JPS6355792B2 - - Google Patents

Info

Publication number
JPS6355792B2
JPS6355792B2 JP56170695A JP17069581A JPS6355792B2 JP S6355792 B2 JPS6355792 B2 JP S6355792B2 JP 56170695 A JP56170695 A JP 56170695A JP 17069581 A JP17069581 A JP 17069581A JP S6355792 B2 JPS6355792 B2 JP S6355792B2
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
refractive index
light
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170695A
Other languages
Japanese (ja)
Other versions
JPS5873176A (en
Inventor
Jun Oosawa
Kenji Ikeda
Wataru Suzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17069581A priority Critical patent/JPS5873176A/en
Publication of JPS5873176A publication Critical patent/JPS5873176A/en
Publication of JPS6355792B2 publication Critical patent/JPS6355792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は、高出力半導体レーザに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high power semiconductor laser.

従来この種の装置として第1図及び第2図に示
すものがあつた。第1図に示す装置は、埋込みヘ
テロ(BH)構造と呼ばれるもので、1はn−
GaAs層、2はクラツド層を構成するn−Alx
Ga1-xAs層、3は光導波層を構成するn−Aly
Ga1-yAs層(但しy<x)、4は活性層を構成す
るp−GaAs層、5はクラツド層を構成するp−
AlxGa1-xAs層、6は各層2〜5を横方向から取
り囲むクラツド層を構成する高抵抗AlzGa1-zAs
層(但しz≧x)である。第2図はストリツプ・
ベリド・ヘテロ(SBH)構造の断面図で、1〜
5は第1図の場合と同様であ、7はp−AlzGa1-z
As層、8はn−AlzGa1-zAs層である。
Conventionally, there have been devices of this type as shown in FIGS. 1 and 2. The device shown in Figure 1 is called a buried hetero (BH) structure, where 1 is n-
GaAs layer, 2 is n-Al x which constitutes the cladding layer
Ga 1-x As layer, 3 is n-Al y constituting the optical waveguide layer
Ga 1-y As layer (y<x), 4 is the p-GaAs layer that constitutes the active layer, and 5 is the p-GaAs layer that constitutes the cladding layer.
Al x Ga 1-x As layer, 6 is a high resistance Al z Ga 1-z As that constitutes a cladding layer that laterally surrounds each layer 2 to 5.
layer (where z≧x). Figure 2 shows the strip
A cross-sectional view of the bellied hetero (SBH) structure, from 1 to
5 is the same as in Figure 1, and 7 is p-Al z Ga 1-z
The As layer and 8 are n-Al z Ga 1-z As layers.

つぎに動作について説明する。第1図において
は、クラツド層5から流れ込む電流は、高抵抗層
6によつて狭窄されて主に活性層4に注入され、
ここで放射再結合を起こす。発生した光は、周囲
の低屈折率の領域である各クラツド層2,5及び
6によつて、活性層4と光導波層3の近傍に閉じ
込められる。
Next, the operation will be explained. In FIG. 1, the current flowing from the cladding layer 5 is constricted by the high resistance layer 6 and is mainly injected into the active layer 4.
Here, radiative recombination occurs. The generated light is confined in the vicinity of the active layer 4 and the optical waveguide layer 3 by the surrounding cladding layers 2, 5 and 6, which are regions of low refractive index.

第2図の場合には、クラツド層5から流れ込む
電流は、逆バイアスされる層7と8とによつて狭
窄され、活性層4に注入される。放射再結合で生
じた光は、同様に周辺の低屈折率の領域である各
クラツド層2,5及び層7によつて閉じ込められ
るが、この場合、光導波層3が横方向に拡がつて
いるため、光は、第1図の場合に較べれば横方向
に拡がり易い特徴を持つている。
In the case of FIG. 2, the current flowing from the cladding layer 5 is constricted by the reverse biased layers 7 and 8 and is injected into the active layer 4. The light generated by radiative recombination is similarly confined by the surrounding low refractive index regions of each cladding layer 2, 5 and layer 7, but in this case, the optical waveguide layer 3 spreads laterally. Therefore, the light has a characteristic that it spreads more easily in the lateral direction than in the case of FIG.

上記の説明において、屈折率の大小関係は、
AlGaAs結晶の屈折率が、Alモル分率(x又はy
又はz)の増加と共に減少する事に基づいてい
る。即ち、GaAs、AlyGa1-yAs、AlxGa1-xAs、
AlzGa1-zAs層の順に、屈折率は小さくなる。(但
しy<x≦z)。
In the above explanation, the magnitude relationship of the refractive index is
The refractive index of AlGaAs crystal is the Al mole fraction (x or y
or z) is based on the fact that it decreases as z) increases. That is, GaAs, Al y Ga 1-y As, Al x Ga 1-x As,
The refractive index decreases in the order of Al z Ga 1-z As layers. (However, y<x≦z).

従来の半導体レーザは以上のように構成されて
いるので、活性層4の横(側面)には光導波領域
がなく、又、横方向の実効的な屈折率も階段状に
変化するため、光の横方向の拡がりが不十分で発
光部が小さく、従つて、高出力が得にくいという
欠点があつた。
Since the conventional semiconductor laser is configured as described above, there is no optical waveguide region on the lateral (side) side of the active layer 4, and the effective refractive index in the lateral direction also changes stepwise, so that the optical The problem was that the lateral spread of the light was insufficient and the light emitting part was small, making it difficult to obtain high output.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、活性層の横に漸
次厚さが減少する光導波層を設けることにより、
発光部を積極的に横方向に拡大して、高出力を得
ることのできる半導体レーザを提供することを目
的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by providing an optical waveguide layer with a gradually decreasing thickness next to the active layer,
The object of the present invention is to provide a semiconductor laser that can obtain high output by actively expanding the light emitting part in the lateral direction.

以下、この発明の一実施例を図について説明す
る。第3図において、1,2,4,5及び8は上
記の従来例と全く同じものである。9は活性層4
の近傍で、この活性層4から遠ざかるにつれ厚さ
が減少する光導波層を構成するp−AlyGa1-yAs
層(0<y<x)である。この光導波層9は、埋
め込み層8,9を形成する2回目の結晶成長を液
相エピタキシー(LPE)法によれば、容易に作
ることができる。エツチングにより形成した層
4,5から成る“うね”のある基板上にLPE法
で薄い層を成長させ場合、“うね”の側面上に成
長しやすい性質から第1の埋め込み層である光導
波層9は均一な厚さとならず、“うね”の部分で
せり上がつた構造となる。温度や時間等の成長条
件を適当に選べば、この光動波層9の厚さ分布を
制御することができる。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 3, numerals 1, 2, 4, 5 and 8 are exactly the same as in the conventional example described above. 9 is active layer 4
The p-Al y Ga 1-y As constituting the optical waveguide layer whose thickness decreases as it moves away from the active layer 4 in the vicinity of
layer (0<y<x). This optical waveguide layer 9 can be easily produced by performing the second crystal growth to form the buried layers 8 and 9 using a liquid phase epitaxy (LPE) method. When a thin layer is grown by the LPE method on a substrate with "ridges" formed by etching layers 4 and 5, the first buried layer, which is the light guide layer, tends to grow on the sides of the "ridges". The wave layer 9 does not have a uniform thickness, but has a structure in which the "ridges" are raised. By appropriately selecting growth conditions such as temperature and time, the thickness distribution of the optical wave layer 9 can be controlled.

上記のように構成された装置においては、光導
波層9は層8と共に逆バイアスされたp−n接合
を成し、第2図で示した従来例の場合と同様にク
ラツド層5から流入する電流の狭窄の役割も果
す。従つて、電流が主に活性層4に流れ込み、そ
こで放射再結合により発光が起きる点は同じであ
る。しかし、光は両側の光導波層9の方へもれ出
し、全体として横方向に拡がつた発光部となる。
この時、横方向の屈折率分布が急激な階段状の変
化をせず、緩やかに変化しているため、電界強度
分布はより幅の広いピーク、即ち、釣り瞳状に近
い形となることが期待される。これは、縦方向で
活性層の両側に導波層を設けた構造、所謂、セパ
レート・コンフアインメント・ヘテロ接合
(SCH)構造で、縦方向に見られる事情と同じで
ある。この様な電界強度分布を実現することによ
り、強度の高い部分の割合が増し、高出力化が図
れ、同時にビームの放射角も狭くすることができ
る。
In the device constructed as described above, the optical waveguide layer 9 forms a reverse biased p-n junction with the layer 8, and the light flows from the cladding layer 5 as in the conventional example shown in FIG. It also plays the role of current constriction. Therefore, current mainly flows into the active layer 4, and light emission occurs there due to radiative recombination. However, the light leaks toward the optical waveguide layers 9 on both sides, resulting in a light-emitting portion that spreads in the lateral direction as a whole.
At this time, the refractive index distribution in the lateral direction does not change in a sudden step-like manner, but changes gradually, so the electric field strength distribution has a wider peak, that is, a shape close to a fishing pupil shape. Be expected. This is the same situation observed in the vertical direction in a structure in which waveguide layers are provided on both sides of an active layer in the vertical direction, a so-called separate confirmation heterojunction (SCH) structure. By realizing such an electric field intensity distribution, the proportion of high-intensity portions increases, high output can be achieved, and at the same time, the radiation angle of the beam can be narrowed.

なお、上記の実施例においては、何れもn−
GaAsを基板として成型する場合について説明し
たが、p−GaAsを基板に用い、AlyGa1-xAs層
2、AlxGa1-xAs層3及びAlzGa1-zAs層8をp型
に、GaAs層4AlxGa1-xAs層5、AlyGa1-yAs層
9をn型としても同様の効果が得られる。
In addition, in the above embodiments, n-
Although we have explained the case where GaAs is used as the substrate for molding, p-GaAs is used as the substrate, and the Al y Ga 1-x As layer 2, the Al x Ga 1-x As layer 3, and the Al z Ga 1-z As layer 8 are formed. The same effect can be obtained even if the GaAs layer 4Al x Ga 1-x As layer 5 and Al y Ga 1-y As layer 9 are made of n-type while being made of p-type.

以上のように、本発明によれば、活性層の横
(側面に厚さがなだらかに減少する光導波層領域
を設け、光強度の高い部分を横方向にも拡大した
ので、高出力が取出せ、横方向のビームの拡がり
を小さくできるという効果がある。
As described above, according to the present invention, an optical waveguide layer region whose thickness gradually decreases is provided on the sides of the active layer, and a portion of high light intensity is expanded in the lateral direction, so that high output can be obtained. This has the effect of reducing the spread of the beam in the lateral direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の半導体レーザを示す
断面図、第3図はこの発明の一実施例による半導
体レーザを示す断面図である。 図において、2は第1の半導体層、9は光導波
層、4は活性層、8は第2の半導体層である。な
お、図中同一符号は同一又は相当部分を示す。
1 and 2 are cross-sectional views showing a conventional semiconductor laser, and FIG. 3 is a cross-sectional view showing a semiconductor laser according to an embodiment of the present invention. In the figure, 2 is a first semiconductor layer, 9 is an optical waveguide layer, 4 is an active layer, and 8 is a second semiconductor layer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の第1の半導体層、この第1の半
導体層より高い屈折率を持つ物質から成り、厚さ
が一方から他方へ漸次薄くなるように上記第1の
半導体層上に設けられた第2導電型の光導波層、
この光導波層より低い屈折率を持つ物質から成
り、上記光導波層上に設けられた第1導電型の第
2の半導体層、上記光導波層の厚さが厚い側に位
置し、かつ側面のみが上記光導波層に隣接して設
けられた活性層を備えたことを特徴とする半導体
レーザ。
1. A first semiconductor layer of a first conductivity type, which is made of a material having a higher refractive index than the first semiconductor layer, and is provided on the first semiconductor layer so that the thickness becomes gradually thinner from one side to the other. a second conductivity type optical waveguide layer;
a second semiconductor layer of the first conductivity type, which is made of a substance having a lower refractive index than the optical waveguide layer and is provided on the optical waveguide layer; A semiconductor laser characterized in that only the active layer is provided adjacent to the optical waveguide layer.
JP17069581A 1981-10-27 1981-10-27 Semiconductor laser Granted JPS5873176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17069581A JPS5873176A (en) 1981-10-27 1981-10-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17069581A JPS5873176A (en) 1981-10-27 1981-10-27 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5873176A JPS5873176A (en) 1983-05-02
JPS6355792B2 true JPS6355792B2 (en) 1988-11-04

Family

ID=15909678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17069581A Granted JPS5873176A (en) 1981-10-27 1981-10-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5873176A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369182A (en) * 1989-08-08 1991-03-25 Furukawa Electric Co Ltd:The Semiconductor laser element
WO2015015633A1 (en) * 2013-08-02 2015-02-05 富士通株式会社 Optical semiconductor device and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618484A (en) * 1979-07-24 1981-02-21 Nec Corp Manufacture of semiconductor laser
JPS5635484A (en) * 1979-08-29 1981-04-08 Nec Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618484A (en) * 1979-07-24 1981-02-21 Nec Corp Manufacture of semiconductor laser
JPS5635484A (en) * 1979-08-29 1981-04-08 Nec Corp Semiconductor laser

Also Published As

Publication number Publication date
JPS5873176A (en) 1983-05-02

Similar Documents

Publication Publication Date Title
US4371966A (en) Heterostructure lasers with combination active strip and passive waveguide strip
US4251298A (en) Heterostructure laser
US4124826A (en) Current confinement in semiconductor lasers
US4525841A (en) Double channel planar buried heterostructure laser
US4321556A (en) Semiconductor laser
US4675710A (en) Light emitting semiconductor device
JPH0332080A (en) Semiconductor light emitting element and manufacture thereof
EP0264225B1 (en) A semiconductor laser device and a method for the production of the same
US4706254A (en) Semiconductor device and its fabrication
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
JP3718548B2 (en) Manufacturing method of semiconductor light emitting device
JPS6355792B2 (en)
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPH0815230B2 (en) Method of making buried stripe type semiconductor laser and laser obtained by the method
JPS6362292A (en) Semiconductor laser device and manufacture thereof
KR100364770B1 (en) High-power laser diode
JP2001185810A (en) Semiconductor optical device and manufacturing method therefor
JPH0513866A (en) Semiconductor light emitting element
JPS6244715B2 (en)
KR970009672B1 (en) Method of manufacture for semiconductor laserdiode
JP3191359B2 (en) Semiconductor laser
JPS6318874B2 (en)
KR940011276B1 (en) Laser diode and manufacturing method the same
CN115189231A (en) Strip-shaped channel flat plate coupling waveguide semiconductor laser and preparation method thereof
KR100289728B1 (en) Semiconductor laser device and manufacturing method thereof