JPS6346790A - Buried semiconductor laser and manufacture thereof - Google Patents

Buried semiconductor laser and manufacture thereof

Info

Publication number
JPS6346790A
JPS6346790A JP19137286A JP19137286A JPS6346790A JP S6346790 A JPS6346790 A JP S6346790A JP 19137286 A JP19137286 A JP 19137286A JP 19137286 A JP19137286 A JP 19137286A JP S6346790 A JPS6346790 A JP S6346790A
Authority
JP
Japan
Prior art keywords
layer
active region
semiconductor
insulating
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19137286A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19137286A priority Critical patent/JPS6346790A/en
Publication of JPS6346790A publication Critical patent/JPS6346790A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Abstract

PURPOSE:To efficiently oscillate a buried semiconductor laser thereby to be able to modulate it at a high speed by providing a current block layer, and an organic film having an electric insulation on the upper surface of a current insulating layer except the upper surface of a cap layer. CONSTITUTION:A double hetero structure that an active region 11 is interposed between semiconductor layers having lower refractive index than that of the region 11 and larger forbidden band widths than those of the region 11 is epitaxially grown on a semiconductor substrate 13. A current block layer 15 made of a semi-insulating semiconductor is laminated in a groove by using a vapor growing method for forming two grooves so formed by etching as to dispose the region 11 in a banking interposed between the two grooves, and an organic film 21 having an electric insulation is formed on the upper surface of a current insulating layer 18 except the upper surface of a cap layer 16 covered with a reverse conductivity type cap layer 16 to a substrate on the top end of the banking and the upper surface of the layer 15. Thus, leakage currents at the flat parts at both sides of the active region are stopped by the insulating films, and leakage currents passing the two grooves are stopped by the current block layer to be able to oscillate in a high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高効率で発振し高速で変調可能な光通信用半導
体レーザおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser for optical communications that can oscillate with high efficiency and modulate at high speed, and a method for manufacturing the same.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

半導体レーザは光フアイバ通信の光源として実用化が始
まっている。光フアイバ通信の光源として用いられる半
導体レーザは、高い高率で発振しかつ高速変調が可能な
ことが必要である。更に、実用化の進展に伴い、高い歩
留りで多量の半導体レーザが生産できる再現性の高い製
造方法が強く要望されている。ところが、従来の半導体
レーザは上記3つの条件を同時に満足することが出来な
かりた。以下に従来製作されて来た典型的な半導体レー
ザ、及びこれらのレーザー特性を改善しようとして最近
製作された、最も上記要請に近い半導体レーザについて
説明し、上記3つの要請が同時に満足出来なかった理由
を説明する。
Semiconductor lasers have begun to be put into practical use as light sources for optical fiber communications. Semiconductor lasers used as light sources for optical fiber communications must be able to oscillate at a high rate and be modulated at high speed. Furthermore, with the progress of practical application, there is a strong demand for a highly reproducible manufacturing method that can produce a large amount of semiconductor lasers at a high yield. However, conventional semiconductor lasers have not been able to simultaneously satisfy the above three conditions. Below, we will explain typical semiconductor lasers that have been manufactured in the past, as well as semiconductor lasers that have been recently manufactured in an attempt to improve these laser characteristics and that are closest to meeting the above requirements, and explain why the above three requirements could not be met at the same time. Explain.

従来製作されて来た典型的な半導体レーザは2重講平面
埋込み型半導体レーザ(Double Channel
Planar  Buried  1leterost
ructure  La5er  ロ1ode:略して
DC−PBHLD)であり、ジャーナル・オブ・ライト
ウェーブ・テクノロジー、LT−1巻、1983年3月
号、195頁〜202頁に詳述されている。この半導体
レーザは、ストライブ状の活性領域に電流を選択的に流
すようにするため、活性領域以外のところはp−n−p
’−n接合を形成し電流をn−pの逆接合により阻止し
ている。
A typical semiconductor laser that has been manufactured in the past is a double channel planar embedded semiconductor laser (Double Channel).
Planar Buried 1terost
It is detailed in Journal of Lightwave Technology, Vol. LT-1, March 1983 issue, pp. 195-202. In this semiconductor laser, in order to selectively flow current through the stripe-shaped active region, the area other than the active region is p-n-p.
'-n junction is formed, and current is blocked by the n-p reverse junction.

この構造に代表される、n−p逆接合による電流阻止構
造は非常に良い電流阻止効果を発揮するので、50%を
越える高い効率で発振する。又、製造工程も再現性の高
い工程の組み合わせになっているので、高い歩留りで製
作することが出来る。
A current blocking structure using an n-p reverse junction, typified by this structure, exhibits a very good current blocking effect, and therefore oscillates with high efficiency exceeding 50%. Furthermore, since the manufacturing process is a combination of highly reproducible steps, it is possible to manufacture with a high yield.

しかし、効率低下の原因となる漏れ電流がブロック層内
に形成されるn、 −p −n )ランジスタの動作に
より高出力時に増加する問題があった。また、n−p逆
接合が10pF以上の静電容量を有するために、I G
 b / sを越える高速で変調することが難しかった
However, there is a problem in that leakage current, which causes a decrease in efficiency, increases at high output due to the operation of the n, -p-n) transistor formed in the block layer. In addition, since the n-p reverse junction has a capacitance of 10 pF or more, I G
It was difficult to modulate at high speeds exceeding b/s.

次に、上記半導体レーザの欠点を克服しようとして考案
された二つの半導体レーザについて説明する。第1の半
導体レーザは応用物理学会予稿集(第46回応用物理学
会学術講演会講演予稿集、2p−N−II 、p、20
6.1985年秋季)に記載されている。この半導体レ
ーザは高速変調が可能となるように、活性層の両脇の平
坦なブロック層に基板に達するまでの溝を形成すること
によりダイオードの静電容量の低減を計り、小信号変調
時では5GHzという比較的高い周波数で変調可能であ
った。
Next, two semiconductor lasers devised to overcome the drawbacks of the semiconductor lasers described above will be described. The first semiconductor laser is the Proceedings of the Japan Society of Applied Physics (Proceedings of the 46th Japan Society of Applied Physics Academic Conference, 2p-N-II, p. 20).
6. Fall 1985). To enable high-speed modulation, this semiconductor laser reduces the capacitance of the diode by forming grooves in the flat block layers on both sides of the active layer that reach the substrate. Modulation was possible at a relatively high frequency of 5 GHz.

しかし、この半導体レーザでも、寄生キャパシタンスの
低減は充分でなく10GHzを越える変調が難しかった
。それはこの半導体レーザでは活性層両脇の平坦な部分
においてS i 02層を挟んでp型電極と高濃度なp
型半導体が向きあっており、これにより残留キャパシタ
ンスを発生するためである。
However, even with this semiconductor laser, the reduction in parasitic capacitance was not sufficient and modulation exceeding 10 GHz was difficult. In this semiconductor laser, there is a p-type electrode and a high concentration p
This is because the type semiconductors face each other, which generates residual capacitance.

また、第2の半導体レーザはエレクトロニクス・レター
ズ(EIectronics Letters)、21
巻、13号、577頁−578頁、1985年)に記載
されており、気相埋込みで形成した半導体レーザである
。この半導体レーザは高速変調が可能となるようにダイ
オードの静電容量の低減を図り、小信号変調時では15
GHzという高い周波数で変調可能であった。
Further, the second semiconductor laser is described in Electronics Letters, 21
Vol. 13, pp. 577-578, 1985), and is a semiconductor laser formed by vapor phase embedding. This semiconductor laser is designed to reduce the capacitance of the diode to enable high-speed modulation.
It was possible to modulate at frequencies as high as GHz.

又、高い高率で発振するよう効率低下の原因となる漏洩
電流を低減し、電流が活性層部のみを通電するようなf
iII造になっている。しかし、この半導体レーザは生
産性に大きな問題がある。それは、この半導体レーザの
構造に起因している。半導体レーザを単−横モードで発
振させるためには、活性層幅を1〜2ミクロン程度の幅
にしなければならない。しかし、この半導体レーザはメ
サの方向が<011.>方向を向いており、下に向かっ
て広がる台形状となる。そのためフォトリングラフイー
法の限界以下の1μm以下のストライプを形成するか、
又は数μm程度の広いストライブを形成し、しかる後に
活性層だけを選択的にサイドエツチングする選択エンチ
ングで活性層幅を挟めなければならない。ところが、こ
の選択エツチングは非常に制御性が低く、活性層幅を一
定にすることが困難であった。これは、このエツチング
速度が、エツチング液の温度や濃度及びエツチングされ
る活性層の組成に大きく依存するためである。このため
、気相埋込み型半導体レーザは高い歩留りでかつ大量に
生産するには不向きな半導体レーザであった。
In addition, the leakage current that causes efficiency reduction is reduced so that the oscillation occurs at a high rate, and the f
It is made of III. However, this semiconductor laser has a major problem in productivity. This is due to the structure of this semiconductor laser. In order to cause a semiconductor laser to oscillate in a single transverse mode, the width of the active layer must be approximately 1 to 2 microns. However, in this semiconductor laser, the mesa direction is <011. >, and has a trapezoidal shape that expands downward. Therefore, it is necessary to form stripes of 1 μm or less, which is below the limit of the photophosphorography method, or
Alternatively, the width of the active layer must be sandwiched by selective etching in which wide stripes of several μm are formed and then only the active layer is selectively side-etched. However, this selective etching has very low controllability, making it difficult to make the active layer width constant. This is because the etching rate largely depends on the temperature and concentration of the etching solution and the composition of the active layer to be etched. For this reason, the vapor phase implantable semiconductor laser has a high yield and is not suitable for mass production.

以上のように従来の半導体レーザでは、高い効率で発振
し、高速変調が可能であり、かつ高い歩留りで再現性良
く製造できるという3つの条件を同時に満足することが
出来なかった。本発明の目的は、高い効率で発振し、高
速変調が可能であり、かつ生産性の高い構造を有する半
導体レーザとその製造方法を提供することにある。
As described above, conventional semiconductor lasers have not been able to simultaneously satisfy three conditions: oscillate with high efficiency, be capable of high-speed modulation, and be able to be manufactured with high yield and good reproducibility. An object of the present invention is to provide a semiconductor laser having a structure that oscillates with high efficiency, allows high-speed modulation, and has a high productivity, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、半導体基板上に活性領域をこの活性領
域の屈折率より低い屈折率を有しかつ活性領域の禁制帯
幅より大きい禁制帯幅を有する半導体層で挟んだダブル
ヘテロ構造を有し、かつ活性領域が2つの溝に挟まれた
堤の中に位置し、2つの溝中に半絶縁性半導体よりなる
電流ブロック層を有し、さらに堤の先端と電流ブロック
層の上面が基板とは逆導電型のキャップ層で覆われ、キ
ャップ層の両側に電流ブロック層と接続した電流絶縁層
を有し、キャップ層の上面を除いた電流絶縁層の上面に
電気的に絶縁性をもつ有@膜を有する半導体レーザが得
られる。
According to the present invention, a double heterostructure is provided on a semiconductor substrate in which an active region is sandwiched between semiconductor layers having a refractive index lower than the refractive index of the active region and a forbidden band width larger than the forbidden band width of the active region. In addition, the active region is located in a bank sandwiched between two grooves, a current blocking layer made of a semi-insulating semiconductor is provided in the two grooves, and the tip of the bank and the top surface of the current blocking layer are connected to the substrate. It is covered with a cap layer of the opposite conductivity type, has a current insulating layer connected to a current blocking layer on both sides of the cap layer, and has electrical insulation on the top surface of the current insulating layer except for the top surface of the cap layer. A semiconductor laser having a @ film can be obtained.

また本発明によれば、半導体基板上に活性領域をこの活
性領域の屈折率より低い屈折率を有しかつ活性領域の禁
制帯幅より大きい禁制帯幅を有する半導体層で挟んだダ
ブルヘテロ構造をエピタキシャル成長する第1の工程と
、活性領域が2つの溝に挟まれた堤の中に位置するよう
2つの渦をエツチングにより形成する第2の工程と、気
相成長法を用いて溝中に半絶縁性半導体よりなる電流ブ
ロック層を積層し、さらに堤の先端と電流ブロック層の
上面を基板とは逆導電型のキャップ層で覆う第3の工程
と、キャップ層の上面を除いた電流絶縁層の上面に電気
的に絶縁性をもつ有機膜を形成する第4の工程とを含む
半導体レーザの製造方法が得られる。
Further, according to the present invention, a double heterostructure is provided on a semiconductor substrate in which an active region is sandwiched between semiconductor layers having a refractive index lower than the refractive index of the active region and a forbidden band width larger than the forbidden band width of the active region. The first step is epitaxial growth, the second step is to form two vortices by etching so that the active region is located in the bank between the two grooves, and the second step is to form half a layer in the groove using a vapor phase growth method. A third step of laminating a current blocking layer made of an insulating semiconductor, further covering the tip of the embankment and the top surface of the current blocking layer with a cap layer having a conductivity type opposite to that of the substrate, and forming a current insulating layer excluding the top surface of the cap layer. and a fourth step of forming an electrically insulating organic film on the upper surface of the semiconductor laser.

〔作用〕[Effect]

本発明の半導体レーザでは活性領域の両わきの平坦部分
での漏れ電流は5i02等の絶縁膜により阻止され、ま
た、2つの渦を通る漏れ電流は半絶縁性半導体よりなる
電流ブロック層により阻止される。したがって、この部
分での漏れ電流は従来に比べて著しく低減することが可
能であり高い効率での発振が可能となる。また、活性領
域の両脇に半絶縁性半導体よりなる電流ブロック層を配
することにより従来のDC−PBHレーザに必要であっ
たn−p逆バイアス領域は不要となる。したがって、こ
の部分で発生していた寄生容量を十分小さくできる。ま
た、2つの溝の外側は厚さ数μInの絶縁性の有機膜で
覆うことにより、従来の数1000人と藩い5i02膜
だけの場合に比べて、この部分の寄生容量は1/10以
下になる。
In the semiconductor laser of the present invention, leakage current at the flat portions on both sides of the active region is blocked by an insulating film such as 5i02, and leakage current passing through the two vortices is blocked by a current blocking layer made of a semi-insulating semiconductor. Ru. Therefore, the leakage current in this part can be significantly reduced compared to the conventional case, and oscillation with high efficiency is possible. Furthermore, by arranging current blocking layers made of semi-insulating semiconductor on both sides of the active region, the n-p reverse bias region required in conventional DC-PBH lasers becomes unnecessary. Therefore, the parasitic capacitance generated in this portion can be sufficiently reduced. In addition, by covering the outside of the two grooves with an insulating organic film several μIn thick, the parasitic capacitance in this area is less than 1/10 compared to the conventional case of using only 5i02 film, which requires several thousand people. become.

全体では2pF以下の寄生容量に抑えることが可能であ
る。
In total, it is possible to suppress the parasitic capacitance to 2 pF or less.

」−記半導体レーザの製造方法における第1のダブルヘ
テロ成長工程、第2のエツチング工程、第3の埋め込み
成長工程、および第4の絶縁層塗布工程はすべて量産に
適した再現性の高い方法であり、この方法によれば高い
歩留りで、高効率で発振し高速変調可能な半導体レーザ
を提供することができる。
- The first double-hetero growth step, second etching step, third buried growth step, and fourth insulating layer coating step in the semiconductor laser manufacturing method are all performed by highly reproducible methods suitable for mass production. According to this method, a semiconductor laser which can oscillate with high efficiency and can be modulated at high speed can be provided with a high yield.

(′実施例〕 図面を用いて本発明について詳細に説明する。('Example〕 The present invention will be explained in detail using the drawings.

第1図は本発明の第1の発明である埋込み型半導体レー
ザの一実施例を示す図である。活性領域11は、禁制帯
幅0.95eVの1nGaAsP結晶で1.3μmで発
光する。この活性層はn形InP基板13上で、上下か
ら禁制帯幅が1.3e■のn形InPバッファ層12と
p形InPクラッド層14により、また、左右からFe
ドープInP組成の半絶縁性電流ブロック層15によっ
て囲まれ、しかも、屈折率導波形の導波構造が形成され
ている。さらに、堤の先端と電流ブロック層15の上面
とは、p形1nPキャップ層16で覆われている。この
p形InPキャップ層16の上側は、p形1nGaAs
Pコンタクト層17で覆われ、p形InPキャップ層1
6の両側には、電流ブロック層15に接続された電流絶
縁層としてS i 02層18が設けられている。5i
02層18の上面には、電気的に絶縁性をもつ有機膜で
あるポリイミド層21が設けられ、また、コンタクト層
17及びn形InP基板13にそれぞれ接して、p形電
極19及びn形電極20が設けられている。以上のよう
な構造の埋込み形半導体レーザでは、2つの溝にうめこ
まれた電流ブロック層15、および、ポリイミド層21
とS z 02層18により、n形電極19とn形電極
20に印加された電圧により流れる電流はp形InGa
AsPコンタクト層17、p形InPキャップ層16、
p形1nPクラッド層14、活性領域11およびn形I
nPバッファ層12へと選択的に流れる。したがって、
漏れ電流は非常に少なく高い高率で発振する。
FIG. 1 is a diagram showing an embodiment of a buried semiconductor laser which is the first invention of the present invention. The active region 11 is a 1nGaAsP crystal with a forbidden band width of 0.95 eV and emits light at 1.3 μm. This active layer is formed on an n-type InP substrate 13 by an n-type InP buffer layer 12 with a forbidden band width of 1.3e and a p-type InP cladding layer 14 from the top and bottom, and a Fe layer from the left and right.
It is surrounded by a semi-insulating current blocking layer 15 having a doped InP composition, and a refractive index guided waveguide structure is formed. Further, the tip of the embankment and the upper surface of the current blocking layer 15 are covered with a p-type 1nP cap layer 16. The upper side of this p-type InP cap layer 16 is made of p-type 1nGaAs.
covered with a P contact layer 17 and a p-type InP cap layer 1
On both sides of 6, S i 02 layers 18 are provided as current insulating layers connected to the current blocking layer 15 . 5i
A polyimide layer 21, which is an electrically insulating organic film, is provided on the upper surface of the 02 layer 18, and a p-type electrode 19 and an n-type electrode are provided in contact with the contact layer 17 and the n-type InP substrate 13, respectively. 20 are provided. In the buried semiconductor laser having the above structure, the current blocking layer 15 and the polyimide layer 21 are embedded in the two grooves.
and the S z 02 layer 18, the current flowing due to the voltage applied to the n-type electrode 19 and the n-type electrode 20 is caused by the p-type InGa
AsP contact layer 17, p-type InP cap layer 16,
p-type 1nP cladding layer 14, active region 11 and n-type I
It selectively flows to the nP buffer layer 12. therefore,
Leakage current is very small and oscillates at a high rate.

寄生容量は主に2箇所で発生する。1つは溝の外側に配
置されたダブルヘテロ構造の寄生容量であり、他の1つ
はn形電極19と渦の外側のp形りラッド層14とがポ
リイミド層21と8102層18を挟んで対向すること
により構成される寄生容量である。半導体レーザのキャ
ビティ長を30 C)μm、電極面積を300 t、t
 m X 300 μmとすると、前者による寄生容量
は半絶縁性電流ブロック層15の電気抵抗がおおきいた
め、十分に小さく無視でき、また、後者による寄生容量
はポリイミド層厚2.5μm、SiO2層厚Q、 2μ
rnのとき、約1 p Fとなる。したがって、全寄生
容量は約1p「?となり従来の半導体レーザに比べて〜
1/10にできる。
Parasitic capacitance mainly occurs in two places. One is the parasitic capacitance of the double heterostructure placed outside the groove, and the other is the parasitic capacitance of the n-type electrode 19 and the p-type rad layer 14 outside the vortex, sandwiching the polyimide layer 21 and the 8102 layer 18. This is a parasitic capacitance formed by opposing each other. The cavity length of the semiconductor laser is 30 C) μm, and the electrode area is 300 t, t.
m x 300 μm, the parasitic capacitance due to the former is sufficiently small and can be ignored because the electrical resistance of the semi-insulating current blocking layer 15 is large, and the parasitic capacitance due to the latter is due to the polyimide layer thickness of 2.5 μm and the SiO2 layer thickness Q , 2μ
When rn, it is approximately 1 pF. Therefore, the total parasitic capacitance is approximately 1p, which is ~ compared to a conventional semiconductor laser.
I can do it in 1/10.

次に第1図に示した本発明の半導体レーザの製造方法の
一実施例について説明する。第2図は、製造工程の各段
階における断面図を示す。
Next, an embodiment of the method for manufacturing the semiconductor laser of the present invention shown in FIG. 1 will be described. FIG. 2 shows cross-sectional views at each stage of the manufacturing process.

まず、第1の工程として硫黄ドープn−1nP基板13
の上に気相成長法で硫黄ドープn−InPバッファ層1
2(厚さ2.5μm、n=IX域11(バンドギャップ
0.95eV、厚さ0゜1μm)、亜鈴ドープp−In
Pクラッド層14るダブルヘテロ(D H)構造を形成
する。
First, as a first step, the sulfur-doped n-1nP substrate 13
A sulfur-doped n-InP buffer layer 1 is formed on top by vapor phase growth.
2 (thickness 2.5 μm, n=IX region 11 (band gap 0.95 eV, thickness 0°1 μm), dumbbell-doped p-In
A double hetero (DH) structure is formed using the P cladding layer 14.

次に、第2の工程でこのようなりH結晶に通常のフォト
リソグラフィー法とケミカルエツチングにより約1μm
の長さのひさしを持つS i 02層と2つの溝25.
26を形成する。このために、まず第2図(a>に示す
ようにDH結晶上にSiO2層18を形成し、ストライ
プ状に2つの窓23.24を開ける。次にSiO2層1
8をマスクにしてDH結晶をブロムメタノール溶液でサ
イドエツチングが生じるまで深くエツチングする。この
ときストライブ状の窓23.24を結晶方位(011)
に平行に形成すると第2図(b)に示されるV字形の?
425.26が2つ形成される。これら2つの溝の間に
は、活性領域11をよむ堤が形成される。次にフォトレ
ジスト22を設け、通常のフォトリソグラフィ及びエツ
チングにより、活性領域を含む堤の部分に窓を開け、堤
の上部のSiO□層18全18した。この状態を第2図
(C)に示す。更にフォトレジスト22を除去すると第
2図(d)に示す形状が形成される。
Next, in the second step, such H crystals are etched to about 1 μm by ordinary photolithography and chemical etching.
S i 02 layer with eaves of length and two grooves 25.
Form 26. For this purpose, first, as shown in FIG.
Using No. 8 as a mask, the DH crystal is deeply etched with a bromine methanol solution until side etching occurs. At this time, the striped windows 23 and 24 are aligned with the crystal orientation (011).
When formed parallel to , the V-shaped ? shown in Figure 2(b) is formed.
Two 425.26 are formed. A bank extending over the active region 11 is formed between these two grooves. Next, a photoresist 22 is applied, and by conventional photolithography and etching, a window is opened in the portion of the bank containing the active region, and the entire SiO□ layer 18 above the bank is formed. This state is shown in FIG. 2(C). Further, when the photoresist 22 is removed, the shape shown in FIG. 2(d) is formed.

次に第3の工程で2つのi25.26の上に第1図に示
されるように気相成長法で電流ブロック層15を形成す
る。このとき、InP電流ブロック層15は、SiO2
層18のひさしに接続された状態になるように形成され
る。続いて、p形InPキャップ層16およびp形I 
nGaAsコンタクト層17を、その上に選択的に形成
する。気相成長法特有の性質として講25.26を有す
るW字形の領域の上に結晶成長を行なうと中心部の堤の
上への成長は最も遅い。この気相成長法特有の性質を利
用して第1図の構造が実現される。このようにして形成
された結晶のキャップ層16及びコンタクI・層17は
S i 02層18に比べて約3μmの高さのメサを形
成する。
Next, in a third step, a current blocking layer 15 is formed on the two i25.26 layers by vapor phase growth as shown in FIG. At this time, the InP current blocking layer 15 is made of SiO2
It is formed to be connected to the eaves of layer 18. Subsequently, p-type InP cap layer 16 and p-type I
An nGaAs contact layer 17 is selectively formed thereon. As a characteristic peculiar to the vapor phase growth method, when crystal growth is performed on the W-shaped region having the following characteristics, the growth on the bank in the center is slowest. The structure shown in FIG. 1 is realized by utilizing the characteristics peculiar to this vapor phase growth method. The crystalline cap layer 16 and contact I layer 17 thus formed form a mesa with a height of about 3 μm compared to the SiO2 layer 18.

そこで第4の工程において前記段差を絶縁性の有機膜で
あるポリイミド層2]によって埋める。
Therefore, in the fourth step, the step is filled with a polyimide layer 2 which is an insulating organic film.

この場合、ポリイミドには5光性のものを用い、通常の
フォトリソグラフィの方法により塗布し、前記メサの上
部を除去し窓開けした後硬化させる。
In this case, a five-light polyimide is used, applied by a normal photolithography method, and cured after removing the upper part of the mesa and opening a window.

その後、通常の方法によってn形電極19とn形電極2
0を形成する。
Thereafter, the n-type electrode 19 and the n-type electrode 2 are connected by a normal method.
form 0.

上記第1から第4の工程はすべて量産に適した方法であ
る。特に、第3の工程における気相成長による埋め込み
成長は再現性か高く、かつ、均一性も高・い。したがっ
て、このような方法によって製作された半導体レーザの
特性はばらつきが少なく、高い歩留りで得られることが
わかった。
All of the first to fourth steps described above are methods suitable for mass production. In particular, the buried growth by vapor phase growth in the third step has high reproducibility and high uniformity. Therefore, it has been found that the characteristics of semiconductor lasers manufactured by such a method have little variation and can be obtained at a high yield.

上記実施例では、活性領域11のI nGaAsP結晶
の禁制帯幅が0.95eVであったなめ1゜3μmで発
振するレーザが得られたが、この混晶組成は波長1.1
μmから1.65μmのどの波長で発振するようにも設
定が可能である。
In the above example, a laser was obtained that oscillated at a wavelength of 1.3 μm and the forbidden band width of the InGaAsP crystal in the active region 11 was 0.95 eV.
It can be set to oscillate at any wavelength from μm to 1.65 μm.

上記実施例では第1の工程に気相成長法を用いたがDI
−1構造は液相成長法、MBE方法等の他の成長法によ
り形成してもよい。
In the above example, a vapor phase growth method was used in the first step, but DI
The -1 structure may be formed by other growth methods such as liquid phase growth and MBE.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体レーザは50%の以上の非常に高い
効率で発振し、かつ]、 OG Hzを越える高い周波
数で応答が可能であった。また、本発明による製造方法
では、溝の形成、及びそこへの埋め込み成長が再現性良
くでき、したがって大変高い歩留りを得ることが出来た
The semiconductor laser according to the invention oscillated with very high efficiency of more than 50% and was capable of responding at high frequencies exceeding OG Hz. Further, in the manufacturing method according to the present invention, the formation of the groove and the growth filling the groove can be performed with good reproducibility, and therefore a very high yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の埋込み型半導体レーザの一実施例の断
面図、第2図(a)〜(d)は本発明の埋込み型半導体
レーザの製造工程を示す断面図である。 11・・・活性領域、12・・・n形InPバッファ層
、13・・・n形1nP基板、14・・・p形InPク
ラッド層、15・・・FeドープInP電電流ブロク2
層16・・・p形InPキャップ層、17・・・p形I
nGaAsPコンタクト層、18=・5i02層、19
・・・n形電極、20・・・n形電極、21・・・ポリ
イミド層。 1N1ノ (−a−2 (C) (f) 援 2 可
FIG. 1 is a cross-sectional view of an embodiment of the buried semiconductor laser of the present invention, and FIGS. 2(a) to 2(d) are cross-sectional views showing the manufacturing process of the buried semiconductor laser of the present invention. DESCRIPTION OF SYMBOLS 11... Active region, 12... N-type InP buffer layer, 13... N-type 1nP substrate, 14... P-type InP cladding layer, 15... Fe-doped InP current block 2
Layer 16... p-type InP cap layer, 17... p-type I
nGaAsP contact layer, 18=・5i02 layer, 19
... n-type electrode, 20 ... n-type electrode, 21 ... polyimide layer. 1N1ノ(-a-2 (C) (f) Support 2 Possible

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に活性領域をこの活性領域の屈折率
より低い屈折率を有しかつ前記活性領域の禁制帯幅より
大きい禁制帯幅を有する半導体層で挟んだダブルヘテロ
構造を有し、前記活性領域が2つの溝に挟まれた堤の中
に位置し、前記溝中に半絶縁性半導体よりなる電流ブロ
ック層を有し、さらに前記堤の先端と前記電流ブロック
層の上面が前記基板とは逆導電型のキャップ層で覆われ
、前記キャップ層の両側に前記電流ブロック層と接続し
た電流絶縁層を有し、前記キャップ層の上面を除いた前
記電流絶縁層の上面に電気的に絶縁性をもつ有機膜を有
することを特徴とする埋込み型半導体レーザ。
(1) having a double heterostructure on a semiconductor substrate in which an active region is sandwiched between semiconductor layers having a refractive index lower than the refractive index of the active region and a forbidden band width larger than the forbidden band width of the active region; The active region is located in a bank sandwiched between two grooves, and has a current blocking layer made of a semi-insulating semiconductor in the groove, and further, the tip of the bank and the upper surface of the current blocking layer are located in the substrate. is covered with a cap layer having a conductivity type opposite to that of the cap layer, has a current insulating layer connected to the current blocking layer on both sides of the cap layer, and has an electrically conductive layer on the top surface of the current insulating layer except for the top surface of the cap layer. An embedded semiconductor laser characterized by having an organic film with insulating properties.
(2)半導体基板上に活性領域をこの活性領域の屈折率
より低い屈折率を有しかつ活性領域の禁制帯幅より大き
い禁制帯幅を有する半導体層で挟んだダブルヘテロ構造
をエピタキシャル成長する第1の工程と、前記活性領域
が2つの溝に挟まれた堤の中に位置するよう前記2つの
溝をエッチングで形成する第2の工程と、気相成長法を
用いて前記溝中に半絶縁性半導体よりなる電流ブロック
層を積層し、さらに前記堤の先端と前記電流ブロック層
の上面を前記基板とは逆導電型のキャップ層で覆う第3
の工程と、前記キャップ層の上面を除いた前記電流絶縁
層の上面に電気的に絶縁性をもつ有機膜を形成する第4
の工程とを含むことを特徴とする埋込み型半導体レーザ
の製造方法。
(2) A first step of epitaxially growing a double heterostructure on a semiconductor substrate, in which an active region is sandwiched between semiconductor layers having a refractive index lower than that of the active region and a forbidden band width larger than the forbidden band width of the active region. a second step of forming the two trenches by etching so that the active region is located in a bank between the two trenches; a third current blocking layer made of a conductivity semiconductor, and further covering the tip of the bank and the upper surface of the current blocking layer with a cap layer having a conductivity type opposite to that of the substrate.
and a fourth step of forming an electrically insulating organic film on the upper surface of the current insulating layer except for the upper surface of the cap layer.
A method of manufacturing an embedded semiconductor laser, comprising the steps of:
JP19137286A 1986-08-15 1986-08-15 Buried semiconductor laser and manufacture thereof Pending JPS6346790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19137286A JPS6346790A (en) 1986-08-15 1986-08-15 Buried semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19137286A JPS6346790A (en) 1986-08-15 1986-08-15 Buried semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6346790A true JPS6346790A (en) 1988-02-27

Family

ID=16273490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19137286A Pending JPS6346790A (en) 1986-08-15 1986-08-15 Buried semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6346790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679388A1 (en) * 1991-07-19 1993-01-22 Cit Alcatel DOUBLE CHANNEL SEMICONDUCTOR LASER AND METHOD FOR PRODUCING THE SAME
US5737350A (en) * 1994-09-13 1998-04-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser having multi-quantum barrier including complex barrier structure and method of making the semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2679388A1 (en) * 1991-07-19 1993-01-22 Cit Alcatel DOUBLE CHANNEL SEMICONDUCTOR LASER AND METHOD FOR PRODUCING THE SAME
US5278858A (en) * 1991-07-19 1994-01-11 Alcatel Cit Double channel semiconductor laser and method of fabricating it
US5737350A (en) * 1994-09-13 1998-04-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser having multi-quantum barrier including complex barrier structure and method of making the semiconductor laser

Similar Documents

Publication Publication Date Title
US5470786A (en) Semiconductor laser device
JPS61284987A (en) Semiconductor laser element
JPS6346790A (en) Buried semiconductor laser and manufacture thereof
JPS6140082A (en) Semiconductor device
JPS61164287A (en) Semiconductor laser
JPS62189784A (en) Buried type semiconductor laser and manufacture of same
JPS58207690A (en) Buried type semiconductor laser
JP3255111B2 (en) Semiconductor laser and manufacturing method thereof
JPH03227086A (en) Semiconductor laser element and manufacture thereof
JPS61220389A (en) Integrated type semiconductor laser
JPH01175792A (en) Buried-type semiconductor laser and manufacture of the same
JPH05226774A (en) Semiconductor laser element and its production
JPH0828553B2 (en) Semiconductor laser
JPH0484484A (en) Wavelength variable semiconductor laser
JPS61187287A (en) Semiconductor light-emitting device
JPS6057692A (en) Distributed bragg-reflector type semiconductor laser
JPH06326399A (en) Semiconductor laser element and manufacture thereof
JPS59197181A (en) Semiconductor laser
JPH03120775A (en) Embedded structure semiconductor and its manufacture
JPH0744311B2 (en) Method of manufacturing embedded semiconductor laser
JPS62179194A (en) Semiconductor laser
JPH01309393A (en) Semiconductor laser device and its manufacture
JPH0691295B2 (en) Semiconductor laser and manufacturing method
JPS6260285A (en) Semiconductor laser element
JPS62296591A (en) Semiconductor laser