KR100364770B1 - High-power laser diode - Google Patents

High-power laser diode Download PDF

Info

Publication number
KR100364770B1
KR100364770B1 KR1019950014525A KR19950014525A KR100364770B1 KR 100364770 B1 KR100364770 B1 KR 100364770B1 KR 1019950014525 A KR1019950014525 A KR 1019950014525A KR 19950014525 A KR19950014525 A KR 19950014525A KR 100364770 B1 KR100364770 B1 KR 100364770B1
Authority
KR
South Korea
Prior art keywords
layer
laser diode
cladding
cladding layer
power laser
Prior art date
Application number
KR1019950014525A
Other languages
Korean (ko)
Other versions
KR970004173A (en
Inventor
임시종
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1019950014525A priority Critical patent/KR100364770B1/en
Publication of KR970004173A publication Critical patent/KR970004173A/en
Application granted granted Critical
Publication of KR100364770B1 publication Critical patent/KR100364770B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/06LPE

Abstract

PURPOSE: A high-power laser diode is provided to increase the size of a beam spot by forming a separate waveguide layer between clad layers over an active layer. CONSTITUTION: A first clad layer(21), an active layer(22), a second clad layer(23), a separate waveguide layer(24), a third clad layer(25), and a cap layer(26) are sequentially deposited on a substrate(20) through an LPE(Liquid Phase Epitaxy) having a higher heat characteristic than an MOCVD(Metal Organic Chemical Vapor Deposition). These layers form a double heterostructure. A mesa structure is formed by selectively etching the cap layer(26), the third clad layer(25), the separate waveguide layer(24), and a second clad layer(23) through a photolithography. A current limiting layer is formed on both laterals of the mesa structure through the MOCVD.

Description

고출력 레이저 다이오드High power laser diode

본 발명은 고출력 레이저 다이오드에 관한 것으로, 특히 낮은 구동 전류 및 높은 열특성을 갖도록 한 고출력 레이저 다이오드에 관한 것이다.The present invention relates to high power laser diodes, and more particularly to high power laser diodes having low drive current and high thermal characteristics.

고출력 레이저 다이오드를 얻기 위해서는 레이저 다이오드의 빛이 벽개면 부근에 소자 내부에서 발생한 빛이 벽개면 부분(댕글링 본드등의 결함이 존재하는)에서 흡수되어 벽개면이 파괴되는 형상인 COD(Catastropic Optical Damage)현상을 억제해야 한다. 이 COD현상을 억제하기 위해 제안된 레이저 다이오드 구조를 제1도 및 제2도에 도시하였다.In order to obtain a high power laser diode, the laser diode emits light generated inside the device near the cleaved surface and absorbs the cleaved surface (Catastropic Optical Damage) phenomenon. It must be restrained. The laser diode structure proposed to suppress this COD phenomenon is shown in FIGS. 1 and 2.

제 1도의 레이저 다이오드구조는 기판(1)상에 제1클래드층(2), 활성층(3), 제2클래드층(4) 및 캡층(5)이 차례로 형성되어 이루어진 적층구조 측면의 벽개면 부근에 NAM(Non Absorbing Mirror)(6)구조를 형성한 것이다. 제1도 (b)는 제1도의 A-A'선에 따른 단면구조를 도시한 것이다.The laser diode structure of FIG. 1 has a first cladding layer 2, an active layer 3, a second cladding layer 4, and a cap layer 5 formed on the substrate 1 in the vicinity of the cleavage surface of the lamination structure. NAM (Non Absorbing Mirror) (6) structure is formed. FIG. 1B illustrates a cross-sectional structure along the line AA ′ of FIG. 1.

제2도의 레이저 다이오드는 기판(1)상에 전류제한층(7)이 형성되어 이루어진 특수 메사위에 제1클래드층(2), 활성층(3), 제2클래드층(4) 및 캡층(5)을 차례로 성장시켜 이중 헤테로(Double hetero)구조를 형성한 것으로, 메사 윗부분의 활성층(3) 두께가 얇아지도록 하여 활성층에서 발생한 빛이 메사 윗부분의 활성층에 모두 한정되지 못하여 양쪽 클래드층으로 빛이 퍼져 나가게 되도록 한 것이다. 즉, 벽개면에서의 빔 스폿(beam spot) 크기가 커져 광밀도는 줄어 들게 되어 고출력을 얻을 수 있도록 한 구조이다. 제2도는 제1도 (a)의 B-B' 선에 따른 단면구조를 나타낸 것이다.The laser diode of FIG. 2 has a first cladding layer 2, an active layer 3, a second cladding layer 4 and a cap layer 5 on a special mesa formed by a current limiting layer 7 formed on a substrate 1. In order to form a double hetero structure, the thickness of the active layer (3) in the upper part of the mesa becomes thin, so that the light generated from the active layer is not limited to the active layer of the upper part of the mesa so that the light spreads to both clad layers It was made possible. In other words, the size of the beam spot on the cleaved surface is increased, the optical density is reduced, so that a high output can be obtained. FIG. 2 shows a cross-sectional structure along the line B-B 'of FIG. 1 (a).

제1도와 같은 NAM구조를 구현하기 위해서는 NAM을 형성하기 위해 에픽택셜 성장을 추가로 수행해야 할 뿐 아니라, 여러 경계층의 측면 또는 위에 에피텍셜 성장이 이루어지도록 해야 하므로 균일한 성장이 어렵고, 재현성의 측면에서도 문제가 있으며, NAM영역 만큼의 전류 손실이 있기 때문에 비교적 동작전류가 높아지는문제점이 있다.In order to implement the NAM structure as shown in FIG. 1, not only the epitaxial growth should be additionally performed to form the NAM, but also the epitaxial growth must be performed on the side or the top of the various boundary layers, so that the uniform growth is difficult and the reproducibility aspect is increased. In addition, there is a problem, and since there is a current loss as much as the NAM region, there is a problem in that the operating current is relatively high.

제2도의 구조는 비교적 제작공정은 간단하나, 활성층비 얇아져 전 단면에서 의 광분포 대비 활성층에서의 광분포 백분율(confinement factor)이 낮아 동작이 높고, 열특성이 나빠 고출력 동작에 제한이 따르는 문제가 있다.Although the structure of FIG. 2 is relatively simple to fabricate, the active layer ratio becomes thinner, resulting in a low operation ratio due to a lower light distribution factor (confinement factor) in the active layer compared to the light distribution in all sections. have.

본 발명은 이와 같은 문제를 해결하기 위한 것으로, 낮은 구동 전류 및 높은 열특성을 갖는 고출력 레이저 다이오드를 제공하는데 그 목적이 있다.The present invention has been made to solve such a problem, and an object thereof is to provide a high power laser diode having a low driving current and a high thermal characteristic.

상기 목적을 달성하기 위한 본 발명의 고출력 레이저 다이오드는 기판과, 기판의 소정영역상에 형성된 전류 제한층과, 이 기판 및 전류 제한층 상부에 차례로 형성된 제1클래드층, 활성층, 제2클래드층, 제3 클래드층, 및 캡층으로 구성된 레이저 다이오드에 있어서, 상기 제 2, 3 클래드층 사이에 상기 활성층의 굴절율보다 작고 제2, 3 클래드층보다 큰 굴절율을 가지며, 활성층의 에너지 밴드갭보다 크고 제2, 3 클래드층의 에너지 밴드갭보다 작은 에너지 밴드갭을 가지는 분리 광도파층을 포함하여 구성되는 것을 특징으로 한다.The high-power laser diode of the present invention for achieving the above object comprises a substrate, a current limiting layer formed on a predetermined region of the substrate, a first cladding layer, an active layer, a second cladding layer formed in turn on the substrate and the current limiting layer, A laser diode composed of a third cladding layer and a cap layer, wherein the second and third cladding layers have a refractive index smaller than the refractive index of the active layer and larger than the second and third cladding layers, and larger than the energy band gap of the active layer. And a separate optical waveguide layer having an energy bandgap smaller than the energy bandgap of the three cladding layers.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

제3도에 본 발명의 일실시예에 의한 고출력 레이저 다이오드의 단면구조를 도시하였다.3 shows a cross-sectional structure of a high power laser diode according to an embodiment of the present invention.

본 발명의 고출력 레이저 다이오드는 기판(10) 소정영역상에 전류제한층(11)이 형성되고, 기판 및 전류제한층 상부에 제1클래드층(12), 활성층(13), 제2클래드층(14), 분리 광도파층(15), 제3클래드층(16) 및 캡층(17)이 차례로 형성된 구조로 되어 있다.In the high power laser diode of the present invention, the current limiting layer 11 is formed on a predetermined region of the substrate 10, and the first cladding layer 12, the active layer 13, and the second cladding layer are formed on the substrate and the current limiting layer. 14), the separation optical waveguide layer 15, the third cladding layer 16, and the cap layer 17 are formed in this order.

상기와 같이 활성층(13)상의 클래드층(14, 16)사이에 분리 광도파층(15)을 형성하면 활성층에서 발생한 빛이 활성층(13)과 분리 광도파층(15) 및 활성층과 분리 광도파층 사이의 클래드층(14)에서 빛이 도화되어 벽개면에서의 빔스폿 크기가 커져 광출력 밀도가 높아지게 되므로 고출력 동작이 가능하게 된다.When the separation optical waveguide layer 15 is formed between the cladding layers 14 and 16 on the active layer 13 as described above, light generated in the active layer is separated from the active layer 13 and the separation optical waveguide layer 15 and between the active layer and the separation optical waveguide layer. Since light is conducted in the cladding layer 14 to increase the beam spot size on the cleaved surface, the light output density becomes high, thereby enabling high power operation.

본 발명의 레이저 다이오드 구조는 종래의 NAM구조와 같은 전류 손실이 일어나지 않기 때문에 동작전류가 낮아지며, 특수 메사구조를 이용한 제2도의 구조와 같이 활성층 두께가 얇지 않으므로 전 단면에서의 광분포 대비 활성층에서의 광분포 백분율(confinement factor)이 커져 열특성이 우수하여 고출력 레이저 다이오드의 실현이 가능하게 된다.Since the laser diode structure of the present invention does not cause current loss as in the conventional NAM structure, the operating current is lowered, and the active layer thickness is not as thin as the structure of FIG. 2 using a special mesa structure. As the percentage of light distribution increases, the thermal characteristics are excellent, enabling high power laser diodes to be realized.

이때, 분리 광도파층은 굴절율(Refractive index)은 활성층보다는 작고, 그상, 하부치 클래드층보다는 크며, 에너지 밴드갭(energy bandgap)은 활성층보다 크고, 클래드층보다는 작은 물질로 형성된다In this case, the separated optical waveguide layer is formed of a material having a refractive index smaller than that of the active layer, larger than the lower cladding layer, and an energy bandgap larger than the active layer and smaller than the clad layer.

제4도는 본 발명의 다른 실시예에 의한 고출력 레이저 다이오드 구조 및 이의 제조방법을 도시한 것이다.4 illustrates a high power laser diode structure and a method of manufacturing the same according to another embodiment of the present invention.

먼저, 제4도 (a)와 같이 기판(20)상에 제1클래드층(21), 활성층(22), 제2클래드층(23), 분리 광도파층(24), 제3클래드층(25) 및 캡층(26)을 MOCVD(Metal Organic Chemical Vapor Deposition)보다 높은 열특성을 갖는 LPE(Liquid Phase Epitaxy)(예컨대 AlGaAS 레이저 다이오드의 경우, LPE의 To는 200K이고, MOCVD의 To는 140K이다)에 의해 차례로 성장시켜 이중 헤테로 구조를 형성한다.First, as shown in FIG. 4A, the first cladding layer 21, the active layer 22, the second cladding layer 23, the separation optical waveguide layer 24, and the third cladding layer 25 are formed on the substrate 20. ) And cap layer 26 to Liquid Phase Epitaxy (LPE) (e.g., AlGaAS laser diode, which has a higher thermal property than Metal Organic Chemical Vapor Deposition (MOCVD), is 200K To and 140K To MOCVD). In order to form a double heterostructure.

이어서 제4도 (b)와 같이 사진식각공정을 통해 상기 캡층(26),제3클래드층(25), 분리 광도파층(24) 및 제2클래드층(23)의 일부까지 선택적으로 식각하여 메사구조를 형성한다.Subsequently, a portion of the cap layer 26, the third cladding layer 25, the separation optical waveguide layer 24 and the second cladding layer 23 is selectively etched through a photolithography process as shown in FIG. 4 (b). To form a structure.

다음에 제4도 (c)와 같이 계면성장이 용이한 MOCVD(Metal Organic Chemical Vapor Deposition)공정을 이용한 2차 성장에 의해 상기 메사구조의 양측면에 전류제한층(27)을 형성함으로써 고출력 레이저 다이오드를 제작한다.Next, as shown in FIG. 4 (c), a high power laser diode is formed by forming current limiting layers 27 on both sides of the mesa structure by secondary growth using MOCVD (Metal Organic Chemical Vapor Deposition) process, which is easy to interfacial growth. To make.

이와 같이 LPE에 의한 이중 헤테로 성장에 의해 높은 열특성 온도(To)를 갖는 더욱 우수한 열특성을 가지는 레이저 다이오드를 형성할 수 있다.In this manner, the double hetero growth by LPE can form a laser diode having more excellent thermal characteristics having a high thermal characteristic temperature (To).

이상 상술한 바와 같이 본 발명은 활성층 상부의 클래드층 사이에 분리 광도파층을 형성함으로써 빔 스폿 크기를 증가시킬 수 있으며, 전류 손실 및 전 단면에서의 광분포 대비 활성층에서의 광분포 백분율(confinement factor)의 저하를 방지하여 낮은 구동 전류 및 높은 열특성을 갖는 고출력 레이저 다이오드를 실현할 수 있다As described above, the present invention can increase the beam spot size by forming a separate optical waveguide layer between the clad layers on the active layer, the current loss and the light distribution percentage in the active layer compared to the light distribution in all cross sections. The high output laser diode with low driving current and high thermal characteristics can be realized by preventing the decrease of

또한, 제조공정이 단순하므로 제조시의 수율을 향상시킬 수 있다.In addition, since the manufacturing process is simple, the yield at the time of manufacture can be improved.

제1도는 종래의 NAM구조를 채용한 레이저 다이오드의 구조도1 is a structural diagram of a laser diode employing a conventional NAM structure.

제2도는 종래의 레이저 다이오드 구조도2 is a structure diagram of a conventional laser diode

제3도는 본 발명의 일실시예에 의한 레이저 다이오드 단면구조도3 is a cross-sectional view of a laser diode according to an embodiment of the present invention.

제4도는 본 발명의 다른 실시예에 의한 레이저 다이오드 제조방법을 도시한 공정순서도4 is a process flowchart showing a method of manufacturing a laser diode according to another embodiment of the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10,20.기판 11,27.전류제한층10,20 Substrate 11,27 Current limiting layer

12,21.제1클래드층 13,22.활성층12,21 First cladding layer 13,22 Active layer

14,23.제2클래드층 15,24.분리 광도파층14,23 Second cladding layer 15,24Separated optical waveguide layer

16,25.제3클래드층 17,26.캡층16,25 Third cladding layer 17,26 Cap layer

Claims (6)

기판과, 기판의 소정영역상에 형성된 전류 제한층과, 이 기판 및 전류 제한층 상부에 차례로 형성된 제1클래드층, 활성층, 제2클래드층, 제3 클래드층, 및 캡층으로 구성된 레이저 다이오드에 있어서,A laser diode comprising a substrate, a current limiting layer formed on a predetermined region of the substrate, and a first cladding layer, an active layer, a second cladding layer, a third cladding layer, and a cap layer sequentially formed on the substrate and the current limiting layer. , 상기 제 2, 3 클래드층 사이에 상기 활성층의 굴절율보다 작고 제2, 3 클래드층보다 큰 굴절율을 가지며, 활성층의 에너지 밴드갭보다 크고 제 2, 3 클래드층의 에너지 밴드갭보다 작은 에너지 밴드갭을 가지는 분리 광도파층을 포함하여 구성되는 것을 특징으로 하는 고출력 레이저 다이오드An energy bandgap between the second and third cladding layers is smaller than the refractive index of the active layer and larger than the second and third cladding layers and is larger than the energy bandgap of the active layer and smaller than the energy bandgap of the second and third cladding layers. The high power laser diode comprising a branched optical waveguide layer 기판상에 차례로 형성된 제1클래드층과 활성층 및 제2클래드층과, 상기 제2클래드층의 소정영역상에 차례로 형성되어 메사구조를 이루는 분리 광도파층, 제3클래드층 및 캡층, 상기 메사구조의 양측면에 형성된 전류제한층으로 이루어지며, 상기 분리 광도파층이 상기 활성층의 굴절율보다 작고 상기 제2클래드층 및 제3클래드층의 굴절율보다는 큰 굴절율을 가지며, 활성층의 에너지 밴드갭보다 크고 제2클래드층 및 제3클래드층의 에너지 밴드갭보다는 작은 에너지 밴드갭을 가지는 것을 특징으로 하는 고출력 레이저 다이오드.The first cladding layer, the active layer, and the second cladding layer, which are sequentially formed on the substrate, and the separation optical waveguide layer, the third cladding layer, and the cap layer, which are sequentially formed on a predetermined region of the second cladding layer to form a mesa structure, Comprising a current limiting layer formed on both sides, the separation optical waveguide layer has a refractive index smaller than the refractive index of the active layer and larger than the refractive index of the second cladding layer and the third cladding layer, larger than the energy band gap of the active layer and the second cladding layer And an energy bandgap smaller than the energy bandgap of the third cladding layer. 제2항에 있어서, 상기 제1클래드층과 활성층, 제2클래드층, 분리 광도파층, 제3클래드층 및 캡층은 높은 열특성을 갖도록 하는 에피텍셜 성장공정에 의해 형성된 것임을 특징으로 하는 고출력 레이저 다이오드The high power laser diode of claim 2, wherein the first cladding layer, the active layer, the second cladding layer, the separation optical waveguide layer, the third cladding layer, and the cap layer are formed by an epitaxial growth process to have high thermal characteristics. 제3항에 있어서, 상기 에패텍셜 성장공정은 LPE공정임을 특징으로 하는 고출력 레이저 다이오드.4. The high power laser diode of claim 3, wherein the epitaxial growth process is an LPE process. 제2항에 있어서, 상기 전류제한층은 계면성장이 용이한 에피텍셜 성장공정에 의해 형성된 것임을 특징으로 하는 고출력 레이저 다이오드The high power laser diode of claim 2, wherein the current limiting layer is formed by an epitaxial growth process that facilitates interfacial growth. 제5항에 있어서, 상기 에피텍셜 성장공정은 MOCVD임을 특징으로 하는 고출력 레이저 다이오드.6. The high power laser diode of claim 5, wherein the epitaxial growth process is MOCVD.
KR1019950014525A 1995-06-01 1995-06-01 High-power laser diode KR100364770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950014525A KR100364770B1 (en) 1995-06-01 1995-06-01 High-power laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950014525A KR100364770B1 (en) 1995-06-01 1995-06-01 High-power laser diode

Publications (2)

Publication Number Publication Date
KR970004173A KR970004173A (en) 1997-01-29
KR100364770B1 true KR100364770B1 (en) 2003-03-03

Family

ID=37490980

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950014525A KR100364770B1 (en) 1995-06-01 1995-06-01 High-power laser diode

Country Status (1)

Country Link
KR (1) KR100364770B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427688B1 (en) * 2002-03-09 2004-04-28 엘지전자 주식회사 Semiconductor laser diode array having high photo electricity efficiency
KR101844336B1 (en) 2011-08-01 2018-04-02 삼성전자주식회사 Signal processing apparatus and method for providing spatial

Also Published As

Publication number Publication date
KR970004173A (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US4841532A (en) Semiconductor laser
CA1196078A (en) Double channel planar buried heterostructure laser with periodic structure formed in guide layer
US6678302B2 (en) Semiconductor device and manufacturing method thereof
US5786234A (en) Method of fabricating semiconductor laser
JPS5940592A (en) Semiconductor laser element
US4644551A (en) Buried-type semiconductor laser
KR100364770B1 (en) High-power laser diode
US4870650A (en) Semiconductor laser having a boundary-region absorption layer
KR100576299B1 (en) Semiconductor laser and element for optical communication
EP0284684B1 (en) Inverted channel substrate planar semiconductor laser
US4329658A (en) Semiconductor laser device
KR0141057B1 (en) A method of manufacturing semiconductor laser
KR100284760B1 (en) Semiconductor laser diode and manufacturing method thereof
JPS58225681A (en) Semiconductor laser element
KR100446592B1 (en) Semiconductor laser diode and method for manufacturing thereof
JPS60261184A (en) Semiconductor laser device and manufacture thereof
KR0162292B1 (en) Method of manufacturing high power laser diode
KR100273337B1 (en) Method for producing high power laser diodes
KR0179017B1 (en) Method of manufacturing laser diode
KR100265804B1 (en) Semiconductor laser diode
KR100372767B1 (en) Semiconductor laser diode and fabricating method thereof
KR100736600B1 (en) Fabricating Method for Nitride Semiconductor Laser Diode
JPS5873176A (en) Semiconductor laser
JPS60163483A (en) Semiconductor laser
JPS59149078A (en) Semiconductor laser

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070918

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee