B2 (en) Optical semiconductor device and method of manufacturing the same
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JPH0750815B2 (en) Method for manufacturing semiconductor optical integrated device
JPH09232625A (en) Side light-emitting optical semiconductor element and manufacture thereof
JPH01319986A (en) Semiconductor laser device
JP2900824B2 (en) Method for manufacturing optical semiconductor device
JP2771276B2 (en) Semiconductor optical integrated device and manufacturing method thereof
JPH08234148A (en) Optical semiconductor device and its production
JPH10242577A (en) Semiconductor laser and manufacture thereof
JP4615184B2 (en) Distributed feedback laser diode
JPH07176822A (en) Semiconductor light source and its manufacture
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
JP2842387B2 (en) Manufacturing method of semiconductor optical integrated device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees