JPS6057692A - Distributed bragg-reflector type semiconductor laser - Google Patents

Distributed bragg-reflector type semiconductor laser

Info

Publication number
JPS6057692A
JPS6057692A JP58165460A JP16546083A JPS6057692A JP S6057692 A JPS6057692 A JP S6057692A JP 58165460 A JP58165460 A JP 58165460A JP 16546083 A JP16546083 A JP 16546083A JP S6057692 A JPS6057692 A JP S6057692A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
wavelength
type
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58165460A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58165460A priority Critical patent/JPS6057692A/en
Publication of JPS6057692A publication Critical patent/JPS6057692A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make the length of the titled element longer to the same extent as that of an ordinary semiconductor laser and to upgrade reproducibility of the element characteristics and yield of the element structure by a method wherein a rotating lattice is formed on the flat surface of the semiconductor of the element, and at the same time, a control electrode is formed at the upper part of the rotating lattice for a reflection type. CONSTITUTION:A rotating lattice 2, a P type optical guide layer 3 and an N type optical guide layer 4 are successively laminated, all in a thickness of 0.2mum, on an N type InP substrate 1, and moreover, a P type InP layer 5 is laminated in a thickness of 0.1mum and a semiconductor hetero-structure wafer is constituted. An etching is selectively performed on the wafer using an SiO2 film 16 as a mask, and a buffer layer 7, an active layer 8 and a clad layer 9 are formed. Moreover, etching grooves 10 and 12 and a mesa-type stripe 11, which are located in parallel to the crystal direction of the substrate 1, are formed and they are buried-grown in a liquid-phase growing process. A rotating lattice is formed on the flat wafer of the distributed Bragg-reflector semiconductor laser BH-DBR-LD in the hetero structure having a wavelength control function and a control electrode 19 is formed at the upper part of the rotating lattice for a reflection type. By such a constitution, reproducibility of the characteristics of the semiconductor laser and yield of the element structure can be improved.

Description

【発明の詳細な説明】 本発明は回折格子を有する光ガイド層が埋め込み活性層
と直接に結合された半導体レーザ、特に波長制御領域を
有し、軸モードのとびがなく、広い温度範囲にわたって
安定な単一軸モード発振を示す埋め込みへテロ構造の分
布ブラッグ反射型半導体レーザに関する。高速変調時C
ども安定な単一軸モード発振を示し、したがって長距離
大容量伝送の可能な半導体光源として回折格子を有する
分布帰還型半導体レーザ(DFH−LD)、分布ブラッ
グ反射型半導体レーザ(DBR−LD)が種々開発宴れ
ている。これらの半導体レーザは、いずれも適当なピッ
チの回折格子をイイしており、数百メガビット/秒で高
速変調しても箪−波長で発振するという結果が得られて
いる。ところで1)13几−LDにおいては、波長に対
するDBR反射率はブラッグ波長で最も大きくなる曲線
で与えられ、この曲線上に活性領域とDBR領域での位
相が一致するいくつかの共振点が存在する。それらの共
振点のうちDB几反射率が最大となる点で、しきい値利
得はツノ− 最Iとなり、その波長が発振主軸モードとなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor laser in which a light guide layer having a diffraction grating is directly coupled to an embedded active layer, and in particular has a wavelength control region, has no axial mode skipping, and is stable over a wide temperature range. This invention relates to a buried heterostructure distributed Bragg reflection type semiconductor laser exhibiting single-axis mode oscillation. C at high speed modulation
Distributed feedback semiconductor lasers (DFH-LD) and distributed Bragg reflection semiconductor lasers (DBR-LD), both of which have a diffraction grating, are used as semiconductor light sources that exhibit stable single-axis mode oscillation and are therefore capable of long-distance, large-capacity transmission. It's a development party. All of these semiconductor lasers have a diffraction grating with an appropriate pitch, and results have been obtained in which they oscillate at a short wavelength even when high-speed modulation is performed at several hundred megabits/second. By the way, 1) In a 13-LD, the DBR reflectance with respect to wavelength is given by a curve that is greatest at the Bragg wavelength, and there are several resonance points on this curve where the phases of the active region and the DBR region match. . Among these resonance points, at the point where the DB reflectance is maximum, the threshold gain becomes the maximum I, and that wavelength becomes the oscillation principal axis mode.

その主軸モードに対し、2番目にしきい値利得の小さな
点が副軸モードを与える。
With respect to the main axis mode, the point with the second smallest threshold gain provides the sub-axis mode.

温度が変化した場合、活性領域とDBRB域における等
側屈折率が変化し、共振点はこの曲線上を移動する。し
たがって、懸度が変化するとある温度で、しきい値利得
が最小となる共揚点が次の共振点に移ってしまう。′す
なわち発振主軸モードと副軸モードが父代して発振軸モ
ードのとびが生ずる。動作描度範囲内でこのようなモー
ドのとびが来の特性を引き出すことができない。このよ
うな現象をさけるために室温付近の動作蟲度範囲でモー
ドのとびが生じないような波長制御機構を導入すること
が重要である。その−例として東盛氏らは昭和58年度
春、電子通信学会総合全国大会945において報告して
いるように波長制御機能を有する直接結合型分布ブラッ
グ反射型半導体レーザ(BJB−DBRLD)を開発し
た。この半導体レーザは活性層の両側にDBRB域およ
び波長制御領域を有している。波長制御領域においては
出力側光ガイド層に制御電流を注入することによりプラ
とサブモードに対する利得の差を一定に保って常に安定
な単一軸モード発振が得られることになる。
When the temperature changes, the isolateral refractive index in the active region and the DBRB region changes, and the resonance point moves on this curve. Therefore, when the suspension changes, at a certain temperature, the resonance point where the threshold gain is minimum shifts to the next resonance point. 'That is, the oscillation main axis mode and the sub-axis mode take over, causing a jump in the oscillation axis mode. It is not possible to bring out the special characteristics of such a mode within the operating precision range. In order to avoid such a phenomenon, it is important to introduce a wavelength control mechanism that does not cause mode skipping in the operating temperature range near room temperature. As an example, in the spring of 1980, Tomori et al. developed a directly coupled distributed Bragg reflection semiconductor laser (BJB-DBRLD) having a wavelength control function, as reported at the 945 National Conference of the Institute of Electronics and Communication Engineers. This semiconductor laser has a DBRB region and a wavelength control region on both sides of an active layer. In the wavelength control region, by injecting a control current into the output side optical guide layer, the difference in gain between the pla mode and the submode is kept constant, and stable single-axis mode oscillation can be obtained at all times.

東盛氏らは、上述の波長制御BJJ3−DBRLDで、
18mAの制御電流注入により1.4A短波長側への波
長シフトを観れ111シている。東盛氏らの開発したス
トライプ構造の波長++X+I侶IBJB−1)13R
LDではストライブ幅20μm、活性領域長350μm
、波長制御領域200μm 、 D、BJl、領域長2
00〜500μnl、活性領域□t(dikと波長制御
領域電極との間隔は100μmとなっている。
Mr. Tomori et al. used the above-mentioned wavelength control BJJ3-DBRLD,
By injecting a control current of 18 mA, a wavelength shift of 1.4 A to the shorter wavelength side was observed. The wavelength of the striped structure developed by Tomori et al.
In LD, stripe width is 20 μm and active region length is 350 μm.
, wavelength control region 200 μm, D, BJl, region length 2
00 to 500 μnl, active region □t (distance between dik and wavelength control region electrode is 100 μm).

しかしながら、上述の半導体レーザにおいては結晶成長
の工程が全て終了した恢にj)BP−領域ζこ回折格子
を形成しており、5μln程度のjダ差のついた部分に
レーザ干渉露光を行なっている。
However, in the above-mentioned semiconductor laser, the diffraction grating is formed in the BP-region ζ after all the crystal growth steps have been completed, and laser interference exposure is performed on the portions with a difference of about 5 μln. There is.

したがって、′寿にこの構造を埋め込みレーザに適用す
る場合には、幅2μm程度のD B R周光ガイド層の
ストライブがInPの埋め込み半導体層におおわれてお
り、平坦でない部分に7オトレジストを塗布してレーザ
干渉露光を行なうことになる。
Therefore, when applying this structure to a buried laser, the stripes of the DBR circumferential optical guide layer with a width of about 2 μm are covered with an InP buried semiconductor layer, and a 7-photoresist is applied to the uneven parts. Then, laser interference exposure is performed.

InPの埋め込み層が光ガイド層よりも盛り上っている
ところにフォトレジス) 4−塗布するとそノ部分で7
オトレジストが厚くなってしまうので、回折格子がうま
く作製できない。埋め込みInP層を少しずつ選択エツ
チングしていって、その謁さが光ガイド層の静さと、は
に同じになってがらレーザ干渉露光を行なうとよいが、
そのエツチングの制御も容易でなく、作製上の歩留りが
悪い。
4) Apply photoresist to the area where the buried InP layer is higher than the optical guide layer.
Since the photoresist becomes thick, it is difficult to fabricate a diffraction grating properly. It would be better to selectively etch the buried InP layer little by little and perform laser interference exposure while the etching becomes as quiet as the light guide layer.
The etching is not easy to control, and the manufacturing yield is low.

さらに活性領域の他にDB几領領域波長制御領域を形成
するために素子も大きくなりすぎ、ヒートシンクにマウ
ントしたりする場合にも茎ましくない。すなわち、回折
格子の作製の点で特に問題がアリ、均一な面に回折格子
を形成することができれば、作製上の歩留りも向上する
。また、素子も大きくなりすぎるので、500μm程度
の長さにすることができればより好ましい。
Furthermore, since the DB control region wavelength control region is formed in addition to the active region, the device becomes too large, and it is difficult to mount it on a heat sink. That is, there is a particular problem in the production of the diffraction grating, and if the diffraction grating can be formed on a uniform surface, the production yield will also improve. Furthermore, since the element becomes too large, it is more preferable to make the length approximately 500 μm.

本発明の目的は上述の欠点を除去すべく、特性の再現性
、素子製造の歩留りが大幅に向上した波長制御機構の形
成された埋め込みへテロ構造の分布ブラッグ反射型半導
体レーザを提供することにある。
SUMMARY OF THE INVENTION In order to eliminate the above-mentioned drawbacks, an object of the present invention is to provide a buried heterostructure distributed Bragg reflection semiconductor laser in which a wavelength control mechanism is formed, and the reproducibility of characteristics and the yield of device manufacturing are significantly improved. be.

本発明による分布ブラッグ反射型半導体レーザの構成は
、半導体基板上に少くとも活性層と前記活性層よりもエ
ネルギーギヤツブが大きく、かつ一方の面に周期がn・
λ/2(但しnは整数、λは前記活性層中の発振波長)
の回折格子がノ1成された光ガイド層とを有する分布ブ
ラッグ反射型半A体レーザにおいて、前記活性層J?よ
び前記光力41層がレーザ共振軸に平行な方向に賦接に
結合され前記光ガイド層の上部に′lj制御′藏極がル
成されていることを特徴としている。
The structure of the distributed Bragg reflection type semiconductor laser according to the present invention includes at least an active layer on a semiconductor substrate and an energy gear larger than the active layer, and a period of n.
λ/2 (where n is an integer and λ is the oscillation wavelength in the active layer)
In the distributed Bragg reflection type half-A-body laser, the active layer J? The optical power layer 41 is coupled in a direction parallel to the laser resonance axis, and an 'lj control' pole is formed on the top of the optical guide layer.

以下、実施例を示す図面を用いて本発明をより詳細に説
明する。
Hereinafter, the present invention will be explained in more detail using drawings showing examples.

第1図は本発明による埋め込みへテロ構造の分布ブラッ
グ反射型半導体レーザ(Bl−I−DBI(、−L4)
)の一実施例の製作工程を示す斜視図である。このよう
なりH−DBR−LDを得るには、まず第1図(a)に
示したようにn−InP基板1上に回折格子2をノrk
成し、その上に発光波長1,2μmに相当するP −1
no、?llGao、22Aso0g po、52光ガ
イド層3. n −■nn−78 G−4,A恥、4゜
−P。、、2光ガイド層4をいずれも厚さ0.2μm、
p−InP層5を厚さ1μm順次積層させる。回折格子
2は(10D)面方位を有するn−InP基板1上にユ
11>結晶方位にをル成した。エツチングはフォトリソ
グラフィの手法とHBr系の混合エツチング液を用いて
行なった。
FIG. 1 shows a buried heterostructure distributed Bragg reflection semiconductor laser (Bl-I-DBI(,-L4)) according to the present invention.
) is a perspective view showing the manufacturing process of one embodiment. To obtain such an H-DBR-LD, first, as shown in FIG. 1(a), a diffraction grating 2 is formed on an n-InP substrate 1.
and P −1 corresponding to the emission wavelength of 1.2 μm on top of it.
No? llGao, 22Aso0g po, 52 light guide layer 3. n -■nn-78 G-4, A shame, 4°-P. ,, the thickness of each of the two optical guide layers 4 is 0.2 μm,
P-InP layers 5 are sequentially stacked to a thickness of 1 μm. The diffraction grating 2 was formed on the n-InP substrate 1 having the (10D) plane orientation in the 11>crystal orientation. Etching was carried out using a photolithography technique and an HBr-based mixed etching solution.

液相成長時の尚湛保持、メルトバック等による回折格子
2の消失を防ぐためにり−b、7BGa1.22AS4
0.1)(1,52光ガイド層3は600℃前後の低い
温度で成長を行なった。特にメルトバックを防止するた
めに10”C程度の過飽和度をとったスーパークーリン
グ溶液を用いて成長を行なった。このようにして作製し
た半導体へテロ構造ウェファに第1図(b)に示したよ
うにS io2膜6をマスクとしてn−InP基板ト表
山】まで選択的にエツチングを行ない、5in2膜6を
残したまま2回目の液相成長を行ない、n−InPバッ
ファ層7を厚さ0.2μm2発光波長1.3μm相当の
ノンドープIr1o、フ2’ao、ta ”6I、、6
1 ”o、n活性層8を厚さO,1μm 、 p−fn
Pクラッド層9を厚さ約1μm積層する。SiO□膜6
は<01.1>方向に平行に形成し、p−InPクラッ
ドIA9の表面がp−InPIi5とほぼ同じ高さとな
るようりこ納品成長を行なった。このときの成長r′晶
度17−i650℃前後と通常の成長温度でよく、n−
InP%yファ層7の成長時には回折格子2はメルトバ
ックあるいは熱的に消失し、活性層8 !(を平坦り半
導体1商上に成長することになる。続いて5i02膜6
を除去した後、第1図(C)に示すように<01.1>
方向に平行な2本のエツチング溝10.12.およびそ
れらによってはさまれるメサストライプ11を形成し、
3回目の液相成長工程において埋め込み成長を行なう。
To prevent the disappearance of the diffraction grating 2 due to retention during liquid phase growth, meltback, etc., Ri-b, 7BGa1.22AS4
0.1) (1,52 The optical guide layer 3 was grown at a low temperature of around 600°C. In particular, it was grown using a super cooling solution with a supersaturation level of around 10"C to prevent meltback. As shown in FIG. 1(b), the semiconductor heterostructure wafer thus fabricated was selectively etched down to the top surface of the n-InP substrate using the SIO2 film 6 as a mask. A second liquid phase growth is performed while leaving the 5in2 film 6, and the n-InP buffer layer 7 is grown to a thickness of 0.2 μm2 with non-doped Ir1o, F2'ao, ta "6I, 6 with an emission wavelength of 1.3 μm.
1" o,n active layer 8 with thickness O, 1 μm, p-fn
A P cladding layer 9 is laminated to a thickness of about 1 μm. SiO□ film 6
was formed parallel to the <01.1> direction, and the surface of the p-InP cladding IA9 was grown at almost the same height as the p-InPIi5. At this time, the growth r' crystallinity should be around 17-i650℃, which is the normal growth temperature, and n-
During the growth of the InP%y layer 7, the diffraction grating 2 melts back or disappears thermally, and the active layer 8! (This will be grown on the flattened semiconductor 1 film.Subsequently, 5i02 film 6
After removing <01.1> as shown in Figure 1(C)
Two etched grooves parallel to the direction 10.12. and forming mesa stripes 11 sandwiched between them,
Filling growth is performed in the third liquid phase growth step.

エツチング溝10.12はいずれも深さ3μTn 、幅
10μmとし、メサストライプ11は1古性層8の部分
で幅1.5μmとした。埋め込み成長に9いてp−1n
P′市流tブロツクf@ 13. n−InP電流ブロ
ック層14ヲいずれもメサストライプ11の上面のみを
除いて、さらにp−InP埋め込み層151発光波長1
2μm相当の1) ’Ino、?8 Ga6.22 A
SQ、48 Po、62’m、D層16を全曲にわたっ
て積層する。最後に素子表面全体にAuZn電極を形成
したのち電気的な絶縁をとるための分離溝17をエツチ
ングして形成し、活性領域電4if 18.制御電極1
9.また基板側には全面にn形オーミック電極20を形
成する。分離溝17は電気的な絶縁を良好にとればよく
、活性層8の深さにまで達しないようにする必要がある
。以上のようにして作製−シた所望のBE(−DB几−
T、Dにお(ρて活性領域長200μmη、 DB几制
御領域長200μmの長さに切り出し、室温yでの発振
しきい値鴫流40+nA 、微分量子効率20%、 5
00Mb/sの尚連装調時にも安定な単一軸モード発振
を示すものが再現性よく得られた。
Each of the etched grooves 10 and 12 had a depth of 3 .mu.Tn and a width of 10 .mu.m, and the mesa stripe 11 had a width of 1.5 .mu.m in the part of the first ancient layer 8. 9 p-1n in embedded growth
P' Ichiryu t block f @ 13. All of the n-InP current blocking layers 14 except for the upper surface of the mesa stripe 11 are further covered with a p-InP buried layer 151 with an emission wavelength of 1.
1) 'Ino, equivalent to 2μm? 8 Ga6.22 A
SQ, 48 Po, 62'm, and D layers 16 are laminated over the entire song. Finally, after forming an AuZn electrode on the entire surface of the element, a separation groove 17 for electrical insulation is etched and formed, and the active region electrode 4if 18. Control electrode 1
9. Further, an n-type ohmic electrode 20 is formed on the entire surface of the substrate. The isolation trench 17 only needs to have good electrical insulation, and must not reach the depth of the active layer 8 . The desired BE (-DB) produced as described above
T, D (active region length 200 μm η, DB control region length 200 μm), oscillation threshold current 40+nA at room temperature y, differential quantum efficiency 20%, 5
Stable single-axis mode oscillation was obtained with good reproducibility even during continuous operation at 00 Mb/s.

この実施例に示した素子によ?いては、D B 1:(
、制御頭載において正の′成用を印加すると、光ガイド
層部分でp−n接合部に逆バイアスが形成されることに
なり、空乏層が両側に拡がることになる。2〜3×10
程度にドーピングされた光ガイド層に正O解圧を印加す
ることにより空乏層が形成され、そこでのキャリア濃度
が、はとんどゼロとなるためにプラズマ振動効果による
比較的大きな屈折率変化が得られる。すなわち、DBR
制御領域に印加する電圧を変化させることにより光ガイ
ド局の屈折率が変化するため、共振波長とブラッグ波長
とを合わせることができ、より広い温度範囲にわたって
モードのとびのない安定な単一軸モード発振を得ること
ができる。実際にば5vの′電圧を印加することにより
発振波長が3Aだけ長波−良1i(tjにシフトするこ
とが1規測された。また、罪制御′峨圧を印+10しな
い」賜金には10°Cから40℃まで、および40°O
から65°Cの範囲で革−軸モード発振を示し、40°
C付近で軸モードのとびがを1111された。こILに
肩し1間御1屯圧を7v程度まで印刀目するとと1.こ
より、D IJ R領域の屈折率を変化させることがで
と、したlがって共振波長とブラッグ波長とを臼・わせ
ることl)1叶能となったので15°Cから65°Cま
での広い?晶度範囲にわたって同一の単一軸モード発倣
助作が(!)しれた。
By the element shown in this example? Then, D B 1:(
When a positive polarity is applied to the control head, a reverse bias is formed at the pn junction in the light guide layer, and the depletion layer spreads to both sides. 2~3×10
A depletion layer is formed by applying a positive O solution pressure to a moderately doped optical guide layer, and the carrier concentration there becomes almost zero, resulting in a relatively large change in refractive index due to the plasma oscillation effect. can get. That is, DBR
By changing the voltage applied to the control region, the refractive index of the light guide station changes, making it possible to match the resonance wavelength and Bragg wavelength, resulting in stable single-axis mode oscillation without mode skipping over a wider temperature range. can be obtained. In fact, it was observed that by applying a voltage of 5V, the oscillation wavelength shifted by 3A to the long wavelength -1i(tj).In addition, the control voltage was not applied +10. °C to 40°C and 40°O
It exhibits leather-axis mode oscillation in the range from 40° to 65°C.
There was a 1111 jump in the axis mode near C. If you stand on this IL and apply 1 tonne pressure to about 7V for 1 hour, it will be 1. From this, it became possible to change the refractive index of the D IJ R region, and thus to align the resonance wavelength and the Bragg wavelength. Wide up to? There was (!) the same single-axis mode imitation behavior over the crystallinity range.

そのときの発振波長の流Il(変化L/4は/、 I 
A/d e gであった。
The flow Il of the oscillation wavelength at that time (change L/4 is /, I
It was A/deg.

本発明の実咽例においてはHll」剃領、1表をもつ1
3JトDBR−LDにおいて、平坦なl+ u++をも
ツn−fnPJ板1上に回折格子2をル成することθ3
Cき、特性の再現性素子製造の歩留りが大幅に向上した
In an illustrative example of the present invention, Hll' shaved area, 1 with 1 table
In the 3J DBR-LD, the diffraction grating 2 is formed on the flat l+ u++ n-fn PJ plate 1 by θ3.
C, the reproducibility of characteristics and the yield of device manufacturing have been greatly improved.

同時にDBR領域に波長制御機構を導入したことにより
、素子の長さも従来の1 mm近い長さから400〜5
00μm程度とすることができ、ヒートシンクへのマウ
ント等に際する素子のとりあつがいも十分容易になった
At the same time, by introducing a wavelength control mechanism into the DBR region, the length of the element has been reduced from the conventional length of nearly 1 mm to 400-5 mm.
00 μm, making it sufficiently easy to handle the device when mounting it on a heat sink, etc.

なお、本発明の実唯例においてはDBR制御領域をP−
N−P−N構造とし、電圧印加による空乏層の拡がりを
利用して屈折率を変化させる方法をとったが、これは従
来例と同様、P−N構造としてキャリア注入による屈折
率変化の効果を利用してもかまわない。その場合には電
流(キャリア)注入により屈折率は小さくなるので、発
振波長は短波長にシフトすることになる。また、横モー
ド制御の構造も実施例においてはメサストライプを2本
のエツチング溝がはさむ形状のものを採用したが、もち
ろん、これに限ることなく埋め込み構造であればすべて
含む。さらに用いる半導体材料もInPを基板、InG
aAsPを活性層、光ガイド層とする波長1μmの材料
を示したが、もちろんこれに限るものではなく、GaA
JAs/GaAs、 InGaAsP/GaAS等の材
料で何らさしつかえない。
In addition, in the actual example of the present invention, the DBR control area is set to P-
A method was adopted in which the refractive index was changed by using the N-P-N structure and the expansion of the depletion layer due to voltage application.As with the conventional example, this method uses the effect of changing the refractive index due to carrier injection as a P-N structure. You may use the . In that case, the refractive index decreases due to current (carrier) injection, so the oscillation wavelength shifts to a shorter wavelength. Further, in the embodiment, the transverse mode control structure has a shape in which a mesa stripe is sandwiched between two etched grooves, but the present invention is not limited to this, and includes any buried structure. Furthermore, the semiconductor materials used are InP for the substrate and InG for the substrate.
Although we have shown a material with a wavelength of 1 μm that uses aAsP as the active layer and optical guide layer, it is not limited to this, and GaA
Materials such as JAs/GaAs and InGaAsP/GaAS are acceptable.

本発明の特徴は波長制御機能を有するB I−f−1)
BR−LDにおいて、平坦な半導体表1mに回折格子を
ル成したこと、およびDBR用回折格子の上部に制御電
極を形成したことである。これによって素子の長さも通
常のLDと同程度にすることができ、特性の再現性、素
子構造の歩留りが大幅に向上した。
The feature of the present invention is that B I-f-1) has a wavelength control function.
In the BR-LD, a diffraction grating was formed on a flat semiconductor surface of 1 m, and a control electrode was formed above the DBR diffraction grating. As a result, the length of the element can be made comparable to that of a normal LD, and the reproducibility of characteristics and the yield of the element structure are greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(aHbHc)は、本発明の一実施例であるB)
I−DBR−LDの製作工程を示す斜視図である。図中
1はn−InP基板、2は回折格子、3はp−Ina、
7a Gao、22−kso、43 PO,52光ガイ
ド層、4はn−In676Ga6,22Aso、。−P
Q、52光カイ)一層、5 tti p−InP 層、
6uSiO,膜、7はn−InPバッファ層、8はIn
o−72Ga0828Aso、、、Po・、9活性層1
,9はp−InPクラッド層、10.1.2はエツチン
グ溝、11はメサストライプ、13はp−InP電流電
流ブラフ2層4はn−InP電流電流ブラフ2層5はp
−InP埋め込み層、16はI)−Ino、7a Ga
0.22 kso、aP6..2@極層、17は分離溝
、18は活性領域電極、19は制御電極、20はn形オ
ーミック電極をそれぞれあられす。 I′を埋人弁理士内原 エ
FIG. 1 (aHbHc) is an embodiment of the present invention B)
It is a perspective view showing the manufacturing process of I-DBR-LD. In the figure, 1 is an n-InP substrate, 2 is a diffraction grating, 3 is a p-Ina substrate,
7a Gao, 22-kso, 43 PO, 52 light guide layer, 4 is n-In676Ga6, 22Aso. -P
Q, 52 optical chi) one layer, 5 tti p-InP layer,
6uSiO, film, 7 is n-InP buffer layer, 8 is In
o-72Ga0828Aso, , Po., 9 active layer 1
, 9 is a p-InP cladding layer, 10.1.2 is an etched groove, 11 is a mesa stripe, 13 is a p-InP current-current bluff 2 layer 4 is an n-InP current-current bluff 2 layer 5 is a p-InP current-current bluff 2 layer
-InP buried layer, 16 is I) -Ino, 7a Ga
0.22 kso, aP6. .. 2@pole layer, 17 is a separation groove, 18 is an active region electrode, 19 is a control electrode, and 20 is an n-type ohmic electrode. Buried I' by Patent Attorney Uchihara E

Claims (1)

【特許請求の範囲】[Claims] 少くとも活性層と前記活性1層よねもエネルギーギャッ
プが大きく、かつ一方の面に周期力Sn・IA(但しn
は整数、λは前記活性層中の発振波長)の回折格子が°
形成された光ガイド層とを有し、前記活性層および前記
光ガイド層がレーザ共振軸の方向で光学的に結合され、
かつ、ストライブ状活性領域における1活性層が当該活
性層よりもエネルギーギャップの大きな半導体層中に埋
め込まれている積層構造を有し、さらに前記、光ガイド
層の上部に制御電極が形成されていることを待機とする
分布ブラッグ反射型半導体レーザ。
At least the active layer and the active layer 1 have a large energy gap, and one surface is subjected to a periodic force Sn/IA (however, n
is an integer and λ is the oscillation wavelength in the active layer).
a light guide layer formed, the active layer and the light guide layer being optically coupled in the direction of a laser resonance axis;
and has a laminated structure in which one active layer in the striped active region is embedded in a semiconductor layer having a larger energy gap than the active layer, and further, a control electrode is formed on the optical guide layer. Distributed Bragg reflection type semiconductor laser with standby function.
JP58165460A 1983-09-08 1983-09-08 Distributed bragg-reflector type semiconductor laser Pending JPS6057692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165460A JPS6057692A (en) 1983-09-08 1983-09-08 Distributed bragg-reflector type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165460A JPS6057692A (en) 1983-09-08 1983-09-08 Distributed bragg-reflector type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6057692A true JPS6057692A (en) 1985-04-03

Family

ID=15812835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165460A Pending JPS6057692A (en) 1983-09-08 1983-09-08 Distributed bragg-reflector type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6057692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229990A (en) * 1986-03-31 1987-10-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor light emitting element
US4751710A (en) * 1984-07-26 1988-06-14 Nec Corporation Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751710A (en) * 1984-07-26 1988-06-14 Nec Corporation Semiconductor laser device
JPS62229990A (en) * 1986-03-31 1987-10-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US6989550B2 (en) Distributed feedback semiconductor laser equipment employing a grating
US20090267195A1 (en) Semiconductor element and method for manufacturing semiconductor element
US4644552A (en) Semiconductor laser
US6552358B2 (en) High power single mode laser and method of fabrication
JPS6057692A (en) Distributed bragg-reflector type semiconductor laser
JPS6046087A (en) Distributed bragg reflection type semiconductor laser
JP5163355B2 (en) Semiconductor laser device
JPS61220389A (en) Integrated type semiconductor laser
JPS60178685A (en) Single-axial mode semiconductor laser device
JPH03227086A (en) Semiconductor laser element and manufacture thereof
JPH08330665A (en) Manufacture of optical semiconductor laser
JP2947702B2 (en) Tunable laser device and manufacturing method thereof
JP2917695B2 (en) Method for manufacturing optical semiconductor device
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPS59218786A (en) Single axial mode semiconductor laser
JPS5972787A (en) Semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JPS62189784A (en) Buried type semiconductor laser and manufacture of same
JPS6346790A (en) Buried semiconductor laser and manufacture thereof
JPS61212082A (en) Integrated semiconductor laser
JPS6347277B2 (en)
JPH04279078A (en) Variable wavelength semiconductor laser
JPH04206985A (en) Manufacture of optical semiconductor element
JPH0661581A (en) Semiconductor laser and its manufacture
JPH0744312B2 (en) Method for manufacturing embedded semiconductor laser