JPS58207690A - Buried type semiconductor laser - Google Patents

Buried type semiconductor laser

Info

Publication number
JPS58207690A
JPS58207690A JP9063182A JP9063182A JPS58207690A JP S58207690 A JPS58207690 A JP S58207690A JP 9063182 A JP9063182 A JP 9063182A JP 9063182 A JP9063182 A JP 9063182A JP S58207690 A JPS58207690 A JP S58207690A
Authority
JP
Japan
Prior art keywords
type inp
layer
current
active layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9063182A
Other languages
Japanese (ja)
Inventor
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9063182A priority Critical patent/JPS58207690A/en
Publication of JPS58207690A publication Critical patent/JPS58207690A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce a reactive current flowing into the circuit other than optical waveguide of the InGaAsP active layer and improve temperature characteristic by employing a P type InP substrate, N type InP current confinement layer, P type InP current blocking layer. CONSTITUTION:Since P type InP substrate 1 is used, an NPN transistor part sandwiches the InGaAsP active layer 5 having small band gap energy, efficiency of implanting electrons which are minor carriers to the P type InP clad layer 4 from the N type InP clad layer 6 is low and a current gain of NPN transistor is low. As a result, a switching voltage of pnpn layer becomes high and a current almost does not flow for a voltage applied during normal operation. As described above, a reactive current flows a little to the area other than the optical waveguide 5C of InGaAsP active layer. Therefore, good linearity of injected current-optical output can be obtained and a high output can also be obtained. Moreover, even when an oscillation threshold current density increases under a high temperature, increment of reactive current is small and good temperature characteristic can be obtained.

Description

【発明の詳細な説明】 本発明は温度特性にすぐれた埋め込み形半導体レーザに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a buried semiconductor laser with excellent temperature characteristics.

埋め込み形半4困レーザは発振閾値電流が低く、低電力
駆動が可能である。発振閾値の数倍から数十倍以上の高
注入電流領域まで安定な基本横モード発振を維持できる
。注入キャリアが有効に活性層光導波路に閉じ込められ
るため、注入電流−光出力特性の微分量子効率が高い9
等のすぐれた特徴を有する。とりわけInPを基板とす
るl nGaAsP系の埋め込み形半導体レーザは、シ
リカガラス系光ファイバの低損失伝送波長領域に適合す
るため長距離・大容量光ファイバ通信システム用光源と
して注目視され急速な開発が進められている。
The buried semicircular laser has a low oscillation threshold current and can be driven with low power. Stable fundamental transverse mode oscillation can be maintained from several times the oscillation threshold to a high injection current region of several tens of times or more. Since the injected carriers are effectively confined in the active layer optical waveguide, the differential quantum efficiency of the injected current vs. optical output characteristic is high9.
It has excellent characteristics such as In particular, nGaAsP-based embedded semiconductor lasers using InP as a substrate are suitable for the low-loss transmission wavelength range of silica glass-based optical fibers, so they are attracting attention as light sources for long-distance, high-capacity optical fiber communication systems, and are undergoing rapid development. It is progressing.

現在まで幾つかの1nOaAsP 埋め込み形半導体レ
ーザが報告されている。その中で溝を設けたInP基板
に、活性層を含む多層膜をエピタキシャル成長させる過
程において、活性層を溝の部分と周囲の平坦な領域とで
分離して成長させ、溝の部分の活性層をレーザ発振の共
振器となる先導波路として用いる構造のInGaAsP
埋め込み形半導体レーザは、光導波路となる活性層を1
回の成長工程中に形成するため、メサエッチングを行い
先導波路を形成する場合に比べ製造が容易で、光導波路
側面が成長雰囲気に唾される時間が短く信頼性が高い等
の4?徴がある◇この様な形状の埋め込み形半導体レー
ザとしては、大村等によってジャーナル・オブ轡カンタ
ム・エレクトロニクス誌第QE−17巻、1981年発
行の646頁から650頁に報告されているベリード・
クレッセント形、右よび石川等によってエレクトロニク
ス・レターズ誌、第17巻、1981年発行の465頁
から466頁に報告されている。■クルーブト曹サブス
トレイト形等がある。上記2つの構造の埋め込み形半導
体レーザはどちらも室温での発振閾値は20tA程度と
小さい値が得られている。しかしながら発振閾値の温度
特性は必ずしも良好ではなく、発振閾値IthをIth
”cexp(1τ)で表現した♂きの特性温度Toは酸
化膜ストライプ形やプレーナストライプ形のIn(ia
AsP半導体レーザ等で報告されているTOの値、約7
0Kを下回り50Kから60に程度である。従って70
℃とか100℃等の高@領域での動作が困難になってく
る。温度特性が悪い原因は、高温状態、高電流注入状態
で活性層先導波路部を迂回して流れる無効電流成分が増
大することζこよる結果と考えられる。
Several 1nOaAsP buried semiconductor lasers have been reported to date. In the process of epitaxially growing a multilayer film including an active layer on an InP substrate with grooves, the active layer is grown separately in the groove part and the surrounding flat area, and the active layer in the groove part is grown separately. InGaAsP with a structure used as a guiding waveguide that becomes a resonator for laser oscillation
A buried semiconductor laser has an active layer that serves as an optical waveguide.
Because it is formed during the second growth process, it is easier to manufacture than the case where the leading waveguide is formed by mesa etching, and the time that the side surface of the optical waveguide is exposed to the growth atmosphere is shorter and the reliability is higher. ◇An embedded semiconductor laser with such a shape is the buried semiconductor laser reported by Omura et al. in the Journal of Quantum Electronics, Volume QE-17, published in 1981, pages 646 to 650.
Crescent, as reported by Miyoshi and Ishikawa et al. in Electronics Letters, Vol. 17, published in 1981, pp. 465-466. ■Klubuto Substrate type, etc. are available. Both of the buried semiconductor lasers having the above two structures have a small oscillation threshold of about 20 tA at room temperature. However, the temperature characteristics of the oscillation threshold are not necessarily good, and the oscillation threshold Ith is
``The characteristic temperature To of a male expressed as cexp(1τ) is
The TO value reported for AsP semiconductor lasers, etc. is approximately 7.
It is below 0K, about 50K to 60K. Therefore 70
It becomes difficult to operate in high @ ranges such as ℃ or 100℃. The reason for the poor temperature characteristics is considered to be the result of an increase in the reactive current component that flows around the active layer leading wavepath section in high temperature conditions and high current injection conditions.

従って本発明は従来の溝を埋め込む形状のInGaAs
P埋め込み形半導体レーザにおいて、高温状態でも無効
電流成分の増加を抑え温度特性にすぐれたIn0aAs
P埋め込み形半導体レーザの製法を提供するものである
Therefore, the present invention can be applied to InGaAs with a shape that embeds the conventional trench.
In P-embedded semiconductor lasers, In0aAs has excellent temperature characteristics by suppressing the increase in reactive current components even in high-temperature conditions.
A method for manufacturing a P-embedded semiconductor laser is provided.

本発明の埋め込み形半導体レーザは、p形InP基版の
上にn形InP電流閉じ込め層が形成され、前記n形I
 n P ’に流閉じ込め層の上方からV字状の溝が形
成され、前記V字状の溝の下方部lこおいてのみ前記n
形InP電流閉じ込め層が途切れる形で表面の側にp形
InP電流ブロック層の上に、 前記V字状の溝の中々
、前記In(JaAsP活性層の上に全面にわたって形
成されるn形1nPクラッド層の少くとも2層を含む多
層膜が形成され、前記溝の中に分離して形成された1n
GaAsP  活性層が発光再結合を行う領域である構
造となっている。
In the buried semiconductor laser of the present invention, an n-type InP current confinement layer is formed on a p-type InP substrate, and the n-type I
A V-shaped groove is formed from above the flow confinement layer in nP', and only in the lower part l of the V-shaped groove is the n
An n-type 1nP cladding layer is formed on the p-type InP current blocking layer on the surface side in such a way that the InP current confinement layer is interrupted, and in the V-shaped groove, the n-type 1nP cladding is formed entirely on the In(JaAsP active layer). A multilayer film comprising at least two layers of layers is formed, and a 1n layer is formed separately in the groove.
The structure is such that the GaAsP active layer is a region where radiative recombination occurs.

次に図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

第1図は本発明の実施例を示す埋め込み形半導体レーザ
の斜視図である。まず始めに製造過程を説明すると、第
1回目のLPE成長で、(001)面のp形InP基&
1の上にn形InP 電流閉じ込め層2 (8n ドー
グ、l X IQ” cm ” )を約2am  (1
)厚さで積層する。次に通常のフォトリンクラフィの技
術を用い<110>方向に溝@杓2.5μm1 深さ約
2μ風のV 溝toを形成する。■溝のエツチングに8
i0s膜0) マスクおよび1TcllとHs P O
4(1’J 7F:合液(混合体積比、5HC/!:1
)bPO4)  を用いると■溝の側面は<111>B
面が選択的に露出し鏡面状態Icなる。
FIG. 1 is a perspective view of an embedded semiconductor laser showing an embodiment of the present invention. First, to explain the manufacturing process, in the first LPE growth, the (001) plane p-type InP base &
On top of 1, an n-type InP current confinement layer 2 (8n dogg, l x IQ"cm") is placed about 2 am (1
) laminated in thickness. Next, a V groove (to) with a diameter of 2.5 μm and a depth of about 2 μm is formed in the <110> direction using a normal photolinkage technique. ■8 for groove etching
i0s membrane 0) mask and 1Tcll and Hs PO
4 (1'J 7F: Mixed liquid (mixed volume ratio, 5HC/!:1
)bPO4), the sides of the groove are <111>B
The surface is selectively exposed and becomes a mirror state Ic.

次に表面にZn拡駁を施し約05μmの厚さのp形In
p電流ブロック拡散層3を形成する。このさきv m 
ioの下方部においではZn拡散フロントがp形InP
基板lに到達するためn形InP電流閉じ込め層2はV
溝1oの下方部に於て完全に途切れることになる。
Next, Zn expansion was applied to the surface to form a p-type In with a thickness of approximately 05 μm.
A p-current blocking diffusion layer 3 is formed. This past v m
In the lower part of io, the Zn diffusion front is p-type InP.
In order to reach the substrate l, the n-type InP current confinement layer 2 is V
The groove 1o is completely interrupted at the lower part thereof.

第2回目のLPE成長ではp形InP クラッド層4(
Z−n ドープ、1×10111crn1平坦部テノ厚
さ約05μm)、ノンドープのInGaAsP活性層5
(平坦部での厚さ約O1μフル)、n形InPクラッド
層6(snドープ、1 ×10”cm ” 、平坦部で
の厚さ約2.5pm)の3層を積層する。p形InPク
ラッド層4とInGaAsP活性層5とはV溝】0の中
と平坦部とで分離して成長しV溝内にp形InPクラッ
ド祐部4CとInGaAsP活性層光導波路5Cとが形
成されるOp形InP基板I IIにAu−Znを用い
たp側合J@電極201n形1nPクラッド層6側lζ
Au−Ge−Ni  を用いたn側金属電極21を形成
する。襞間によりチップに切り出したあと、ダイヤモン
ドもしくはシリコン等のヒートシンクIcn側金it極
21を下方にして融着する。
In the second LPE growth, the p-type InP cladding layer 4 (
Z-n doped, 1×10111crn1 flat part thickness approximately 05 μm), non-doped InGaAsP active layer 5
Three layers are laminated, including an n-type InP cladding layer 6 (sn-doped, 1×10"cm", thickness of about 2.5 pm at the flat part). The p-type InP cladding layer 4 and the InGaAsP active layer 5 grow separately in the V-groove and the flat part, and a p-type InP cladding layer 4C and an InGaAsP active layer optical waveguide 5C are formed in the V-groove. p-side J@electrode 201 n-type 1nP cladding layer 6 side lζ using Au-Zn for Op-type InP substrate I II
An n-side metal electrode 21 using Au-Ge-Ni is formed. After cutting into chips between the folds, they are fused together with the gold it electrode 21 on the heat sink Icn side made of diamond or silicon facing downward.

コ0)素子にp 1111電極20を正、nNi、極2
1を負とするバイアス電圧を印加すると、V ’1m 
10の近傍ではpn接合の順バイアスとなるためダブル
へテロ接合領域である1noaAsP活性層光導波4c
に注入キャリアが閉じ込められ発光再結合が生じる。
0) P 1111 electrode 20 on the element, positive, nNi, pole 2
When applying a bias voltage with 1 as negative, V'1m
In the vicinity of 10, the forward bias of the pn junction occurs, so the 1noaAsP active layer optical waveguide 4c, which is a double heterojunction region,
The injected carriers are confined and radiative recombination occurs.

しかしながらV溝loの近傍以外はpnpn接合となる
ため、印加電圧が10v程度と大きくなりスイッチング
が生しる前は電流がほとんど流れない。
However, since the area other than the vicinity of the V groove lo is a pnpn junction, almost no current flows until the applied voltage is as high as about 10 V and switching occurs.

従って注入を流が有効に■溝部に集中するため、発振閾
値が15mA程度の低い値を示した。この構造では従来
の溝を埋め込む形状の埋め込み形半導体レーザと異なり
、p形InP基板lとp形InP電流ブロック拡散層3
を用いている。従ってI n G a A s P活性
層光導波路5c以外に流れてしまう無効電流成分は、p
形1nP基板1→p形InP電流ブロック拡散層3→p
形InPクラッド層4→I n G a A s P活
性層5−+ H形InPクラッド層6へと流れる電流成
分と、pnpn層を突き抜けて流れる電流成分に大別さ
れるが、前者はp形InP層の抵抗率がn形InP層に
比べ1桁以上大きくなるため、p形InP電流ブロック
拡散N3がn形である場合(n形1nP基板を用いた場
合)(!:比べ1桁程度減少する。また後者のpn p
n層を突き抜けて流れる電流成分は、pnpP層を形成
するpnp )ランジスタおよびnpn  )ランジス
タの電流利得の総和か印加電圧の増大Jこよりlに近づ
くことによるpnpnのスイッチング・オンによって生
じる。この場合ホールの拡散長が短いことを考慮すると
エレクトロンが少数キャリアとなるnpn トランジス
タの電流利得の増大が大きな影響を及ぼす。
Therefore, since the injection flow was effectively concentrated in the groove, the oscillation threshold showed a low value of about 15 mA. This structure differs from a conventional buried type semiconductor laser in which a trench is buried, and a p-type InP substrate 1 and a p-type InP current block diffusion layer 3 are used.
is used. Therefore, the reactive current component that flows outside the I n Ga A s P active layer optical waveguide 5c is p
type 1nP substrate 1 → p type InP current block diffusion layer 3 → p
InP type cladding layer 4→InGaAsP active layer 5-+ The current component flowing to the H type InP cladding layer 6 and the current component flowing through the pnpn layer, the former is p type. Since the resistivity of the InP layer is more than one order of magnitude higher than that of the n-type InP layer, when the p-type InP current block diffusion N3 is n-type (when an n-type 1nP substrate is used) (!: it is reduced by about one order of magnitude compared to Also, the latter pn p
The current component flowing through the n-layer is caused by the sum of the current gains of the pnp) and npn) transistors forming the pnpp layer or by switching on the pnpn by increasing the applied voltage J to approach l. In this case, considering the short diffusion length of holes, an increase in the current gain of the npn transistor in which electrons become minority carriers has a large effect.

第1図の実施例の構造では、p形InP基板1を用いて
いるためnpn トランジスタ部がバンドギャップエネ
ルキーの小さrjIn(]aAsP活性層5を間に挾ん
た構造になっているため、n形1nPクラッド層6から
p形InPクラッド層4へ少数キャリアであるエレクト
ロンを注入する効率が低く、従ってnpn  )ランジ
スタ部の電流利得が小さい。
In the structure of the embodiment shown in FIG. 1, since the p-type InP substrate 1 is used, the npn transistor part has a structure in which the rjIn(]aAsP active layer 5 with a small band gap energy is sandwiched between the npn The efficiency of injecting electrons, which are minority carriers, from the 1-nP cladding layer 6 to the p-type InP cladding layer 4 is low, and therefore the current gain of the npn transistor portion is small.

その結果pnpn層のスイッチング電圧は前述した様に
lOV程度の高い値を示し、通常の動作における2から
3V以下の印加電圧では電流がほとんど流れない。以上
の様にIn0aAsP活性層光導波路5C以外に流れる
無効電流成分が少いため、注入電流−光出力の直線性は
良好であり、片側光出力にして30 m W程度までは
ゾ直紳的に光出力が増加し50mW以上のCW光出力が
得られた。また高温になって発振閾値電流密度が増大し
ても無効電流成分の増大は小さく温度特性は良好で、特
性温度Toは70〜80にであり最高CW湿温度120
℃程度まで向上することができた。
As a result, the switching voltage of the pnpn layer exhibits a high value of about 1OV as described above, and almost no current flows at an applied voltage of 2 to 3 V or less in normal operation. As described above, since there are few reactive current components flowing outside the In0aAsP active layer optical waveguide 5C, the linearity of the injection current vs. optical output is good, and the optical output on one side is about 30 mW, which is very straight forward. The output increased and a CW optical output of 50 mW or more was obtained. In addition, even if the oscillation threshold current density increases due to high temperature, the increase in reactive current component is small and the temperature characteristics are good.The characteristic temperature To is between 70 and 80, and the maximum CW humidity temperature is 120.
It was possible to improve the temperature to about ℃.

第2図は本発明の第2の実施例を示す斜視図である。FIG. 2 is a perspective view showing a second embodiment of the invention.

第1の実施例と4異なる点は、7字状の溝は、n形I 
n P ’IT: vrf、閉じ込め層2を確実に突き
抜ける深さで形成され、かつ、p形InPt流ブロック
成長層7は、エピタキシャル成長により、7字状の牌が
形成された基板の上に全面に亘ってほぼ一様な膜厚で形
成されて、このp形InP 電流ブロック成長層7の上
に直接1n(1aAsP活性層5が形成されていること
の3点である。I n (] a A s P活性層光
導波踏部5Cは、溝部1oの上方で、第1の実施例と同
様に平坦部と分離して形成される。第2の実施例の埋め
込み形半導体レーザも第1の実施例とはり同様の特徴を
有し、高出力、高温CW動作が可能である。第1の実施
例と比べると、n形1 n P電流ブロック成長層3の
膜厚に依存し、In(]aAsP活性層光導活性層光導
波幅部5形状が変化するので、p形InP電流ブロック
成長層3の膜厚の制御性がより一層要求されるが、第1
図の実施例でのZn拡散による電流ブロック拡散層3の
工程を省くことができプロセス工程を短縮できる利点が
ある0 以上本発明の特徴をまとめると従来の溝を埋め込む形の
埋め込み形の半導体レーザの温度特性を改善するためp
形InP基板、及びn形InP電流閉じ込め層、p形I
nP電流ブロック層を用いることによりIn0aAsP
活性層光導波路以外に流れる無効電流を減少させること
ができたこと、従って注入電流−先出力の直線性が良好
で高い光出力が得られたこき、温度特性が向上し120
℃程度の最高CW湿温度得られたこと等である0
There are four differences from the first embodiment: the 7-shaped groove is n-shaped I
nP'IT: vrf, formed to a depth that reliably penetrates the confinement layer 2, and the p-type InPt flow block growth layer 7 is grown entirely on the substrate on which the figure 7-shaped tiles are formed by epitaxial growth. The three points are that the 1n (1aAsP active layer 5) is formed with a substantially uniform film thickness over the p-type InP current block growth layer 7, and that the 1n (1aAsP active layer 5) is formed directly on the p-type InP current block growth layer 7. The sP active layer optical waveguide step portion 5C is formed above the groove portion 1o and separated from the flat portion as in the first embodiment.The embedded semiconductor laser of the second embodiment is also similar to the first embodiment. It has the same characteristics as the example and is capable of high-output, high-temperature CW operation.Compared to the first example, it depends on the film thickness of the n-type 1 n P current block growth layer 3, and the In(] Since the shape of the aAsP active layer photoconducting active layer optical waveguide width portion 5 changes, greater controllability of the film thickness of the p-type InP current block growth layer 3 is required.
The process of forming the current block diffusion layer 3 by Zn diffusion in the embodiment shown in the figure can be omitted, which has the advantage of shortening the process steps.To summarize the features of the present invention, it is possible to eliminate the process of forming the current blocking diffusion layer 3 by Zn diffusion in the embodiment shown in the figure. To improve the temperature characteristics of p
type InP substrate, n-type InP current confinement layer, p-type I
By using an nP current blocking layer, In0aAsP
It was possible to reduce the reactive current flowing outside the active layer optical waveguide, and therefore the linearity of the injection current-first output was good, resulting in a high optical output, and the temperature characteristics were improved.
The maximum CW humidity temperature of about ℃ was obtained, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す斜視図、第2図は
本発明の第2の実施例を示す斜視図である0 図中、1はp形1nP基板、 2(まn形InP’fi
流閉じ込め層、  3はp形I n PM 流)゛ロッ
ク拡散層、  4はp形TnPクラッド層、  4c+
ip形InP クラッド層溝部、  5CiまT n 
G a A s P活性層光導波路部、  6はn形T
nPクラッド層、7はp形InP電流ブロック成長飢1
011V溝、20はp側金属電極、21はn側金属電極
である。
FIG. 1 is a perspective view showing a first embodiment of the present invention, and FIG. 2 is a perspective view showing a second embodiment of the present invention. In the figure, 1 is a p-type 1nP substrate; Form InP'fi
Flow confinement layer, 3 is p-type I n PM flow lock diffusion layer, 4 is p-type TnP cladding layer, 4c+
IP type InP cladding layer trench, 5Ci T n
G a A s P active layer optical waveguide section, 6 is n-type T
nP cladding layer, 7 is p-type InP current block growth star 1
011V groove, 20 is a p-side metal electrode, and 21 is an n-side metal electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、  p形InP基板の上にn形InP ′rL流閉
じ込め層が形成され、前記n形InP電流閉じ込め層の
、上方からV字状の溝が形成され、前記V字状の溝の下
方部においてのみ前記n形InP IIt流閉じ込め層
が途切れる形で、n形InP電流閉じ込め層の表面の@
jにp形InP電流ブロック層が全面に亘ってほぼ一様
な厚さで形成され、前記p形InP電流ブロック層の上
に、前記V字状の溝の中と、溝の外の領域とに分離して
形成される1nGaAsF活性層As前記InGaAs
P活性層の上に全面にわたって形成されるn形InPク
ラブト層の少くとも2Mを含む多層膜が形成され、前記
溝の中に分離して形成されたI n G a A s 
P活性層が、発光再結合を行う領域であることを特徴と
する埋め込み形半導体レーザ0
1. An n-type InP 'rL flow confinement layer is formed on the p-type InP substrate, a V-shaped groove is formed from above the n-type InP current confinement layer, and a lower part of the V-shaped groove is formed. The n-type InP IIt current confinement layer is interrupted only at the surface of the n-type InP current confinement layer.
A p-type InP current blocking layer is formed with a substantially uniform thickness over the entire surface of the p-type InP current blocking layer, and is formed on the p-type InP current blocking layer inside the V-shaped groove and in a region outside the groove. The InGaAsF active layer As is formed separately from the InGaAsF active layer As.
A multilayer film including at least 2M of an n-type InP crab layer is formed over the entire surface of the P active layer, and a multilayer film including at least 2M of n-type InP crab layers is formed separately in the groove.
Embedded semiconductor laser 0 characterized in that the P active layer is a region that performs radiative recombination.
JP9063182A 1982-05-28 1982-05-28 Buried type semiconductor laser Pending JPS58207690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9063182A JPS58207690A (en) 1982-05-28 1982-05-28 Buried type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9063182A JPS58207690A (en) 1982-05-28 1982-05-28 Buried type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58207690A true JPS58207690A (en) 1983-12-03

Family

ID=14003831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9063182A Pending JPS58207690A (en) 1982-05-28 1982-05-28 Buried type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58207690A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260285A (en) * 1985-09-10 1987-03-16 Sharp Corp Semiconductor laser element
JPS6261386A (en) * 1985-09-11 1987-03-18 Sharp Corp Semiconductor laser element
JPS6262583A (en) * 1985-09-12 1987-03-19 Sharp Corp Semiconductor laser element
US4758535A (en) * 1986-05-31 1988-07-19 Mitsubishi Denki Kabushiki Kaisha Method for producing semiconductor laser
FR2628891A1 (en) * 1988-03-16 1989-09-22 Mitsubishi Electric Corp SEMICONDUCTOR LASER
US5115443A (en) * 1988-03-22 1992-05-19 Canon Kabushiki Kaisha Semiconductor laser apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260285A (en) * 1985-09-10 1987-03-16 Sharp Corp Semiconductor laser element
JPS6261386A (en) * 1985-09-11 1987-03-18 Sharp Corp Semiconductor laser element
JPS6262583A (en) * 1985-09-12 1987-03-19 Sharp Corp Semiconductor laser element
US4758535A (en) * 1986-05-31 1988-07-19 Mitsubishi Denki Kabushiki Kaisha Method for producing semiconductor laser
FR2628891A1 (en) * 1988-03-16 1989-09-22 Mitsubishi Electric Corp SEMICONDUCTOR LASER
US5115443A (en) * 1988-03-22 1992-05-19 Canon Kabushiki Kaisha Semiconductor laser apparatus

Similar Documents

Publication Publication Date Title
EP0132081B1 (en) Semiconductor laser device
JPH0381317B2 (en)
JP2003060310A (en) Semiconductor optical element and manufacturing method therefor
US4525841A (en) Double channel planar buried heterostructure laser
JPH07101768B2 (en) Semiconductor laser device and manufacturing method thereof
GB2046983A (en) Semiconductor lasers
JPS58207690A (en) Buried type semiconductor laser
JPH0518473B2 (en)
JPS61164287A (en) Semiconductor laser
JPS61210689A (en) Structure of semiconductor laser and manufacture of said laser
US4592061A (en) Transverse junction stripe laser with steps at the end faces
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS61242091A (en) Semiconductor light-emitting element
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JP2740165B2 (en) Semiconductor laser
JPH03104292A (en) Semiconductor laser
JP2000101186A (en) Semiconductor optical element
JP2003060309A (en) Semiconductor laser
JPS5882588A (en) Buried groove type semiconductor laser
JPH03120775A (en) Embedded structure semiconductor and its manufacture
JPH08236858A (en) P-type substrate buried type semiconductor laser and its manufacture
JPH05129723A (en) Buried heterostructure semiconductor laser and manufacture thereof
JPS6112399B2 (en)