JPS5831591A - Buried semiconductor laser - Google Patents

Buried semiconductor laser

Info

Publication number
JPS5831591A
JPS5831591A JP12905581A JP12905581A JPS5831591A JP S5831591 A JPS5831591 A JP S5831591A JP 12905581 A JP12905581 A JP 12905581A JP 12905581 A JP12905581 A JP 12905581A JP S5831591 A JPS5831591 A JP S5831591A
Authority
JP
Japan
Prior art keywords
layer
buried
current
type
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12905581A
Other languages
Japanese (ja)
Other versions
JPS6243356B2 (en
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12905581A priority Critical patent/JPS5831591A/en
Publication of JPS5831591A publication Critical patent/JPS5831591A/en
Publication of JPS6243356B2 publication Critical patent/JPS6243356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a buried semiconductor laser capable of operating at high power and high temperature with extremely small leakage current by forming the first conductive type semiconductor layer having a forbidden band width smaller than that of a current block layer on a semiconductor substrate. CONSTITUTION:A buffer layer 31, an N type InGaAsP layer 32, a lower clad layer 33, an active layer 34, an upper clad layer 35 and a cap layer 36 are formed by liqid phase epitaxial technique or the like on an N type InP substrate 30. Then, the layers 36, 35, 34, 33 are striped by photoetching with an SiO2 film as a mask. Thereafter, a current block layer 37, a buried layer 38, N type InGaAsP layer 39 are formed again by liquid phase epitaxial technique. Since the layer 32 has a forbidden band width narrower than the current block P type layer (rho-InP)37 corresponding to the base, the gain of an N-P-N transistor 44 becomes small, thereby enabling to set the leakage current IL substantially to zero.

Description

【発明の詳細な説明】 本発明は、埋め込み構造半導体レーザの改良に関する。[Detailed description of the invention] The present invention relates to improvements in buried structure semiconductor lasers.

第1図に、従来における1nGaAaP/In)’埋め
込み構造中導体レーザを示す。第2図に仁のタイプの半
導体レーザの電訛−光出力特性の一例t−不す0この様
なレーザにおいてに、活性層3に流れる@gieに比べ
て、リーク電&:lt、6小さくすることが、低しきい
値及び高効率¥r央現する上で重要となっている。活性
層30両脇を流れるリーク電流1t、ij、  上側ク
ラッド層(p−1n)’)4.  mめ込み4(n−1
nP)?、電流プByり)−(P’−1[IP)61下
備l 2 y k”1−(n−IEIP)2からなるp
npn構造によって極めて小さく出来るΩしかしpnp
n構造がターンオンすると過大なリーク電υilLが流
れるため、 pnpn#造のターンオン電圧會^くする
ことが必賛である。このターンオン電圧ケ高くすること
は各層のキャリア濃度t−過当にすることにより容易で
ある。しかし第1図のIoで示す様なゲート電流が流れ
るとナイリスタ作用により、ターンオン電圧が極端に低
下する。この様なゲート電流IGt焦(すことは活性層
3と電流ブロック層6の上の境界とを合わせて、電流通
路tなくすことによって可能である0しかし実際に、ゲ
ート電流IQの電流通路のない構造を再現性良く製作す
ることは製造技術上はとんど不可能である。
FIG. 1 shows a conventional 1nGaAaP/In)' buried structure conductor laser. Figure 2 shows an example of the voltage-light output characteristics of a jin type semiconductor laser. It is important to achieve low threshold and high efficiency. Leakage current 1t, ij flowing on both sides of the active layer 30, upper cladding layer (p-1n)')4. m inset 4 (n-1
nP)? , current pressure) - (P'-1[IP)61
Ω, which can be made extremely small by the npn structure, but pnp
When the n structure turns on, an excessive leakage current υilL flows, so it is essential to increase the turn-on voltage of the pnpn structure. This turn-on voltage can be easily increased by making the carrier concentration t of each layer excessive. However, when a gate current as shown by Io in FIG. 1 flows, the turn-on voltage is extremely reduced due to the Nyristor action. Such focusing of the gate current IGt is possible by aligning the upper boundary of the active layer 3 and the current blocking layer 6, eliminating the current path t. Manufacturing the structure with good reproducibility is almost impossible in terms of manufacturing technology.

すなわち、実際の半導体レーザでは、ゲート電流Laが
多かれ少なかれ流れるため、半導体レーザの注入電流を
増すにつれ、ゲート電[1oが増大しh p”9n構造
のターンオン電圧が低下する。そして、半導体レーザに
加わる印加電圧がター/オン電圧になったとき、 pn
pn構造がターンオンして、過大なリーグ電流lLが流
れるため、l@2図に示す様に光出力が激減する。その
ため、第2図に示す様な素子では、sk高出方が30”
Oで約20mW根度とはかった◎又、高温になるほど、
小さい注入電流でターンオンするため、高温の出方が特
に低下する。この様に、従来の埋め込み構造半導体レー
ザではh p”PI”構造にゲート電ILLaが流れる
とター/オン電圧が低下して、低い注入電高温での出力
が特に低下するという欠点を有していた。
That is, in an actual semiconductor laser, the gate current La flows more or less, so as the injection current of the semiconductor laser increases, the gate voltage [1o increases and the turn-on voltage of the h p''9n structure decreases. When the applied voltage becomes the turn/on voltage, pn
Since the pn structure turns on and an excessive league current LL flows, the optical output sharply decreases as shown in Figure 1@2. Therefore, in the device shown in Figure 2, the sk high output is 30"
The power level was about 20mW at O◎Also, the higher the temperature,
Since it is turned on with a small injection current, the high temperature is particularly reduced. In this way, conventional buried structure semiconductor lasers have the disadvantage that when the gate current ILLa flows through the hp"PI" structure, the turn-on voltage decreases, and the output particularly at high temperatures with low injection current decreases. Ta.

本発明の目的は、ゲート電流Ioが流れてもpnpn 
構造のターンオン電圧が低下せず、Ik尚比出力高くか
つ高温時でも高出力の埋め込み構造半導体レーザを提供
する事にある0 本発明によれば給1導電型の半導体基板と、この半導体
基板の上に形成されかつ電流ブロック層の禁制帯幅に比
して小さな@?IJ帝−を有する第1導電型の第1の半
4坏層と、この第1の半導体1−の上に形成されたスト
ライプ状の第14m!c型の下側クラッド層と、このT
mクラッドノーの上に形成されたストライプ状の活性層
と、この活性層の土に形成されたストライプ状の第12
!$電型と反対の第2導電型を有する上−クラッド層と
、第lの午導体層の上でかつ活性層の両側に形成された
第2導電戚の電波ブロック層と、こ0@訛ズブロックの
上でかつ上側クラッド層の両側に形成された第1導電型
の埋め込みノーとを具備したことを特徴とする埋め込み
構造半導体レーザが得られる。
The object of the present invention is that even if the gate current Io flows, pnpn
It is an object of the present invention to provide a buried structure semiconductor laser that does not reduce the turn-on voltage of the structure, has a high Ik output, and has a high output even at high temperatures. Formed above and smaller than the forbidden band width of the current blocking layer @? A first semi-conductor layer of the first conductivity type having an IJ characteristic and a striped 14th layer formed on the first semiconductor layer 1-. c type lower cladding layer and this T
A striped active layer formed on top of m-cradno and a striped active layer formed on the soil of this active layer.
! an upper cladding layer having a second conductivity type opposite to the $ conductivity type; a radio wave blocking layer of a second conductivity type formed on the lth conductor layer and on both sides of the active layer; There is obtained a buried structure semiconductor laser characterized in that it has a first conductivity type buried node formed above the block and on both sides of the upper cladding layer.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第3図は1本発明の一実施例の断面図である。FIG. 3 is a sectional view of one embodiment of the present invention.

図中、30はn−1np基板s31はバッファ一層(n
−1np、厚さ〜5μm)、 32はn−InGaAs
P層(厚さ〜Q、5JIn、λ〜1.25#m)、33
は下側クラッド層(n−In)’、厚さ〜03am)、
34は活性層(ノンドープIIIGJIAIP厚さ〜0
.2Am)、35ハ上側り2ラド層(厚さ〜2..54
m、p−1n)’)、36は’F’rtプ層(?−In
GaAsP層、厚さ〜Q、77*m)。
In the figure, 30 is an n-1np substrate s31 is a buffer layer (n
-1np, thickness ~5μm), 32 is n-InGaAs
P layer (thickness ~Q, 5JIn, λ ~ 1.25#m), 33
is the lower cladding layer (n-In)', thickness ~03am),
34 is an active layer (non-doped IIIGJIAIP thickness ~ 0
.. 2 Am), 35mm upper 2 rad layer (thickness ~ 2..54
m, p-1n)'), 36 is 'F'rt layer (?-In
GaAsP layer, thickness ~Q, 77*m).

37は電流プayり層(p、−1+nP、厚さ〜0.5
μm)、38は埋め込み層(n−1nP、厚さ〜2.5
am)、39はn−I鳳G51As)”層(厚さ〜1 
# m )s 40はZn拡散層、41は8i偽属、4
2はp電極、43扛Ω電極である0本実施例においては
、上側クラッド層35.埋め込み層38.電流プロ、り
層371n−1aQaAsP層32.バッファ一層31
からなるpupa m造でもれ電流ILt−阻止してい
る0従米opnpn構造と異なh本実施例のpnpn構
造Tij、n−InGaAsP層32の存在が特徴であ
る〇n−1nGaAsPノー32があるたメ、 上ff
1pnpn構造の1部分であるnpn ) ?ンジスタ
44の利得を非常に小さくすることが出来る0すなわち
、n−InGaAsP層32がベースに相当する電流ブ
ロック層(アーIn)’)37よシも狭い娯11IJ4
I幅を有するため、エミッタ注入効率が非常t/C小さ
くなり、そのため利得は非常に小さくなる。
37 is a current pull layer (p, -1+nP, thickness ~0.5
μm), 38 is a buried layer (n-1nP, thickness ~2.5
am), 39 is an n-I Otori G51As)'' layer (thickness ~ 1
#m)s 40 is Zn diffusion layer, 41 is 8i pseudogenus, 4
In this embodiment, upper cladding layer 35.2 is a p-electrode and 43Ω is an electrode. Buried layer 38. Current professional layer 371n-1aQaAsP layer 32. Buffer layer 31
The pnpn structure of this embodiment is different from the pnpn structure in which the leakage current ILt is blocked by the pupa m structure, which is characterized by the presence of the n-InGaAsP layer 32. , upper ff
npn) which is a part of the 1pnpn structure? The gain of the transistor 44 can be made very small. In other words, the n-InGaAsP layer 32 is a current blocking layer (In)') 37 which corresponds to the base.
Because of the I width, the emitter injection efficiency becomes very small t/C, and therefore the gain becomes very small.

この様に上記npn )ツンジスタ44の利得が非常に
小さいため、図中のゲート電流IGが流れても本実施例
のPilpll +t4造のターンオン電圧は低下しな
い。従がって、各層のキャリアa度を適当にしてターン
オン′砿圧l:3〜4v程度に高くすることにより実用
的な注入電gia域でpnpn m造がターンオンせず
に、ここを流れるリーク電流LL’tttとんど零にす
ることが出来る。
As described above, since the gain of the npn transistor 44 is very small, the turn-on voltage of the Pilpll +t4 structure of this embodiment does not decrease even if the gate current IG shown in the figure flows. Therefore, by adjusting the carrier a degree of each layer and increasing the turn-on pressure l to about 3 to 4 V, it is possible to prevent the pnpn m structure from turning on in the practical injection voltage range and to prevent leakage flowing through it. The current LL'ttt can be reduced to almost zero.

この様に本実施例ではpnpn m造を流れる態動電流
がはとんど無いため高出力、及び高温動作が可能な埋め
込み構造半導体レーザが得られる。
As described above, in this embodiment, since there is almost no active current flowing through the pnpn structure, a buried structure semiconductor laser capable of high output and high temperature operation is obtained.

本実施例の埋め込み構造半導体レーザの#i造力法tS
単に述べる。まずn−10P基板3o上にバラフ7−4
431m n−InGaAsP層32.  下nクラッ
ド層33.活性層34.上側クラッド層35゜キャップ
層36を液相エピタキシャル技術等を用いて形成する。
#i force forming method tS of the buried structure semiconductor laser of this example
Simply state. First, on the n-10P board 3o, put the baraf 7-4
431m n-InGaAsP layer 32. Lower n-cladding layer 33. Active layer 34. An upper cladding layer 35° cap layer 36 is formed using liquid phase epitaxial technology or the like.

次に810!膜等をマスクとしたホトエツチングにより
キャップ層36上側クラッド層35.活性層34.下側
り2ラド層33t−ストライプ化する。その後再び液相
エピタキシャル技術等を用いて電流ブロック層37.a
め込み層38n−1nGaAsPJd39  t−形成
する。成長の際、キャップ1136の上にSiへ躾を形
成しストライプの両側にのみ成長を行なわせる。その後
、SSO!膜41ieVD法及びホトエツチング法を用
いて形成し、Zn拡散層40、p電極42.null極
43全43する。
Next is 810! The cap layer 36 and the upper cladding layer 35 are etched by photoetching using a film or the like as a mask. Active layer 34. The lower two rad layers 33t are made into stripes. Thereafter, a current blocking layer 37 is formed again using liquid phase epitaxial technology or the like. a
An embedded layer 38n-1nGaAsPJd39t- is formed. During growth, a groove is formed in the Si on the cap 1136 to allow growth to occur only on both sides of the stripe. After that, SSO! The film 41 is formed using a VD method and a photoetching method, and includes a Zn diffusion layer 40, a p-electrode 42. Null pole 43 all 43.

最後に本発明が有する特徴を要約すると、リーク電流の
極めて小さな、高出力及び高温動作が可能な埋め込み構
造半導体レーザが得られることである。
Finally, to summarize the features of the present invention, it is possible to obtain a buried structure semiconductor laser with extremely small leakage current and capable of high output and high temperature operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のInGaAsP/InP埋め込み構造半
導体レーザの断面図である。第2図は従来のInGaA
s)’/In)’gめ込み構造牛導KL/−ザノ電流−
光出力特性の一例である0第3図は本発明の一実施例の
InGaAsP/InP埋め込み構造半導体レーザの断
面図である。 図中、l・・・・・・a−1nP基板、2・・・・・・
下側クラッド層、3・・・・・・油性層、4・・・・・
・上側クラッド層、5はキャップ層、6・−・・・・電
流ブロックノー、7・・・・・・埋め込み膚、8・・・
−・・n−InGaAsP層、9・・・・・・Z n拡
散層、10・−・・・・Sin、膜、11・・・・−・
p側電極、12−−−−− El @電極、  30−
n−In)’ jlii板、 31・・・・・・バッフ
ァ一層、32 ・・・・=n−InGaAm)’層。 33・・・・・・下側クラッド層、34・−・・・・活
性層、35・・・・−・上側り2ラド層、36・・・・
・・キャップ層、37・・・・・・電流ブロック層、3
8・・・・・・埋め込み層、39−−−−−−n−1n
GaAm)’層、 40−・−−−Znn拡散層41・
・・−8i偽膜、42・・・・・・p電極、43・・・
・・−n電極、2 第1図 0         100        200電
流    (−△) 姶2図
FIG. 1 is a cross-sectional view of a conventional InGaAsP/InP buried structure semiconductor laser. Figure 2 shows conventional InGaA
s)'/In)'g inset structure cow lead KL/-Zano current-
FIG. 3, which is an example of optical output characteristics, is a cross-sectional view of an InGaAsP/InP buried structure semiconductor laser according to an embodiment of the present invention. In the figure, l...a-1nP substrate, 2...
Lower cladding layer, 3...Oil layer, 4...
- Upper cladding layer, 5 is a cap layer, 6... current block no, 7... embedded skin, 8...
-...n-InGaAsP layer, 9...Z n diffusion layer, 10...Sin, film, 11...
p-side electrode, 12----- El @electrode, 30-
n-In)'jlii plate, 31... one buffer layer, 32...=n-InGaAm)' layer. 33... lower cladding layer, 34... active layer, 35... upper 2 rad layer, 36...
... Cap layer, 37 ... Current blocking layer, 3
8... Buried layer, 39---n-1n
GaAm)' layer, 40-----Znn diffusion layer 41-
...-8i pseudomembrane, 42...p electrode, 43...
...-n electrode, 2 Fig. 1 0 100 200 current (-△) Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板と、この半導体基板の上に形成
されかつ電流ブロック層の禁制帯幅に比して小さな禁制
41I幅を有する第1導電瀝の第10牛導体層と、この
第1の半導体層の上に形成されたストライプ状の第1導
電盛の下側クラッド層と、この下側クラッド層の上に形
成されたストライプ状の活性層と、この活性層の上に形
成されたストライプ状O第1導電型と反対の第2導電型
を有する土間クラッド層と、前記#11の半導体層の上
でかつ前記活性層の両側に形成された第2導電城の電流
ブロック層と、この電流ブロック層の上でかつ前記上−
クラッド層の両側圧形成された@1導電型の埋め込み層
とをAmしたことを特徴とする埋め込み#遺半導体し−
ザ〇
a semiconductor substrate of a first conductivity type; a tenth conductor layer of a first conductivity type formed on the semiconductor substrate and having a forbidden band width smaller than the forbidden band width of the current blocking layer; a striped lower cladding layer of the first conductive layer formed on the semiconductor layer; a striped active layer formed on the lower cladding layer; and a striped active layer formed on the active layer. a striped O dirt floor cladding layer having a second conductivity type opposite to the first conductivity type; and a current blocking layer of a second conductive castle formed on the #11 semiconductor layer and on both sides of the active layer; above this current blocking layer and above-
A buried #1 conductivity type buried layer formed on both sides of a cladding layer.
The〇
JP12905581A 1981-08-18 1981-08-18 Buried semiconductor laser Granted JPS5831591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12905581A JPS5831591A (en) 1981-08-18 1981-08-18 Buried semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12905581A JPS5831591A (en) 1981-08-18 1981-08-18 Buried semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5831591A true JPS5831591A (en) 1983-02-24
JPS6243356B2 JPS6243356B2 (en) 1987-09-12

Family

ID=14999966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12905581A Granted JPS5831591A (en) 1981-08-18 1981-08-18 Buried semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5831591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842283A (en) * 1981-09-04 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Manufacture of buried type semiconductor laser
JPS59112671A (en) * 1982-12-20 1984-06-29 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser
JPS6261386A (en) * 1985-09-11 1987-03-18 Sharp Corp Semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842283A (en) * 1981-09-04 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Manufacture of buried type semiconductor laser
JPS59112671A (en) * 1982-12-20 1984-06-29 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser
JPS6261386A (en) * 1985-09-11 1987-03-18 Sharp Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPS6243356B2 (en) 1987-09-12

Similar Documents

Publication Publication Date Title
US5047364A (en) Method for making a multi-point emission type semiconductor laser device
JPS5831591A (en) Buried semiconductor laser
JPS5831592A (en) Buried semiconductor laser
JPS61284987A (en) Semiconductor laser element
JP3566107B2 (en) Optical communication module
JPH0945999A (en) Semiconductor device and manufacture thereof
JPH1041579A (en) Semiconductor device and its manufacture
JP3346975B2 (en) Optical semiconductor device and method of manufacturing the same
JP2001094210A (en) Semiconductor laser and its manufacturing method
JPS6342874B2 (en)
JP2563994B2 (en) Semiconductor laser device and manufacturing method thereof
JPS5831593A (en) Light integrating element
JPS6356983A (en) Semiconductor laser device
JPS604286A (en) Laser diode
JPS59125679A (en) Light emitting diode
JP3199414B2 (en) Optoelectronic integrated circuit device
JPH0513869A (en) Semiconductor laser device
JP2003110195A (en) Semiconductor light element and method for manufacturing the same
JPS5882587A (en) Manufacture of buried hetero structure semiconductor laser
JPS61168982A (en) Semiconductor photoamplifying element
JPS62259490A (en) Buried hetero structure semiconductor laser
JPS60242688A (en) Optical amplifying light-emitting light-receiving integrated element
JPH05160435A (en) Semiconductor light emitting device
JPH04320083A (en) Semiconductor laser element and manufacture thereof
JPH03120775A (en) Embedded structure semiconductor and its manufacture