JPS59112671A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS59112671A
JPS59112671A JP22216082A JP22216082A JPS59112671A JP S59112671 A JPS59112671 A JP S59112671A JP 22216082 A JP22216082 A JP 22216082A JP 22216082 A JP22216082 A JP 22216082A JP S59112671 A JPS59112671 A JP S59112671A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22216082A
Other languages
Japanese (ja)
Inventor
Katsuyuki Uko
宇高 勝之
Shigeyuki Akiba
重幸 秋葉
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP22216082A priority Critical patent/JPS59112671A/en
Publication of JPS59112671A publication Critical patent/JPS59112671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a laser which operates in high efficiency and up to high temperature in a striped semiconductor laser by forming a buried region which hardly becomes ON without forming a channel, thereby extremely reducing the leakage current. CONSTITUTION:A buried region such as an active layer 6 is formed on an N type InP substrate 1, and when the region is surrounded by a semiconductor layer, an N type InGaAsP layer 8 which is the same as or smaller in a forbidden band width than the layer 6 is grown on the substrate 1. Then, an N type InP layer 1a, an undoped InGaAsP active layer 6 and a P type InP layer 7 are laminated at the center on the surface of the layer 8, P type and N type layers 2, 3 for forming a reverse bias junction for blocking a current are laminated and grown while disposing the exposed side surface on the layer 8. Thereafter, a P type InP layer 4 and an InGaAsP cap layer 5 are laminated and grown on the entire surface including the surface of the exposed layer 7, and a P type region 9 which is intruded into the layer 4 corresponding to the layer 6 is diffused and formed.

Description

【発明の詳細な説明】 本発明は、ストライブ型半導体レーザの改良に係り、特
に、リーク電流が小さく、高効率で動作するストライブ
型半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in striped semiconductor lasers, and particularly to striped semiconductor lasers that have low leakage current and operate with high efficiency.

埋め込み型(BH)半導体レーザは、低しきい値かつゆ
基本モードで動作することから、高品質な光フアイバ通
信用光源として重要である。
Buried type (BH) semiconductor lasers are important as light sources for high-quality optical fiber communications because they have a low threshold and operate in a fundamental mode.

図1に従来のInGaAsP系結晶を用いたBHレーザ
の例を示す。図において、1はn型InP基板、2はp
型InP層、3はn型InP層、4はp型InP層、5
はn型もしくはp型InGaAsPキャンプ層、6はn
型1nGaAsP活性層、7は活性層6とでINN接合
を形成するp型InP層、9は電流をストライブ領域へ
導くためのZn拡散領域、to、11は電極である。
FIG. 1 shows an example of a conventional BH laser using an InGaAsP crystal. In the figure, 1 is an n-type InP substrate, 2 is a p-type InP substrate, and 2 is a p-type InP substrate.
type InP layer, 3 is n-type InP layer, 4 is p-type InP layer, 5
is n-type or p-type InGaAsP camp layer, 6 is n
1 nGaAsP active layer; 7 is a p-type InP layer forming an INN junction with active layer 6; 9 is a Zn diffusion region for guiding current to the stripe region; to and 11 are electrodes.

電流は電極IOを■極、電極11を○極と1〜で供給さ
れる。また、活性層6を内包する領域をストライブ領域
I3、それ以外を埋め込み領域Aという。ストライフ領
域B以外の埋め込み領域Aにおいて、電流を1狙止する
ために層1 、2.3および1カ・らなルnpnp型の
逆バイアス接合(サイリスタ構造)を内包した構造が採
られている。しかし、通猟ホモ接合で構成される埋め込
み構造では、図中実線20で示したリーク電流により容
易に埋め込み領域Aのサイリスタかオンとなり、二重矢
印30て示した如く、大きなリーク電流が流Aしてし−
すうという欠点があった。
Current is supplied to the electrode IO through the ■ pole and the electrode 11 through the ○ pole. Further, the region including the active layer 6 is called a stripe region I3, and the other region is called a buried region A. In the buried region A other than the strife region B, a structure is adopted that includes layers 1, 2.3 and 1-channel npnp type reverse bias junction (thyristor structure) in order to target the current. There is. However, in an embedded structure composed of a pass-through homozygote, the leakage current shown by the solid line 20 in the figure easily turns on the thyristor in the embedded region A, and a large leakage current flows as shown by the double arrow 30. I did it.
There was a drawback.

そこで、これを改善するための1例として図2に示す如
く、埋め込み領域に活性6aを残存させた埋め込み領域
A1を設けることによりサイリスタがオンとなりにくい
構造としたDC−P B H(doublechame
l planar buried heterostr
ucture ) L/−ザがElectronics
 Letters誌18巻953頁1982年に発表さ
れている。DC−P BHレーザにおいて(ま、矢印2
0のようなリー、り電流があっても、埋め込み領域A、
の禁制帯幅の小さいInGa As p層6aに流れ込
み、かつこのInGaAsP層6aの存在により埋め込
み領域A1のサイリスタのメン電圧が高められるため、
ストライプ領域B以外を流れるリーク電流をきわめて小
さく抑えることがoJ能てあり、その結果として、高効
率、高温動作が報告されている。しかしながら、DC−
PBHレーザでは埋め込み領域A2というチャネルを設
けなければならず、チャネルがオンになれば大きなリー
ク電流か流れてし寸5という欠点ばかりか、複数の素子
を同一基板上に集積化する場合にバ11め込み領域A1
.A2はウェハ面内の有効利用の点からも障害となり4
0るという欠点が考えられろ。
Therefore, as an example to improve this problem, as shown in FIG. 2, a DC-P BH (double chame
l planar buried heterostr
ucture) L/-The ga Electronics
It was published in Letters magazine, volume 18, page 953, in 1982. In DC-P BH laser (arrow 2
Even if there is a leakage current of 0, the embedded region A,
flows into the InGaAs p layer 6a, which has a small forbidden band width, and the presence of this InGaAsP layer 6a increases the main voltage of the thyristor in the buried region A1.
OJ is capable of suppressing the leakage current flowing outside the stripe region B to an extremely low level, and as a result, high efficiency and high temperature operation are reported. However, DC-
In a PBH laser, a channel called a buried region A2 must be provided, and when the channel is turned on, a large leakage current flows. Inset area A1
.. A2 also becomes an obstacle in terms of effective utilization of the wafer surface4.
Think about the drawback of being 0.

本発明は、上述の欠点に鑑みて、テトネルを設けること
なく、オンになりにくめ埋め込み領域が形成されたスト
ライプ型半導体レーザを提供するものである。
In view of the above-mentioned drawbacks, the present invention provides a striped semiconductor laser in which a buried region is formed so that it is difficult to turn on without providing a Tetonel.

以上、図面を用いて本発明の詳細な説明する。The present invention will now be described in detail using the drawings.

本発明のInGaAsP糸結晶を用いた実施例を図3に
示す。1ばn型InP基板(もしくはn型InP層)、
2及び3は電流を阻止するための逆バイアス接合を形成
する各々p型及びn型InP層、4ばp型InP層、5
はInGaAsPキャップ層、1aはn型InP層、6
はアンド−プInGaAsP活性層、7ばp型InP荊
、9はZn拡散領域、to、11は電極である。本発明
の特徴はp型InP層2及びn型InP層1aとn型I
nP基板1との間に禁制帯幅が活性層と同程度もしくは
より小さいn型1nGaASP層8を設けたことにある
。すなわち、n型InGaAsP層8はストライブ領域
においては電流に対し何ら影響を与えないか、埋め込み
領域においては、n型InGaAsP層8とp型InP
層2の禁制帯幅の差により界面を流れる電子流を正孔流
に比べて著しく小さくすることがてきるためサイリスタ
はオンになりにくく、埋め込み領域を流れる電流を極め
て小さくすることができる。
An example using the InGaAsP thread crystal of the present invention is shown in FIG. 1ban type InP substrate (or n type InP layer),
2 and 3 are p-type and n-type InP layers, respectively, forming reverse bias junctions for blocking current; 4 are p-type InP layers; 5
is an InGaAsP cap layer, 1a is an n-type InP layer, 6
7 is an undoped InGaAsP active layer, 7 is a p-type InP layer, 9 is a Zn diffusion region, and 11 is an electrode. The feature of the present invention is that the p-type InP layer 2, the n-type InP layer 1a and the n-type I
This is because an n-type 1nGaASP layer 8 having a forbidden band width comparable to or smaller than that of the active layer is provided between the nP substrate 1 and the nP substrate 1. That is, the n-type InGaAsP layer 8 does not have any effect on the current in the stripe region, or the n-type InGaAsP layer 8 and the p-type InP layer 8 do not affect the current in the buried region.
Due to the difference in the forbidden band width of the layer 2, the electron flow flowing through the interface can be made significantly smaller than the hole flow, so that the thyristor is difficult to turn on, and the current flowing through the buried region can be made extremely small.

このことは次のように説明できる。すなわち、図3のよ
うな層構造にしたときのエネルギー帯構造図を横軸に図
3のy軸の縦軸にエネルギー準位をとって図4に示す。
This can be explained as follows. That is, FIG. 4 shows an energy band structure diagram when the layered structure as shown in FIG. 3 is formed, with the horizontal axis representing the energy level and the vertical axis representing the y-axis of FIG.

n型InGaAspH¥’、 8は、ストライブ領域B
においては図4(c)に示した如く電流に対し何等影響
を与えず、活性層6において電子と正孔が再結合し効率
よく発光に寄与する。一方埋め込み領域Aにおいては、
熱平衡時の玉子ルギー帯は図4(a)であるが、電圧印
加時には(b)のように変化する。この際、p−、In
P層2とn−InP層3層間0間バイアス状態により埋
め込み領域Aを流れる電流を阻止しているわけであるが
、この逆バイアス接合がなだれ増倍もしくは微小リーク
電f)T、 (Cよりオンになったとしても、n −I
nGaAsP層8とp−InP層2の禁制帯幅の差によ
り、このへテロ接合を流れる電子流J0を正孔流Jpに
比べて著しく小さくすることかできる。すなわちj/j
<p 1である。この条件のもとでは、n  InP層1、n
 −InGaAsP層8、p−InP層2.n−InP
層3をn −p−n型のへテロ接合トラン/スタとみな
したときの電流増幅率を非常に小さく抑えることができ
るため、グことえサイリスタ梅漬かオンになったとして
も全体を流れる電流を著しく小さくすることができる。
n-type InGaAspH\', 8 is stripe region B
As shown in FIG. 4(c), the electrons and holes recombine in the active layer 6 without affecting the current, contributing to light emission efficiently. On the other hand, in embedded area A,
The egg Lugie band at thermal equilibrium is shown in FIG. 4(a), but changes as shown in FIG. 4(b) when voltage is applied. At this time, p-, In
The current flowing through the buried region A is blocked by the zero bias state between the P layer 2 and the n-InP layer 3, but this reverse bias junction causes avalanche multiplication or minute leakage current f) T, (from C Even if it is turned on, n −I
Due to the difference in forbidden band width between the nGaAsP layer 8 and the p-InP layer 2, the electron flow J0 flowing through this heterojunction can be made significantly smaller than the hole flow Jp. i.e. j/j
<p 1. Under this condition, n InP layer 1, n
-InGaAsP layer 8, p-InP layer 2. n-InP
When considering layer 3 as an n-p-n type heterojunction transformer/star, the current amplification factor can be kept very small, so even if the thyristor is turned on, the current flowing through the entire can be made significantly smaller.

従って、注入電流は効率良くストライブ領域を流れるの
で、高効率なレーザ特性か得られる。なお、n型1nP
層1aのj¥さを2〜3μm程度にすれば、活性層6V
c閉じ込められた光かn型InGaAsP層8で吸収さ
れることはない。また、n iJ InGaAsP層8
は素子(ウニ・・)全血にわたって形成されているため
、素子内のいかなる埋め込み領域Aてのリーク電流をも
抑圧することができる。
Therefore, the injected current flows efficiently through the stripe region, resulting in highly efficient laser characteristics. In addition, n-type 1nP
If the height of the layer 1a is set to about 2 to 3 μm, the active layer 6V
The c-confined light is not absorbed by the n-type InGaAsP layer 8. In addition, the n iJ InGaAsP layer 8
Since it is formed over the entire blood of the element (sea urchin...), it is possible to suppress leakage current in any buried region A within the element.

本発明の構造は2回の結晶成長で作製することができる
。1ず1回目の結晶成長において、n型InP基板1上
にn型InGaAsP層8、n型1nP層1a、アノド
ープ活性層6、p型InP層7を順次成長する。次に、
ストライプとして残す部分にのみフォトソノグラフ法に
よりマスクを施し、他の部分はn型InGaAsP層の
直上までエツチングにより除去する。この除、選択エツ
チングを用いることにより、n型InGaAsP層8の
直上でエツチングを停止することができる。次に、2回
目の結晶成長により、埋め込み領域Aとなるp型InP
層2、n型InP層3、p型InP層4、n型InGa
AsPキャップ層5を成長する。ストライブ領域B上に
Zn拡散を施してZn拡散領域9を形成し、p 1+1
11 、 n側の電極10゜11を形成することにより
素子が作製される。なお、この実施例において、n型I
nP基板lとn型InGaAsp層8との間に基板の影
響を緩和させるためのバッファ層としてn型1nP層を
介在せしめた構造でもか1わない。
The structure of the present invention can be fabricated by two rounds of crystal growth. 1. In the first crystal growth, an n-type InGaAsP layer 8, an n-type 1nP layer 1a, an anodoped active layer 6, and a p-type InP layer 7 are sequentially grown on the n-type InP substrate 1. next,
Only the portions to be left as stripes are masked by photosonography, and the other portions are removed by etching up to just above the n-type InGaAsP layer. By using selective etching, the etching can be stopped directly above the n-type InGaAsP layer 8. Next, a second crystal growth process is performed to form p-type InP that will become the buried region A.
Layer 2, n-type InP layer 3, p-type InP layer 4, n-type InGa
Grow an AsP cap layer 5. Zn diffusion is performed on the stripe region B to form a Zn diffusion region 9, and p 1+1
11. The device is fabricated by forming n-side electrodes 10°11. Note that in this example, n-type I
A structure in which an n-type 1nP layer is interposed between the nP substrate l and the n-type InGaAsp layer 8 as a buffer layer for alleviating the influence of the substrate may also be used.

以上の実施例はPBH(planar buried 
heterostructue )構造について示した
が、図5に示すような通常のBH溝構造も適応すること
ができるばかりでなく、図6に示す如(活性層6が素子
−面に形成され、ストライブ以外の電流阻止領域に逆バ
イアス接合を有する内部ストライプ型レーザにも適応が
町Tibである。1だ、上述ではn型InP基板を用い
た例について示したが、p型InP基板を用い、導電型
をn型からp型、p型から11型に反転した構造にも適
、応できる。
The above embodiments are PBH (planar buried).
Although a typical BH groove structure as shown in FIG. It is also applicable to internal stripe type lasers that have a reverse bias junction in the current blocking region.1.Although the above example uses an n-type InP substrate, it is also possible to use a p-type InP substrate and change the conductivity type. It can also be applied to structures inverted from n-type to p-type and from p-type to 11-type.

また、活性層付近に周期的凹凸が設けられたDFBレー
ザ、活性層の光軸方向の延長上に低損失導波路が設けら
れた構造などにも適応が可能であることは言う1でもな
い。
It goes without saying that the present invention can also be applied to a DFB laser in which periodic irregularities are provided near the active layer, a structure in which a low-loss waveguide is provided on the extension of the active layer in the optical axis direction, and the like.

以」二詳細に説明したようK、本発明によれば、リーク
電流を極めて小さくすることが可能なため、高効率てか
つ高温まで動作する半導体レーザが得ら′Jt、高性能
な光フアイバ通信用光源としてjυ]待できる。
As explained in detail below, according to the present invention, since leakage current can be extremely reduced, a semiconductor laser that is highly efficient and operates at high temperatures can be obtained. It can be used as a light source.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は通猟の埋め込み型レーザの構造例を示す縦断面図
、図2はDC−PBHレーザの素子構造を示す縦断面図
、図32図5及び図6は本発明をPBH描造、通常のB
H溝構造び内部ストライブ構造にそれぞれ適用した実施
例を示す縦断面図、図4は図3の実施例の動作を説明す
るためのエネルキー帯構造図である。 1− n型InP基板、 1a・・・n型InP層(第
1の半導体クラット層)、 2・・・p型InP層(第
2の半導体層)、  3・・・n型InP層、  4・
・・p型InP層、 5 ・= n型又は、型のInQ
aAsPキヤ。 プ層、  6.6a−n型InGaAsP活性層、7・
・・p型InP層、 8・・n型InGaAsP層(第
3の半導体層)、  9・・・Zn拡散領域、10.1
1・・・電極。 特許出願人  国際電信電話株式会社 代  理  人  犬  塚     学外1名 トーー丸−−−→−B  、+−−−−−へ−−一−暑
図2 図3 図4
FIG. 1 is a vertical cross-sectional view showing an example of the structure of an embedded laser for hunting, FIG. 2 is a vertical cross-sectional view showing the element structure of a DC-PBH laser, and FIGS. B of
FIG. 4 is a vertical sectional view showing an embodiment applied to an H-groove structure and an internal stripe structure, respectively. FIG. 4 is an energy band structure diagram for explaining the operation of the embodiment of FIG. 3. 1- n-type InP substrate, 1a... n-type InP layer (first semiconductor crat layer), 2... p-type InP layer (second semiconductor layer), 3... n-type InP layer, 4・
・・p-type InP layer, 5 ・=n-type or type InQ
aAsP kiya. 6.6a-n-type InGaAsP active layer, 7.
...p-type InP layer, 8...n-type InGaAsP layer (third semiconductor layer), 9...Zn diffusion region, 10.1
1... Electrode. Patent Applicant: International Telegraph and Telephone Corporation Representative: Inuzuka, 1 person from outside the university

Claims (1)

【特許請求の範囲】 (Jl 発光を生じせしめる帯状の活性層が該活性層に
比べ犬なる禁制帯幅で小なる屈折率を有する半導体クラ
ッド層により囲まれてなり、がっ、該半導体クラッド層
内の前記活性層側面の埋め込み領域に電流を阻止するた
めの逆バイアス接合を内包する埋め込み構造が半導体基
板」二に配置され埋め込み型半導体レーザにおいて、前
記活性層の前記基板側に配置された第10)導電型の第
1の半導体クラッド層と前記埋め込み領域内の逆バイア
ス接合を形成するだめの第2の導電型の第2の半導体層
の両方に接するように前記基板上に一様に配置された前
記第2の半導体層よりも禁制帯幅が小さい第1の導電型
の第3の半導体層を有することを特徴とする半導体レー
ザ。 (2)前記基板上には第1の導電型のバッファ層が配置
されていることを特徴とする特許請求の範囲第1項記載
の半導体レーザ。 (3)前記基板にInPを用い前記活性層にInGaA
s Pを用いたことを特徴とする特許請求の範囲第1項
記載の半導体レーザ。
[Scope of Claims] (Jl A band-shaped active layer that generates light emission is surrounded by a semiconductor cladding layer that has a smaller forbidden band width and a smaller refractive index than the active layer, and the semiconductor cladding layer In a buried semiconductor laser, a buried structure including a reverse bias junction for blocking current in a buried region on a side surface of the active layer is disposed in a semiconductor substrate. 10) Disposed uniformly on the substrate so as to be in contact with both a first semiconductor cladding layer of a conductivity type and a second semiconductor layer of a second conductivity type forming a reverse bias junction in the buried region. A semiconductor laser comprising a third semiconductor layer of a first conductivity type having a narrower forbidden band width than the second semiconductor layer. (2) The semiconductor laser according to claim 1, wherein a buffer layer of a first conductivity type is disposed on the substrate. (3) InP is used for the substrate and InGaA is used for the active layer.
2. The semiconductor laser according to claim 1, characterized in that sP is used.
JP22216082A 1982-12-20 1982-12-20 Semiconductor laser Pending JPS59112671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22216082A JPS59112671A (en) 1982-12-20 1982-12-20 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22216082A JPS59112671A (en) 1982-12-20 1982-12-20 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59112671A true JPS59112671A (en) 1984-06-29

Family

ID=16778114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22216082A Pending JPS59112671A (en) 1982-12-20 1982-12-20 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59112671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221179A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Embedded semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831591A (en) * 1981-08-18 1983-02-24 Nec Corp Buried semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831591A (en) * 1981-08-18 1983-02-24 Nec Corp Buried semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221179A (en) * 1986-03-24 1987-09-29 Fujikura Ltd Embedded semiconductor laser
JPH0426793B2 (en) * 1986-03-24 1992-05-08 Fujikura Densen Kk

Similar Documents

Publication Publication Date Title
US4280106A (en) Striped substrate planar laser
JPS6243357B2 (en)
JPS61164287A (en) Semiconductor laser
JPS59112671A (en) Semiconductor laser
JPS61210689A (en) Structure of semiconductor laser and manufacture of said laser
JPH0254591A (en) Semiconductor laser
JPH03133189A (en) Highly resistive semiconductor layer buried type semiconductor laser
JPH03104292A (en) Semiconductor laser
JPH0239483A (en) Semiconductor laser diode and manufacture thereof
JPH03203282A (en) Semiconductor laser diode
KR920006392B1 (en) Manufacturing method of semiconductor
JPH05299771A (en) Semiconductor laser diode
JPS6136720B2 (en)
JPS6392078A (en) Semiconductor laser element
JPH07154031A (en) Semiconductor laser
JPS59125679A (en) Light emitting diode
KR100234043B1 (en) Method of manufacturing high power laser diode
JPS5857773A (en) Double hetero junction type semiconductor laser
JPH0629616A (en) Semiconductor laser diode and manufacturing method thereof
JPH027488A (en) Buried heterostructure semiconductor laser
JPH088482A (en) Semiconductor laser and manufacture thereof
JPS60154587A (en) Semiconductor laser element
JPH04257284A (en) Buried hetero structured semiconductor laser
JPS6016488A (en) Semiconductor laser device
JPS60134489A (en) Semiconductor laser device