JPS6261386A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS6261386A
JPS6261386A JP20246385A JP20246385A JPS6261386A JP S6261386 A JPS6261386 A JP S6261386A JP 20246385 A JP20246385 A JP 20246385A JP 20246385 A JP20246385 A JP 20246385A JP S6261386 A JPS6261386 A JP S6261386A
Authority
JP
Japan
Prior art keywords
layer
current
buried
groove
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20246385A
Other languages
Japanese (ja)
Inventor
Tomohiko Yoshida
智彦 吉田
Shinji Kaneiwa
進治 兼岩
Haruhisa Takiguchi
治久 瀧口
Hiroaki Kudo
裕章 工藤
Kaneki Matsui
完益 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP20246385A priority Critical patent/JPS6261386A/en
Priority to US06/897,337 priority patent/US4839900A/en
Priority to EP86306486A priority patent/EP0212977B1/en
Priority to DE8686306486T priority patent/DE3686970T2/en
Publication of JPS6261386A publication Critical patent/JPS6261386A/en
Priority to US07/229,212 priority patent/US4841534A/en
Priority to US07/313,982 priority patent/US4908830A/en
Priority to US07/314,363 priority patent/US4908831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To eliminate the large variation in a reactive current due to an inrush current amount by suppressing the current flowing into a buried layer as much as possible by providing an impurity diffused layer. CONSTITUTION:An N-type InP first buried layer 5 is grown on a P-type InP substrate 1, a stripelike groove 10 is formed, and an Zn-diffused layer 8 is formed along the groove 10. A P-type InP buffer layer 2 and the second buried layer 6 as the first layer, a nondoped InGaAsP active layer 3 and the third buried layer 6' as the second layer, and an N-type InP clad layer 4 as the third layer are sequentially laminated and grown. Since the layer 4 and the layer 5 are separated by a reverse conductivity type Zn diffused region 8, a gate current 7-b does not flow, and even if an inrush current 7 is increased, a current blocking layer of a thyristor structure formed of the layers 4, 6, 5, 2 or the substrate 1 is not almost conducted.

Description

【発明の詳細な説明】 く技術分野〉 本発明は半導体レーザに関し、特に埋込みへテロ構造を
有する半導体レーザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser element having a buried heterostructure.

〈従来技術〉 レーザ発振用活性層を活性層より屈折率が小さくエネル
ギーギャップの大きい半導体層で囲んだ埋込み型の半導
体レーザ素子は、発振閾電流値が低く安定な横モードで
発振し、高速変調が可能である等の利点を有しており、
光通信システムや光ファイバーを用いた計測システム用
の光源として利用され、産業上非常に重要な素子となっ
ている。
<Prior art> A buried semiconductor laser device in which the active layer for laser oscillation is surrounded by a semiconductor layer with a lower refractive index and a larger energy gap than the active layer oscillates in a stable transverse mode with a low oscillation threshold current value, and is capable of high-speed modulation. It has advantages such as being able to
It is used as a light source for optical communication systems and measurement systems using optical fibers, making it an extremely important element in industry.

しかし、この埋込み型レーザ素子では、注入電流量を増
加していくと活性層を通らない無効電流が急激に増大し
、これが出力の最大値全制限する結果となっている。ま
た、この無効電流は温度の上昇とともに増加することも
知られており、特に産業上重要な1 nGaAsP /
 l nP系の埋込み型半導体し−ザでは実用上の障害
となっている。
However, in this buried laser element, as the amount of injected current increases, the reactive current that does not pass through the active layer increases rapidly, which results in the total maximum output value being limited. It is also known that this reactive current increases as the temperature rises, and is particularly important for industrially important 1 nGaAsP/
This has become a practical obstacle for lnP-based embedded semiconductor devices.

上記無効電流の原因は次の様に考えられる。即ち埋込み
型半導体レーザは、主として第2図または第3図に示す
様な構造に作製される。第2図は例えばn型InP基板
1上にn型InPバッファ層2、ノンドープInGaA
sP活性層3、p型InPクラッド層4を順次エピタキ
シャル成長した後、通常の化学エツチング法を用いてエ
ピタキシャル成長層全メサ型にエツチング成型し、この
両側にp型InP埋込層5、n型InP埋込層6金成長
させたものである。第3図は例えばn型InP基板1上
にp型InP埋込層5、n型InP埋込層6を順次エピ
タキシャル成長させた後、通常の化学エツチング法を用
いて溝を彫り、その後n型1fiPバッファ層2.1n
GaAsP活性層3、p型InPクラッド層4を順次溝
内にエビタギシャル成長させたものである。いずれの方
式で作製された素子においてもレーザ発振は活性層3を
通る注入電流7に依存しており、活性層3の両側の埋込
層5,6によって作られるp−n接合は逆バイアスされ
ているため、注入電流7が小さい時はこの部分には殆ん
ど電流は流りない。しかし、注入電流量を大きくしてい
くと活性層3の両側の埋込層5,6にも相当量の電流が
流れるようになる。この原因はクラッド層4から埋込層
5へ流れるゲート電流7bによって、クラッド層4、埋
込層5及びバッファ層2 (又は基板1)で形成される
サイリスタが導通するためである(樋ロ他:レーザ研究
第13巻、第156頁、1985年)。注入電流7bを
小さくするため(/i:は活性層3を下方の埋込層5と
上方の埋込層6の頂層接合面の箇所ンζ層設すればよい
が、現在の液相エピタキシャル技術と化学エツチング技
術では、このような精巧な層厚制御は不可能であり、上
述の原因で生じる無効電流を防ぐことはできない。
The cause of the above-mentioned reactive current can be considered as follows. That is, a buried semiconductor laser is mainly manufactured in a structure as shown in FIG. 2 or 3. FIG. 2 shows, for example, an n-type InP buffer layer 2 on an n-type InP substrate 1 and a non-doped InGaA substrate.
After the sP active layer 3 and the p-type InP cladding layer 4 are epitaxially grown in sequence, the entire epitaxially grown layer is etched into a mesa shape using a normal chemical etching method, and a p-type InP buried layer 5 and an n-type InP buried layer 5 are formed on both sides of the epitaxially grown layer. It is made by growing 6-karat gold. FIG. 3 shows, for example, after a p-type InP buried layer 5 and an n-type InP buried layer 6 are sequentially epitaxially grown on an n-type InP substrate 1, a groove is carved using an ordinary chemical etching method, and then an n-type 1fiP layer is formed. Buffer layer 2.1n
A GaAsP active layer 3 and a p-type InP cladding layer 4 are epitaxially grown in the groove. In devices manufactured by either method, laser oscillation depends on the injection current 7 passing through the active layer 3, and the p-n junction formed by the buried layers 5 and 6 on both sides of the active layer 3 is reverse biased. Therefore, when the injection current 7 is small, almost no current flows through this portion. However, as the amount of injected current increases, a considerable amount of current also flows into the buried layers 5 and 6 on both sides of the active layer 3. This is because the gate current 7b flowing from the cladding layer 4 to the buried layer 5 causes the thyristor formed by the cladding layer 4, buried layer 5, and buffer layer 2 (or substrate 1) to conduct (Hiro et al. : Laser Research Vol. 13, p. 156, 1985). In order to reduce the injection current 7b (/i:, the active layer 3 may be provided at the junction surface of the top layer between the lower buried layer 5 and the upper buried layer 6), but current liquid phase epitaxial technology With chemical etching techniques, such precise layer thickness control is not possible, and the reactive currents caused by the above-mentioned causes cannot be prevented.

〈発明の目的〉 本発明は上述の問題点に鑑み、埋込層に流J1込む電流
を極力抑制して無効電流が注入電流量によって大幅には
変化しないような構造の埋込型半導体レーザ素子を提供
すること全目的とする。
<Object of the Invention> In view of the above-mentioned problems, the present invention provides a buried semiconductor laser element having a structure in which the current flowing into the buried layer J1 is suppressed as much as possible so that the reactive current does not change significantly depending on the amount of injected current. The entire purpose is to provide.

〈発明の概要〉 本発明は、上記目的を達成するため、導電型がn型また
はn型に選定された第1導電型の化合物半導体基板上に
、第1導電型と逆導電型の第1埋込層を成長させたのち
、第1導電型の基板に達する深さのストライプ状の溝を
形成し、この溝内の面からのみ、第1導電型の不純物を
拡散し、その後、第1導電型と同4電型のバッファーR
1バッフ1一層よりエネルギーギャップが小さく屈折率
の高い活性層および第1導電型と逆導電型のクラッド層
を順次エピタキシャル成長させてレーザ発振用多層結晶
構造を形成したことを特徴とする。
<Summary of the Invention> In order to achieve the above object, the present invention provides a compound semiconductor substrate having a conductivity type of n-type or a first conductivity type selected as n-type, and a first conductivity type opposite to the first conductivity type. After growing the buried layer, a stripe-shaped trench with a depth reaching the substrate of the first conductivity type is formed, and impurities of the first conductivity type are diffused only from the surface within this trench. Buffer R of the same conductivity type and 4-conductivity type
A multilayer crystal structure for laser oscillation is formed by sequentially epitaxially growing an active layer having a smaller energy gap and higher refractive index than the first buffer layer and a cladding layer of the first conductivity type and the opposite conductivity type.

〈実施例〉 以下、本発明の1実施例について図面を参照1〜ながら
詳説する。
<Example> Hereinafter, one example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の1実施例金示す半導体レーザ素子の構
成図である。このレーザ素子の製作過程を第4図(A)
(B)(C)に示す。まず、例えばn型(+00 )I
nP基板l上Kn型InP第1埋込層5全成長I7、こ
の上にプラズマCV D法等を用いて窒化シリコン(S
iNx)膜9を蒸着する。次にフォトリングラフイー技
術により、@3μmの7オトレジストのストライプパタ
ーン(図示せず)を(+10>方向に形成しこれをマス
クとしてHF :NH4F”l : 40の溶液により
SiNx膜9をエツチングして第4図(A)の如くとす
る。次に、狭窄された電流通路企形成するためにこのS
iNx膜9をマスクとして濃塩酸により第4図(B)に
示す如(InP基板1に達する幅3μmのストライプ状
の溝10をエツチング形成する。溝IOの底部はV字状
VcF方へ突設されている。その後、溝10の内壁面を
拡散面として例えばZnを深さ0.5μmまで拡散し、
第4図(C)に示す如く溝10に沿ってZn拡散層8を
形成する。尚、溝100幅は1〜5μmの範囲で適宜選
定することができる。S iNx膜9を除去した後、通
常の液相エピタキシャル法により、第1図に示す如く第
1層としてp−InPバツフア一層2と第2埋込層6、
第2層と17でノンドーグ1nGaAsP活性層3と第
3埋込層6′、第3層としてn−InPクラツドN4を
順次積層成長する。バッフ1一層2と活性層3は上記f
1410内に成長されてレーザ発振動作部となり、第2
埋込層6と第3埋込層6′は溝10外の第1埋込層5に
重畳形成される。n−クラッド層4(/1gl0の内外
全域(てわた−〕て広く堆積される。以上の多層結晶構
造に、p側及びp側の電極(図示ぜず)を基板I表面と
クラッド層4表面とにそれぞれ形成した後、(+10)
面で襞間[7てし・−ザ共振器を形成する。
FIG. 1 is a block diagram of a semiconductor laser device according to one embodiment of the present invention. Figure 4 (A) shows the manufacturing process of this laser element.
(B) Shown in (C). First, for example, n-type (+00) I
The Kn-type InP first buried layer 5 is entirely grown I7 on the nP substrate l, and silicon nitride (S
iNx) film 9 is deposited. Next, a stripe pattern (not shown) of 7 photoresists of @3 μm is formed in the (+10> direction) using photolithography technology, and using this as a mask, the SiNx film 9 is etched with a solution of HF:NH4F"l:40. 4(A).Next, in order to form a constricted current path, this S
Using the iNx film 9 as a mask, a striped groove 10 with a width of 3 μm reaching the InP substrate 1 is formed by etching with concentrated hydrochloric acid as shown in FIG. After that, using the inner wall surface of the groove 10 as a diffusion surface, for example, Zn is diffused to a depth of 0.5 μm,
A Zn diffusion layer 8 is formed along the groove 10 as shown in FIG. 4(C). Note that the width of the groove 100 can be appropriately selected within the range of 1 to 5 μm. After removing the SiNx film 9, a p-InP buffer layer 2 as a first layer, a second buried layer 6,
For the second layer and 17, a non-doped 1nGaAsP active layer 3, a third buried layer 6', and an n-InP cladding N4 as the third layer are successively grown. The buffer 1, layer 2 and active layer 3 are
1410 to become the laser oscillation operating part, and the second
The buried layer 6 and the third buried layer 6' are formed to overlap the first buried layer 5 outside the groove 10. The n-cladding layer 4 (/1gl0) is widely deposited over the entire area inside and outside. On the above multilayer crystal structure, p-side and p-side electrodes (not shown) are connected to the surface of the substrate I and the surface of the cladding layer 4. After forming each, (+10)
A resonator is formed between the folds on the surface.

上記構造では、第2図や第3図に示(7た従来の構造の
半導体レーザ素子と異な9、クラッド層4と第1埋込層
5とが、それらとは逆導電型の2口拡散領域8によって
分離されているためゲート電流7−1)は流れる(−と
ができなくなっている。このため、レーザ発振のための
圧入電流は有効(てストライプ伏の活性層3へ狭窄され
、また出力全増加する目的で注入電流7を増加させても
クラッド層4、第2埋込層6、第1埋込層5、バッファ
ー層2または基板1で構成されるサイリスタ構造の電流
阻止層が導通することは殆んどなく無効電流を非常に小
さく保つことが可能となっている。
In the above structure, unlike the semiconductor laser element of the conventional structure shown in FIGS. Since it is separated by the region 8, the gate current 7-1) cannot flow (-). Therefore, the press-in current for laser oscillation is effectively constricted to the striped active layer 3, and Even if the injection current 7 is increased for the purpose of increasing the total output, the current blocking layer of the thyristor structure composed of the cladding layer 4, second buried layer 6, first buried layer 5, buffer layer 2, or substrate 1 remains conductive. There is little to do and it is possible to keep the reactive current very small.

以下、この点について更に詳しく説明するために、第2
図又は第3図に示す構造の半導体!、/−ザ素子の等価
回路を第5図(A)に、第1図に示ず本実施例の半導体
レーザ素子の等価回路を第5図(B) &て示ず。電流
阻止構造はいずノ1の素子構造でもサイリスタの等価回
路(破線内の回路)で表わされるが、第5図い)の構造
では注入電流(IT)7が増加するにつれてゲート電流
(Ic)7bも増加12、このためサイリスタが導通し
その増幅作用のためIG よりはるかに大きな電流15
が流れる。IsはダイオードI)A”′c表わされる活
性層全通らない無効電流であるから、この等価回路で表
わされる従来の素子では注入電流ITが増加するにつJ
lて無効電流も急激に増加することとなる。一方、第5
図(B)の構造では注入電流ITが増加するQてつれて
活性層と並列に接続されたダイオードDs金通る無効電
流は増加するが、その縫は注人工流量に単に比例するだ
けであり、サイリスタは非導通状態を保つため、無効電
流の増加は第5図(A)の場合と比較すると極めて小さ
い。ダイオードDsはクラッド層4とZn拡散領域8に
よって形成されるp−n接合を表わしている。上記実施
例では無効電流が小さいため、室温で70mW以上の高
出力動作が可能となり、また無効電流による発熱の影響
が少ないため、140°C以上の高温までレーザ発振が
可能であった。
Below, in order to explain this point in more detail, the second
A semiconductor with the structure shown in the figure or Figure 3! , /- The equivalent circuit of the semiconductor laser device is shown in FIG. 5(A), and the equivalent circuit of the semiconductor laser device of this embodiment is shown in FIG. 5(B). The current blocking structure is represented by the equivalent circuit of a thyristor (the circuit inside the broken line) in the first element structure, but in the structure shown in Fig. 5), as the injection current (IT) 7 increases, the gate current (Ic) 7b 12, so that the thyristor conducts and due to its amplifying action, the current 15 is much larger than IG.
flows. Since Is is a reactive current that does not pass through the active layer represented by the diode I)A'''c, in the conventional element represented by this equivalent circuit, as the injection current IT increases, J
The reactive current also increases rapidly. On the other hand, the fifth
In the structure shown in Figure (B), as the injection current IT increases, the reactive current passing through the diode Ds connected in parallel with the active layer increases, but its current is simply proportional to the injection flow rate. Since the thyristor remains non-conductive, the increase in reactive current is extremely small compared to the case of FIG. 5(A). Diode Ds represents a pn junction formed by cladding layer 4 and Zn diffusion region 8. In the above example, since the reactive current was small, high output operation of 70 mW or more was possible at room temperature, and since the influence of heat generation due to the reactive current was small, laser oscillation was possible up to a high temperature of 140° C. or higher.

尚、上記実施例は成長用基板上してn型基板を用いた場
合について説明を行なったがn型基板を用いた場合でも
同様である。溝lOより拡散する不純物は7口以外にC
d等のp型不純物を用いることカニできる。また第1.
第2.第3の埋込層としてInPを用いた場合について
説明を行なったが、これらの埋込層としては活性層より
屈折率が小さくかつエネルギーギャップの小さいI n
GaAsP等他の材料を用いてもよい。エピタキシャル
成長層もInGaAsP / I n P系の半導体材
料Vζ限定されるものではなく、GaAtAs/GaA
s系の半導体レーザ素子等にも適用できることは明らか
である。
Although the above embodiments have been described using an n-type substrate as the growth substrate, the same applies even when an n-type substrate is used. The impurities diffusing from the groove lO are C
It is possible to use p-type impurities such as d. Also number 1.
Second. The case where InP is used as the third buried layer has been explained, but these buried layers may be InP, which has a lower refractive index and a smaller energy gap than the active layer.
Other materials such as GaAsP may also be used. The epitaxial growth layer is not limited to InGaAsP/InP-based semiconductor material Vζ, but can also be formed using GaAtAs/GaA.
It is clear that the present invention can also be applied to s-based semiconductor laser devices.

〈発明の効果〉 以上詳説した如く、本発明によれば、注入電流を増加さ
せても電流阻止層全通って流れる電流を殆んど増加させ
ることなく、高出力動作全可能とすることができ、信号
光源とI−で適する半導体レーザ素子を作製することが
できる。またその結果、活性層を通らない無効電流によ
る素子の発熱を防止することができ、極めて高い温度ま
で動作させることが可能な半導体レーザ素子が得られる
<Effects of the Invention> As explained in detail above, according to the present invention, even if the injection current is increased, the current flowing through the entire current blocking layer is hardly increased, and high output operation can be achieved. A suitable semiconductor laser device can be manufactured using the signal light source and I-. Furthermore, as a result, it is possible to prevent the device from generating heat due to reactive current that does not pass through the active layer, and it is possible to obtain a semiconductor laser device that can be operated at extremely high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す半導体レーザ素子の断
面図である。第2図および第3図は従来の埋込型半導体
レーザ素子を示す断面図である。 第4図は本発明の1実施例の製作工程を示す工(?説明
図である。第5図は埋込型半導体レーザ素子の電気的等
価回路を示す回路図である。 1・・・基板、2・・・バッファー層、3・・活性層、
4・・・クラッド層、5,6・・・埋込層、7・・・注
入′直流、8・・・拡散部、9・・・窒化シリコン膜、
10・・溝。 代理人 弁理士 福 士 愛 彦(他2名)第1[12
I 第2図 第3図 (Al t8〕 (C) 第4図 第 (B) 5図
FIG. 1 is a sectional view of a semiconductor laser device showing one embodiment of the present invention. FIGS. 2 and 3 are cross-sectional views showing a conventional buried semiconductor laser element. FIG. 4 is an explanatory diagram showing the manufacturing process of one embodiment of the present invention. FIG. 5 is a circuit diagram showing an electrical equivalent circuit of an embedded semiconductor laser element. 1... Substrate , 2... buffer layer, 3... active layer,
4... Cladding layer, 5, 6... Buried layer, 7... Injection' direct current, 8... Diffusion part, 9... Silicon nitride film,
10...Groove. Agent Patent Attorney Aihiko Fuku (and 2 others) No. 1 [12]
I Figure 2 Figure 3 (Al t8) (C) Figure 4 (B) Figure 5

Claims (1)

【特許請求の範囲】 1、結晶成長支持用半導体基板上に、該半導体基板と逆
導電型の埋込層が堆積されかつ前記半導体基板に達する
深さのストライプ状溝が該埋込層に設けられ、該溝の内
壁面に沿って拡散形成された不純物拡散領域並びに該溝
内に積層形成された第1導電型と同導電型のバッファー
層、該バッファー層よりエネルギーギャップが小さく屈
折率の高い活性層及び第1導電型と逆導電型のクラッド
層でレーザ発振動作部が形成されていることを特徴とす
る半導体レーザ素子。 2、半導体基板が(100)InPであり、ストライプ
状溝の方向が〈011〉方向である特許請求の範囲第1
項記載の半導体レーザ素子。 3、半導体基板がp型InPであり、溝の内壁面に沿っ
て拡散された不純物がZnまたはCdである特許請求の
範囲第2項記載の半導体レーザ素子。
[Claims] 1. A buried layer having a conductivity type opposite to that of the semiconductor substrate is deposited on a semiconductor substrate for supporting crystal growth, and a striped groove having a depth reaching the semiconductor substrate is provided in the buried layer. an impurity diffusion region formed by diffusion along the inner wall surface of the groove; a buffer layer of the same conductivity type as the first conductivity type laminated in the groove; and a buffer layer having a smaller energy gap and a higher refractive index than the buffer layer. A semiconductor laser device characterized in that a laser oscillation operating section is formed of an active layer and a cladding layer of a conductivity type opposite to the first conductivity type. 2. Claim 1, wherein the semiconductor substrate is (100) InP, and the direction of the striped grooves is the <011> direction.
The semiconductor laser device described in . 3. The semiconductor laser device according to claim 2, wherein the semiconductor substrate is p-type InP, and the impurity diffused along the inner wall surface of the groove is Zn or Cd.
JP20246385A 1985-08-21 1985-09-11 Semiconductor laser element Pending JPS6261386A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20246385A JPS6261386A (en) 1985-09-11 1985-09-11 Semiconductor laser element
US06/897,337 US4839900A (en) 1985-08-21 1986-08-15 Buried type semiconductor laser device
EP86306486A EP0212977B1 (en) 1985-08-21 1986-08-21 A buried type semiconductor laser device
DE8686306486T DE3686970T2 (en) 1985-08-21 1986-08-21 SEMI-CONDUCTED LASER DEVICE.
US07/229,212 US4841534A (en) 1985-08-21 1988-08-05 Buried type semiconductor laser device
US07/313,982 US4908830A (en) 1985-08-21 1989-02-22 Buried type semiconductor laser device
US07/314,363 US4908831A (en) 1985-08-21 1989-02-22 Buried type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20246385A JPS6261386A (en) 1985-09-11 1985-09-11 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS6261386A true JPS6261386A (en) 1987-03-18

Family

ID=16457942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20246385A Pending JPS6261386A (en) 1985-08-21 1985-09-11 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6261386A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831591A (en) * 1981-08-18 1983-02-24 Nec Corp Buried semiconductor laser
JPS5884483A (en) * 1981-11-12 1983-05-20 Nec Corp Buried hetero-structure semiconductor laser
JPS58207690A (en) * 1982-05-28 1983-12-03 Nec Corp Buried type semiconductor laser
JPS6080292A (en) * 1983-10-07 1985-05-08 Matsushita Electric Ind Co Ltd Semiconductor laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831591A (en) * 1981-08-18 1983-02-24 Nec Corp Buried semiconductor laser
JPS5884483A (en) * 1981-11-12 1983-05-20 Nec Corp Buried hetero-structure semiconductor laser
JPS58207690A (en) * 1982-05-28 1983-12-03 Nec Corp Buried type semiconductor laser
JPS6080292A (en) * 1983-10-07 1985-05-08 Matsushita Electric Ind Co Ltd Semiconductor laser

Similar Documents

Publication Publication Date Title
JPS61284987A (en) Semiconductor laser element
US4841534A (en) Buried type semiconductor laser device
US5441912A (en) Method of manufacturing a laser diode
JPS5831592A (en) Buried semiconductor laser
US4910744A (en) Buried heterostructure semiconductor laser device
JPS61164287A (en) Semiconductor laser
JPS6261386A (en) Semiconductor laser element
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6266694A (en) Semiconductor laser element and manufacture thereof
JPS6262583A (en) Semiconductor laser element
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPS6260285A (en) Semiconductor laser element
JPS61242091A (en) Semiconductor light-emitting element
JPS63211788A (en) Semiconductor laser and manufacture thereof
JPH07131110A (en) Manufacture of semiconductor laser device
JPH0513866A (en) Semiconductor light emitting element
JP2801346B2 (en) Semiconductor laser device
JPS6342874B2 (en)
JPH01309393A (en) Semiconductor laser device and its manufacture
JPH05129723A (en) Buried heterostructure semiconductor laser and manufacture thereof
JPH03116991A (en) Semiconductor laser device
JPS62130583A (en) Semiconductor laser and manufacture thereof
JPS62281384A (en) Semiconduvctor laser element and manufacture thereof
JPS6318876B2 (en)
JPS63287079A (en) Manufacture of semiconductor laser