JPS5857773A - Double hetero junction type semiconductor laser - Google Patents

Double hetero junction type semiconductor laser

Info

Publication number
JPS5857773A
JPS5857773A JP15666881A JP15666881A JPS5857773A JP S5857773 A JPS5857773 A JP S5857773A JP 15666881 A JP15666881 A JP 15666881A JP 15666881 A JP15666881 A JP 15666881A JP S5857773 A JPS5857773 A JP S5857773A
Authority
JP
Japan
Prior art keywords
layer
inp
guide passage
energy band
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15666881A
Other languages
Japanese (ja)
Other versions
JPS6155278B2 (en
Inventor
Hiroo Yonezu
米津 宏雄
Seishi Yamada
山田 斉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15666881A priority Critical patent/JPS5857773A/en
Publication of JPS5857773A publication Critical patent/JPS5857773A/en
Publication of JPS6155278B2 publication Critical patent/JPS6155278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve current injection efficiency and enhance optical output by providing a high resistance region at the side of guide passage of a double hetero junction type laser having the flat convex guide passage. CONSTITUTION:The non-additive InP 9 (intrinsic or n<->) is stacked on the plane (100) of the n<+>-InP substrate 1 and the groove is formed in such a depth as reaching the substrate 1 with the width of 2-20mum. Next, the n-Ga0.03In0.97As0.06- P0.94 2 with the forbidden energy band width of 1.3 eV is formed and the upper surface is flattened. Thickness of the layer 2 in the area other than the groove is selected to 0.1-0.6mum. Thereafter, the non-additive GaInAsP (forbidden energy band width 1 eV) 3 and the p-InP 4 are stacked and a laser element can be completed by the conventional methods. According to this structure, since the InP layer 9 having a high specific resistance exists at a side of flat convex guide passage, the current blocking effect can be improved and the current injection coefficient is also improved, thus result in stable lateral mode laser. This laser element thus obtained is resistive to high temperature and high output operation because the sides of guide passage are formed by the stacked wall of the p layer 10 and n-InP layer 9 having the forbidden energy band width narrower than that of the active layer 3.

Description

【発明の詳細な説明】 本発明は半導体レーザに関する。[Detailed description of the invention] The present invention relates to semiconductor lasers.

安定な基本横モードで動作する半導体レーザの一つに平
凸導波路型レーザがあり、第1図に示すような断面構造
を有している。この図において1+ はn型InP基板、2はnWGaInAsP層、3はn
又はp型のGaInAsP層で、前記層2より禁止帯幅
は小さい成分比となっている。4はP型InP層、5は
n型GaInA@P層、6はストライプ状のP型拡散領
域、7はP、側電極用金属膜、8はn側電極用金属膜で
ある。
One type of semiconductor laser that operates in a stable fundamental transverse mode is a plano-convex waveguide laser, which has a cross-sectional structure as shown in FIG. In this figure, 1+ is an n-type InP substrate, 2 is an nWGaInAsP layer, and 3 is an n-type InP substrate.
Alternatively, it is a p-type GaInAsP layer, which has a smaller band gap than the layer 2. 4 is a P-type InP layer, 5 is an n-type GaInA@P layer, 6 is a striped P-type diffusion region, 7 is a P metal film for the side electrode, and 8 is a metal film for the n-side electrode.

このレーザは実用的に優秀なレーザの一つであるが、電
流狭さく作用が不十分なため、レーザ発振に有効に寄与
しない電流成分が存在する。このことは電流密度を大き
くして光出力を増大させようとするとき%に著しくなる
Although this laser is one of the excellent lasers in practical use, the current narrowing effect is insufficient, so there is a current component that does not effectively contribute to laser oscillation. This becomes significant when attempting to increase the optical output by increasing the current density.

本発明の目的は、電流注入効率の改善された平凸導波路
型半導体レーザを提供することを目的とする。
An object of the present invention is to provide a plano-convex waveguide semiconductor laser with improved current injection efficiency.

本発明によれば、−導電型中導体基板上に形成された複
数の半導体層を含んでなる平凸導波路を備えた二重へテ
ロ接合型半導体レーザにおいて、前記平凸導波路の側部
に高抵抗領域を設けたことを特徴とする二重へテロ接合
型半導体レーザが得られる。
According to the present invention, in a double heterojunction semiconductor laser including a plano-convex waveguide including a plurality of semiconductor layers formed on a medium conductive substrate, a side portion of the plano-convex waveguide is provided. A double heterojunction semiconductor laser is obtained, which is characterized in that a high resistance region is provided in the double heterojunction semiconductor laser.

次に、本発明をその実施例に従い、図面を用いて詳細に
説明する。
Next, the present invention will be described in detail according to embodiments using the drawings.

第2図は本発明の一実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the present invention.

図はレーザ光(この明細書では光という語は最も広義な
ものとし、可視光のみでなく紫外線及び赤外線を含む。
The figure shows laser light (in this specification, the word light is used in the broadest sense, and includes not only visible light but also ultraviolet and infrared light).

)の出射方向と垂直方向の断面図である。先ず、8nが
ドープされたキャリヤー濃度lXl0”〆ぜのn+W 
InP基板lの(100)面上にアンドープのInP層
9を約1.4μmの厚さに成長させる。その方法は気相
成長法、液相成長法のいずれでもよい。InP層9はで
きるだけ比抵抗を大きくする意味で半絶縁層又は実質上
真性層かn一層が好ましい、さらには、成長条件を制御
して多孔質に形成してもよい、但し多孔質という語は密
度が本来の値より小さくなるという意味で用いた。
) is a sectional view taken in a direction perpendicular to the emission direction. First, the carrier concentration lXl0'', which is doped with 8n, is n+W.
An undoped InP layer 9 is grown to a thickness of about 1.4 μm on the (100) plane of an InP substrate l. The method may be either a vapor phase growth method or a liquid phase growth method. The InP layer 9 is preferably a semi-insulating layer, a substantially intrinsic layer, or a single layer in order to increase the resistivity as much as possible.Furthermore, the InP layer 9 may be formed into a porous layer by controlling the growth conditions; however, the term "porous" It is used to mean that the density is smaller than its original value.

次にInP層9を選択的に除去して幅2〜20μm深さ
約1.4〜1.6声mの溝を形成する。溝の底には+ InP層9が残らない方が好ましく、 n −InP基
板1を少しエツチングしても差支えはない、その後Sn
がドープされたキャリヤー一度1xl□)−で禁止帯幅
1,3eVのts−Ga O,03In 0.97As
OJ)6F0.94層2を形成する0図示のように上面
がはy平担となるように成長条件を選ぶ。又は、溝部に
おいて下方向にたれ下って0.1〜0.3μm程度凹ん
でもよい。厚さは溝部以外の平担部で0.1〜0.6μ
m程度にするとよい。続いてアンドープGaInAaP
層(禁止帯幅1.0eV)3.P型InP層4を形成し
てレーザを作成することは従来と同じであるので説明は
省略する。
Next, the InP layer 9 is selectively removed to form a groove having a width of 2 to 20 μm and a depth of approximately 1.4 to 1.6 m. It is preferable that the +InP layer 9 not remain at the bottom of the groove, and there is no harm in etching the n-InP substrate 1 a little.
ts-Ga O,03In 0.97As with band gap 1.3 eV at 1xl□)-doped carrier
OJ) 6F0.94 Forming Layer 2 The growth conditions are selected so that the top surface is flat as shown in the figure. Alternatively, the groove may hang downward and be recessed by about 0.1 to 0.3 μm. The thickness is 0.1 to 0.6μ in the flat part other than the groove part.
It is best to set it to about m. Next, undoped GaInAaP
layer (bandgap width 1.0eV)3. The process of forming the P-type InP layer 4 to create a laser is the same as the conventional process, so the explanation will be omitted.

このような構成にすると、比抵抗の高いInP層9が半
凸導波路の側部に存在しているので、電流狭さく作用が
改善されることは明白である。しかも導波路には基本的
に差がないし、製造工程が一つ増えるだけですむ。
It is clear that with such a configuration, the current constriction effect is improved because the InP layer 9 having a high resistivity is present on the side of the semi-convex waveguide. Moreover, there is basically no difference in the waveguides, and only one additional manufacturing process is required.

第3図は本発明の他の実施例を示す断面図で、十 n型InP基板1にP型半導体層10を約0.7μm形
成する。半導体層10はInPでもよいし、適当な禁止
帯幅のG暑InAsPでもよい。特に活性層3より禁止
帯幅を小さくしておくときは、吸収層としての作用もあ
るのでn型InP層を洩れた光を吸収して都合がよい0
次にnWInP層9を約0.7μm形成し、2〜20μ
?fi幅の溝を形成する。この場合n型InP層9の比
抵抗はそれほど大きくしな(てもよい。
FIG. 3 is a sectional view showing another embodiment of the present invention, in which a P-type semiconductor layer 10 is formed to a thickness of about 0.7 μm on a 10n-type InP substrate 1. The semiconductor layer 10 may be InP or may be G-type InAsP with an appropriate band gap. In particular, when the forbidden band width is made smaller than that of the active layer 3, since it also acts as an absorption layer, it absorbs the light leaking through the n-type InP layer and is conveniently set to 0.
Next, an nWInP layer 9 is formed to a thickness of about 0.7 μm, with a thickness of 2 to 20 μm.
? A groove with a width of fi is formed. In this case, the resistivity of the n-type InP layer 9 may not be so large.

P型中導体層10は電流阻止層として働く。この場合p
npnスイッチング素子が寄生しているがn型層9の存
在は寄生効果を防ぐのに有効である。
The P-type medium conductor layer 10 functions as a current blocking layer. In this case p
Although the npn switching element is parasitic, the presence of the n-type layer 9 is effective in preventing the parasitic effect.

従って、n771層9内の少数電流担体の拡散長はでき
るだけ小さくしておくのが好ましい、この点ではn型層
9を多孔質にすると一層効果がある。
Therefore, it is preferable to keep the diffusion length of minority current carriers in the n771 layer 9 as small as possible. In this respect, it is more effective to make the n-type layer 9 porous.

InPと格子常数の一致するQmx  Int−xPy
As s−yの素止帯幅は0.74〜1.35eV)広
い範囲で変えることができるし、屈折率も3.45(n
(3,65の範囲で変化させることができるので、導波
路の作用としても従来とHx同じにすることができるの
みでなく、活性層3よりPM半導体層10の禁止帯幅を
小さくすることにより、吸収層として作用させることも
できる。
Qmx Int-xPy whose lattice constant matches InP
The elementary band width of Assy can be varied over a wide range (0.74 to 1.35 eV), and the refractive index is 3.45 (n
(Since it can be varied in the range of 3.65, not only can the waveguide function be the same as the conventional Hx, but also by making the forbidden band width of the PM semiconductor layer 10 smaller than that of the active layer 3. , it can also act as an absorbent layer.

前記寄生スイッチング効果は温度が高いほど、電流密度
が高いほど起り易い。従って、この実施例は、層9の位
置にpHIな設けた場合に比較して高温動作、大出力動
作に強いといえる。
The higher the temperature and the higher the current density, the more likely the parasitic switching effect occurs. Therefore, this embodiment can be said to be more resistant to high temperature operation and high output operation than the case where a pHI is provided at the position of layer 9.

以上、詳細に説明したように1本発明は横モードの安定
な半導体レーザの電流注入効率な改善するのに効果があ
る。
As described above in detail, the present invention is effective in improving the current injection efficiency of a semiconductor laser with stable transverse mode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の平凸導波路を備えた二重へテロ接合型半
導体レーザを示す断面図、第2図および第3図はそれぞ
れ本発明の実施例な示す断面図である。 + 1・・・・・・n型InP基板、2・・・・・・n型Q
aTnAsPI昧3・・・・・・n又はP型GaInA
sP層(活性層)、4・・・P型InP層、5−−−−
−= n型GaInAsPNI、6−・−・−、x。
FIG. 1 is a sectional view showing a conventional double heterojunction semiconductor laser equipped with a plano-convex waveguide, and FIGS. 2 and 3 are sectional views showing embodiments of the present invention. + 1...n-type InP substrate, 2...n-type Q
aTnAsPI3...n or P-type GaInA
sP layer (active layer), 4...P type InP layer, 5---
−=n-type GaInAsPNI, 6−・−・−, x.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基体上に形成された複数の半導体層を含
んでなる平凸導波路を備えた二重へテロ接合型半導体レ
ーザにおいて、前記平凸導波路の側部に高抵抗領域を般
けたことを特徴とする二重へテロ接合型半導体レーザ。
In a double heterojunction semiconductor laser equipped with a plano-convex waveguide including a plurality of semiconductor layers formed on a semiconductor substrate of one conductivity type, a high resistance region is provided on the side of the plano-convex waveguide. A double heterojunction semiconductor laser characterized by:
JP15666881A 1981-10-01 1981-10-01 Double hetero junction type semiconductor laser Granted JPS5857773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15666881A JPS5857773A (en) 1981-10-01 1981-10-01 Double hetero junction type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15666881A JPS5857773A (en) 1981-10-01 1981-10-01 Double hetero junction type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5857773A true JPS5857773A (en) 1983-04-06
JPS6155278B2 JPS6155278B2 (en) 1986-11-27

Family

ID=15632686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15666881A Granted JPS5857773A (en) 1981-10-01 1981-10-01 Double hetero junction type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5857773A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391684A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Semiconductor laser
JPS55108789A (en) * 1979-01-18 1980-08-21 Nec Corp Semiconductor laser
JPS55140285A (en) * 1979-03-22 1980-11-01 Nec Corp Semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391684A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Semiconductor laser
JPS55108789A (en) * 1979-01-18 1980-08-21 Nec Corp Semiconductor laser
JPS55140285A (en) * 1979-03-22 1980-11-01 Nec Corp Semiconductor laser

Also Published As

Publication number Publication date
JPS6155278B2 (en) 1986-11-27

Similar Documents

Publication Publication Date Title
US4883771A (en) Method of making and separating semiconductor lasers
KR960027091A (en) Method of manufacturing semiconductor laser device and semiconductor laser device
JPS5831592A (en) Buried semiconductor laser
JPS5857773A (en) Double hetero junction type semiconductor laser
JPS61164287A (en) Semiconductor laser
JPS58207690A (en) Buried type semiconductor laser
JPS6342871B2 (en)
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS59227177A (en) Semiconductor laser
KR100320172B1 (en) Semiconductor laser diode and its manufacturing method
JPS59112671A (en) Semiconductor laser
JPS6318874B2 (en)
JPS6136720B2 (en)
JPH0553316B2 (en)
JPH07120836B2 (en) Semiconductor laser
JP2933981B2 (en) Semiconductor optical device
JPH0337875B2 (en)
JPH04320083A (en) Semiconductor laser element and manufacture thereof
JPH0195583A (en) Buried-type semiconductor laser device
JPH04257284A (en) Buried hetero structured semiconductor laser
JPS58110085A (en) Buried type semiconductor laser
JPS6355792B2 (en)
JPH027488A (en) Buried heterostructure semiconductor laser
JPS5928079B2 (en) Semiconductor laser and its manufacturing method
JPH0513888A (en) Semiconductor light emitting device and manufacture thereof