JPS59227177A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS59227177A
JPS59227177A JP10079183A JP10079183A JPS59227177A JP S59227177 A JPS59227177 A JP S59227177A JP 10079183 A JP10079183 A JP 10079183A JP 10079183 A JP10079183 A JP 10079183A JP S59227177 A JPS59227177 A JP S59227177A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
type
laser device
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10079183A
Other languages
Japanese (ja)
Inventor
So Otoshi
創 大歳
Toshihiro Kono
河野 敏弘
Takashi Kajimura
梶村 俊
Naoki Kayane
茅根 直樹
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10079183A priority Critical patent/JPS59227177A/en
Publication of JPS59227177A publication Critical patent/JPS59227177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Abstract

PURPOSE:To obtain stabilized transverse mode oscillations by a method wherein, when a clad layer, an active layer, an optical guide layer and a clad layer are laminatedly grown on a semiconductor substrate, these layers are formed into a mesa form and a semiconductor laser is constituted by surrounding these layers with a layer having a forbidden band width wider than that of the active layer and having a smaller refractive index than that, the thickness of the clad layer adjacent to the optical guide layer is set at 0.1mum or less and at the same time, a layer, which has a light absorption function, is provided thereon. CONSTITUTION:An N type Ga0.70Al0.30As clad layer 2, an undoped Ga0.86Al0.14As active layer 3, an N type Ga0.74Al0.26As optical guide layer 4, a P type Ga0.55Al0.45 clad layer 5 of a thickness of 0.1mum or less and a P type Ga0.88Al0.20As layer 6 having a function of light absorption are laminatedly grown on an N type GaAs substrate 1. Then, these layers are processed in a mesa form and surrounded with a P type Ga0.55Al0.45As buried layer 7 provided in the surface layer part of the substrate 1 and an N type Ga0.55Al0.45As buried layer 8, which is located on the buried layer 7 and has a forbidden band width wider than that of the layer 3, and at the same time, has a smaller refractive index.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明り高出力かつ横モードが安定な半導体レーザの構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a semiconductor laser with high output and stable transverse mode.

〔発明の背景〕[Background of the invention]

従来の光ガイド層付きBH型レーザ(第1図に示した構
造)や8BH型レーザ(第2図に示した構造)゛などの
LOC型レーザでは、光ガイド層に隣接するクラッド層
が厚く(1μm以上)、接合に垂直方向の高次モードが
基本モードと同程度の損失しか受けず、モード選択性に
問題があった。
In LOC type lasers such as the conventional BH type laser with a light guide layer (the structure shown in Figure 1) and the 8BH type laser (the structure shown in Figure 2), the cladding layer adjacent to the light guide layer is thick ( 1 μm or more), the higher-order mode in the direction perpendicular to the junction suffered only the same level of loss as the fundamental mode, and there was a problem in mode selectivity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、横モードが安定な高出力半導体レーザ
を提供することにある。
An object of the present invention is to provide a high-power semiconductor laser whose transverse mode is stable.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明の半導体レーザ装置
は、活性層に隣接する光ガイド層を有し、メサストライ
プの側部な活性層よりも禁制帯幅が大きく屈折率の小さ
い少なくとも1つの層により埋め込んだ半導体レーザ装
置において、光ガイド層に隣接するクラッド層の厚さが
1.0μm未満でアリ、同クラッド層に隣接して活性層
よりも禁制帯幅の小さい半導体層を有することを特徴と
する。
In order to achieve the above object, the semiconductor laser device of the present invention has an optical guide layer adjacent to an active layer, and at least one optical guide layer having a larger forbidden band width and a lower refractive index than the active layer on the side of the mesa stripe. In a layer-embedded semiconductor laser device, if the thickness of the cladding layer adjacent to the optical guide layer is less than 1.0 μm, it is acceptable to have a semiconductor layer adjacent to the cladding layer with a narrower band gap than the active layer. Features.

従来の光ガイド層付きBH型レーザ(@1図)[N、C
hinone et、al、 Appl、phys、]
[、ett、35(7)。
Conventional BH type laser with optical guide layer (@Figure 1) [N, C
hinone et, al, Appl, phys,]
[, ett, 35(7).

513〕では、光ガイド層に隣接するクラッド層の厚さ
が1μmであり、接合に垂直方向の横高次モードが基板
にしみ出す割合が小さかった。また、l8BH型レーザ
(第2図) ()i、Blauvelt et。
No. 513], the thickness of the cladding layer adjacent to the optical guide layer was 1 μm, and the proportion of transverse higher-order modes perpendicular to the junction leaking into the substrate was small. Also, the 18BH type laser (Fig. 2) ()i, Blauvelt et.

al、、 、4ppl、phys、Lett、41 (
51,485)では、光ガイド層に隣接したクラッド層
の厚さが同じく1μmであり、またクラッドに隣接した
高い光吸収の半導体層がないためJ上記の高次モードの
光吸収損失を十分期待できなかった。そこで、このよう
なLOC構造のレーザにおいて活性層に隣接するクラッ
ド層の屈折率を光ガイド層に隣接するクラッド層の屈折
率より大きい非対称クラッド組成にし、その屈折率の小
さい方のクラッド層に隣接して光吸収半導体層を設ける
。その際、高次モードの同党吸収半導体層による光吸収
損失を増し、基本モードとの損失差を増すために、光ガ
イド層と光吸収半導体層に挾まれたクラッド層の厚さを
制御することが必要である。第3図は、図の左から、A
tA3混晶比U=0.45のクラッド層、X=014の
活性層(厚さ0.084 m )、Y=0.26の光ガ
イド層(厚さ0.8μm)、Z=0.30のクラッド層
である4層スラブ導波路について等価屈折率近偏によっ
て計算したTE、モードとT E tモードの相対光強
度分布を示したものである。また、第4図は、第3図に
おいて活性層厚だけ0.15μ!nと変えた場合の図で
ある。第3図、第4図より、光ガイド層に隣接するクラ
ッド層の厚さを1.0μm未満にすれば、同クラッド層
に隣接する光吸収半導体層による高モードの損失が大き
くなることがわかる。
al, , , 4ppl, phys, Lett, 41 (
51,485), the thickness of the cladding layer adjacent to the optical guide layer is also 1 μm, and since there is no semiconductor layer with high optical absorption adjacent to the cladding, the above-mentioned optical absorption loss in the higher-order mode can be fully expected. could not. Therefore, in a laser with such a LOC structure, the refractive index of the cladding layer adjacent to the active layer is made larger than that of the cladding layer adjacent to the light guide layer, and the cladding layer adjacent to the cladding layer with the smaller refractive index is Then, a light absorbing semiconductor layer is provided. At this time, the thickness of the cladding layer sandwiched between the light guide layer and the light absorption semiconductor layer is controlled in order to increase the light absorption loss by the same absorption semiconductor layer in the higher mode and increase the loss difference from the fundamental mode. It is necessary. Figure 3 shows, from the left of the figure, A
tA3 cladding layer with mixed crystal ratio U = 0.45, active layer (thickness 0.084 m) with X = 014, light guide layer (thickness 0.8 μm) with Y = 0.26, Z = 0.30 This figure shows the relative light intensity distribution of the TE mode and the T E t mode calculated by the equivalent refractive index near-polarization for the four-layer slab waveguide which is the cladding layer. Also, in FIG. 4, the active layer thickness is 0.15μ in FIG. 3! It is a figure when it changes to n. From Figures 3 and 4, it can be seen that if the thickness of the cladding layer adjacent to the optical guide layer is less than 1.0 μm, the loss in high modes due to the light absorption semiconductor layer adjacent to the cladding layer increases. .

第5図は、従来のl8BH構造(第2図)において、光
吸収半導体層をキャップ層として付は加えた図である。
FIG. 5 is a diagram in which a light-absorbing semiconductor layer is added as a cap layer to the conventional 18BH structure (FIG. 2).

また、第6図は、光ガイド層の導電型がn型のSBH型
レーザの断面図であり、光吸収半導体層として基板を利
用している。第5図、第6図とも、光ガイド層と光吸収
半導体層の間のクラッド層の厚さは1.0μm未満とし
ている。
Further, FIG. 6 is a cross-sectional view of an SBH type laser in which the conductivity type of the light guide layer is n type, and a substrate is used as a light absorption semiconductor layer. In both FIGS. 5 and 6, the thickness of the cladding layer between the light guide layer and the light absorption semiconductor layer is less than 1.0 μm.

なお、クラッド層の屈折率差を大きくシ、光ガイド層厚
tと活性層厚di−Iる値te、 de以下にすること
で、垂直方向の高次モードをカットオフできる。しかし
、本発明によれば、t)te としてスポットサイズ(
レーヤ内における光の広がシのことで、これが大きいは
ど高い光出力を得ることができる)をXシ大きくしたり
、また、d)dcにして、しきい電流密度の低減、素子
信頼性の向上をはかるなど素子の特性改善と高次モード
抑制が両立できることになる。
Note that by making the difference in refractive index of the cladding layer large and less than the value te, de, which is the thickness t of the optical guide layer and the thickness di-I of the active layer, higher-order modes in the vertical direction can be cut off. However, according to the present invention, the spot size (
This refers to the spread of light within the layer.The larger the value, the higher the optical output can be obtained. This means that it is possible to simultaneously improve device characteristics and suppress higher-order modes.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第7図、第8図、第9図を用い
て説明することにする。
Embodiments of the present invention will be described below with reference to FIGS. 7, 8, and 9.

実施例1 第7図は、本発明によるGRAtAS 系S B I−
1型レーザの作製方法を断面図で示したものである。
Example 1 FIG. 7 shows the GRAtAS system S B I- according to the present invention.
1 is a cross-sectional view showing a method for manufacturing a type 1 laser.

同図(a)に示すようにn−GaAs基板1上に液相工
ピタキシャル成長法により 、 n  G a o−t
o A4.mA8クラッド#2、”  G ao、y4
Ato、ts A S 光ガイド層3.アンドープG’
o、ssAム、14 AS活性層4.P(3”o、ss
 Ato、4s As クラッド層5.お工びP−G 
ao、so At6.!@A S キャップ層6を順次
成長させる。次にエツチングにより同図Φ)に示すよう
にメサストライプを形成する。このメサ形成において、
メサの深さは以後の埋め込み成長を容易にする為QaA
s基板まで達していることが必要である。
As shown in FIG. 2(a), n-GaAs is grown on an n-GaAs substrate 1 by a liquid phase epitaxial growth method.
o A4. mA8 clad #2,” Gao, y4
Ato, ts A S Light guide layer 3. Undoped G'
o, ssAm, 14 AS active layer 4. P(3”o,ss
Ato, 4s As cladding layer 5. Workmanship P-G
ao, so At6. ! @A S The cap layer 6 is grown sequentially. Next, mesa stripes are formed by etching as shown in Φ) in the same figure. In this mesa formation,
The depth of the mesa is set at QaA to facilitate subsequent buried growth.
It is necessary to reach the s-substrate.

SBH型レーザでは、ストライブと直角方向において光
ガイド層幅が活性層幅よシも広くしなければならず、本
実施例では同図(C)に示したように選択エツチングに
よりpクラッド層のGap、□A/4.4SASのみ両
側から1ないし3μm程度エツチングした。
In an SBH type laser, the width of the optical guide layer must be wider than the width of the active layer in the direction perpendicular to the stripe, and in this example, the p-cladding layer is etched by selective etching as shown in FIG. Gap, □A/4.4 SAS only was etched by about 1 to 3 μm from both sides.

ここで選択エツチング液としては、HFを用いた。Here, HF was used as the selective etching solution.

その後、この選択エツチングによシストライブ側面に露
出した活性層を)ISPO4系エッチャントによシ除去
し、同図(d)に示すような断面構造を形成した。次に
、同図(e)に示すようにメサストライプを液相エピタ
キシャル成長によりP Gao、ss A、!p、1s
A8層7および”  G a o、ss Ato、as
 As 層8で埋め込んだ。ストライプ領域外では逆バ
イアスとなる為、電流はストライプ領域のみ流れること
になる。この埋め込み層はGao、ss Ato、is
 As高抵抗層でも良い。同図(f)は、素子の最終的
な断面図であり、znの選択拡散9あるいは全面拡散を
施した後、オーミック電極10.11を形成したもので
ある。
Thereafter, the active layer exposed on the side surface of the assist live by this selective etching was removed using an ISPO4 etchant to form a cross-sectional structure as shown in FIG. 4(d). Next, as shown in the figure (e), mesa stripes were formed by liquid phase epitaxial growth. p, 1s
A8 layer 7 and "G ao, ss Ato, as
Filled with As layer 8. Since the bias is reversed outside the stripe region, the current flows only in the stripe region. This buried layer is Gao, ss Ato, is
An As high resistance layer may also be used. FIG. 5(f) is a final cross-sectional view of the device, in which ohmic electrodes 10 and 11 are formed after selective diffusion 9 or full-surface diffusion of ZN.

本実施例によって、発振波長0.78μm、ストライブ
幅3〜5において光出力30〜50mWcWまで基本横
モードで発振する素子を再現性良く得ることができた。
According to this example, it was possible to obtain an element that oscillates in the fundamental transverse mode up to an optical output of 30 to 50 mWcW at an oscillation wavelength of 0.78 μm and a stripe width of 3 to 5 with good reproducibility.

また、第1表のようにnクラッド層厚を0.8μmから
1.5μmまで変化させた素子を作製した結果、1.0
μm未満の素子は、垂直方向の横モードが安定な基本モ
ードであった。
In addition, as shown in Table 1, as a result of fabricating devices in which the n-cladding layer thickness was varied from 0.8 μm to 1.5 μm, the results were 1.0 μm.
In the device smaller than μm, the transverse mode in the vertical direction was a stable fundamental mode.

実施例2 第8図は、実施例1の上記半導体レーザ装置を液相成長
の代わシに、MO−CVD法もしくはMBE法によって
作製し、活性層を量子井戸型にしたものである。図に示
したようにこの実施例の特徴は活性層4の構造にめシ、
厚さ〜120人のGaoeoAム−1OA8量子井戸を
3層、厚さ〜30AのGa5−o5 Ato、3@ A
s障壁を4層を交互に配flせた多層量子井戸型(Mu
l tiple Quantum we J l ;M
QW)の活性層にした。本実施例では、発振波長0.7
6〜0.80μm、光出力100mWまで基本横モード
で、低しきい電流(30mA以下)の素子が得られた。
Example 2 FIG. 8 shows the semiconductor laser device of Example 1 manufactured by MO-CVD or MBE instead of liquid phase growth, and the active layer is made into a quantum well type. As shown in the figure, the features of this embodiment include the structure of the active layer 4;
Thickness ~120 GaoeoA M-1OA8 quantum wells in 3 layers, thickness ~30A Ga5-o5 Ato, 3@A
A multilayer quantum well type (Mu
l tiple Quantum we J l ;M
QW) active layer. In this example, the oscillation wavelength is 0.7
A device with a thickness of 6 to 0.80 μm, a fundamental transverse mode up to an optical output of 100 mW, and a low threshold current (30 mA or less) was obtained.

実施例3 第9図は、実施例1あるいは実施fII2の半導体レー
ザ装置において、レーザ光に対して端面を透明化した素
子のレーザ光軸方向の断面構造を示したものでおる。光
ガイド層3はレーザ光反射端面まで存在し、活性層4の
端面は上記反射端面よりも内側にある構造となっている
。第7図(d)に示したメサストライプを形成した後、
端面部分のp−Gao、so、Ato4o Asキャッ
プM 6 、 p()ao、5sA−/a、n5A8ク
ラッド層5および活性層4のみを選択エツチングにより
除去する。その後、実施例1の埋め込み成長と同様にス
トライプの外部をGaA3基板層で埋め込んだ。
Embodiment 3 FIG. 9 shows a cross-sectional structure in the laser optical axis direction of the semiconductor laser device of Embodiment 1 or Embodiment fII2, in which the end face is made transparent to laser light. The light guide layer 3 exists up to the laser beam reflecting end face, and the end face of the active layer 4 is arranged inside the reflecting end face. After forming the mesa stripes shown in FIG. 7(d),
Only the p-Gao, so, Ato4o As cap M 6 , p()ao, 5sA-/a, n5A8 cladding layer 5 and active layer 4 at the end face portion are removed by selective etching. Thereafter, the outside of the stripe was buried with a GaA3 substrate layer in the same way as the buried growth in Example 1.

本実施例において、実施例1の構造で端面透明化したも
のは、発振波長0.78μm、光出力30〜50mWま
で基本横モード、かつ最大光出力IWの可視半導体レー
ザが得られた。また、実施例2の構造で端面透明化した
ものは、発振波長0.76〜0.80μm、光出力10
0mWまで基本横モード、かつ最大光出力2Wの半導体
レーザが得られた。
In this example, in the structure of Example 1 with transparent end faces, a visible semiconductor laser with an oscillation wavelength of 0.78 μm, an optical output of 30 to 50 mW in a fundamental transverse mode, and a maximum optical output IW was obtained. In addition, the structure of Example 2 with transparent end faces has an oscillation wavelength of 0.76 to 0.80 μm and an optical output of 10
A semiconductor laser with a fundamental transverse mode down to 0 mW and a maximum optical output of 2 W was obtained.

本発明は、実施例に示した波長0.78μm前後に限ら
ず、波長0.68〜0.89μmのGaA3基板系でC
W発振できる全範囲にわたり同様の結果を得た。また、
本発明はGaAtAS系以外のレーザ材料、例えばI 
nGa As P系、InGaP系に対しても同様に適
用できる。
The present invention is not limited to the wavelength of around 0.78 μm as shown in the example, but the C
Similar results were obtained over the entire range in which W oscillation was possible. Also,
The present invention is applicable to laser materials other than GaAtAS, such as I
The same can be applied to nGa As P and InGaP systems.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、n型クラッド層とn型クラッド層の屈
折率を非対称にし、光ガイド層に隣接するクラッド層の
厚さを1.0μm未満とすることで、横モード安定化と
高出力化を両立させる効果がある。素子作製の結果、発
振波長0,78μm、光出力50mWCWまで基本横モ
ードの素子が歩留り良く得られるようになった。また、
活性層を量子井戸型にすれば光出力i oomwcwt
で基本横モードが維持され、しきい電流値は30nlW
以下であった。端面の透明化により、最大光出力は活性
層が0.06μm程朋の単層の場合IW、遣イ井戸型の
場合は2Wであった。以上により、本づξ明が、横モー
ド安定化と高出力化を両立させることに相当効果がある
ことが明らかとなった。
According to the present invention, the refractive index of the n-type cladding layer and the n-type cladding layer are made asymmetric, and the thickness of the cladding layer adjacent to the light guide layer is less than 1.0 μm, thereby achieving transverse mode stabilization and high output. It has the effect of achieving both As a result of device fabrication, it has become possible to obtain devices with a fundamental transverse mode up to an oscillation wavelength of 0.78 μm and an optical output of 50 mWCW at a high yield. Also,
If the active layer is made into a quantum well type, the optical output i oomwcwt
The fundamental transverse mode is maintained, and the threshold current value is 30 nlW.
It was below. By making the end face transparent, the maximum light output was IW when the active layer was a single layer with a thickness of about 0.06 μm, and was 2W when the active layer was a double-well type. From the above, it has become clear that this ξ light is quite effective in achieving both transverse mode stabilization and high output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光ガイド層伺きBH型レーザの断面図、
第2図はl5BH型レーザの断面図、第3図および第4
図は、TEoとTEsモードの光強度分布の計算結果、
第5図は本発明による光吸収半導体のキャップ屑材きの
l5BH型レーザの断面図、第6−は本発明による8B
)T型レーザの断面図、第7図は本発明によるSBH型
レーザの作製方法及びその断面図、第8図は量子井戸型
活性層を有する素子の断面図、第9図は端面な透明化し
た場合の素子のレーザ光軸方向断面図である。 第1図 1・・・n−(1aAs基板、2−n−GaA
tA3クラッド層、3・・・n−GaAtAS光ガイド
層、4・・・アンドープGaAtA3活性層、5 ・ 
I)−GaAtASクラッド層、6・・・p−aaAt
As埋め込み層、7・・・n−GaA3基板埋め込み層
、8・・・Zn拡散層、9・・・n−電極、10・・・
p−電極′ 第2図 1・・−n−QaAs基板、2 、、、 n 
−G ao、so At64(I A S クラッド層
、3・・・アンドープG a o、os Ato、as
 A S活性層、4 ・・・I) −Gan、ysA−
10,、As光ガイド層、5・・・pG ao、ss 
Ato、sy A sクラッド層、6”’ G aO,
4OA 16.66 A S埋め込み層、7 ・・・n
oat−、AtyA8埋め込み層、8−8jO*絶縁膜
、9・・・Zn拡散層、10・・・n−電極、11・・
・p−電極 第5図 1−n−GaA3基板、2−n −GaAtA
Sクラッド層、3・・・アンドープGaAtA3活性層
、4・ P−QaAtA8光ガイド層、5 ・ I)−
GaAtASクラッド層、6・・・I)−GaASキャ
ップ層、7・・・p−GaAtAs埋め込み層、8−n
 −Ga AtAS埋め込み層s 9−sro*絶縁膜
、1O−Zn拡散層、11・・・n−電極、12・・・
p−電極第6図、第7図、第9図 1−n−QaAs基
板、2 ・・・n −Ga@、7OAto、so As
クラッド層、3−nG a o 、74 A lo 、
241 A S光ガイド層、4・・・アンドープGao
、ss Ato、+n As活性層、5 ・9−Gao
、5sAt0.uAsクラッド層、6−p−Gao、s
o Ato、iAsAsキャラ、’y・−p  Gao
−5sAto、n5As埋め込み層、8”’ ”  G
 ao−ss A/!o、46 A S埋メ込み層、9
・・・Zn拡散層、10・・・n−電極、11・・・p
−電極。 笥4図 ↑姿会面1=il?重直方向の距離χ〔〃惰〕第 5 
 口 0 第 乙 図 η   り    図 第 δ 図 YJ 9 旧
Figure 1 is a cross-sectional view of a conventional BH type laser with a light guide layer.
Figure 2 is a cross-sectional view of the 15BH type laser, Figures 3 and 4.
The figure shows the calculation results of the light intensity distribution of TEo and TEs modes.
Fig. 5 is a cross-sectional view of a 15BH type laser made of a light-absorbing semiconductor cap scrap material according to the present invention, and Fig. 6 is a sectional view of an 8B type laser according to the present invention.
) A cross-sectional view of a T-type laser, FIG. 7 is a method for manufacturing an SBH-type laser according to the present invention, and a cross-sectional view thereof, FIG. 8 is a cross-sectional view of a device having a quantum well type active layer, and FIG. 9 is a cross-sectional view of a transparent end face. FIG. 3 is a cross-sectional view of the device in the laser optical axis direction in the case of the above. Figure 1 1...n-(1aAs substrate, 2-n-GaA
tA3 cladding layer, 3... n-GaAtAS optical guide layer, 4... undoped GaAtA3 active layer, 5.
I)-GaAtAS cladding layer, 6...p-aaAt
As buried layer, 7... n-GaA3 substrate buried layer, 8... Zn diffusion layer, 9... n-electrode, 10...
p-electrode' Fig. 2 1...-n-QAAs substrate, 2,...n
-G ao, so At64 (I A S cladding layer, 3... undoped Ga o, os Ato, as
AS active layer, 4...I) -Gan, ysA-
10, As light guide layer, 5... pG ao, ss
Ato, sy As cladding layer, 6''' GaO,
4OA 16.66 A S buried layer, 7...n
oat-, AtyA8 buried layer, 8-8jO* insulating film, 9... Zn diffusion layer, 10... n- electrode, 11...
・P-electrode Figure 5 1-n-GaA3 substrate, 2-n-GaAtA
S cladding layer, 3... undoped GaAtA3 active layer, 4. P-QaAtA8 optical guide layer, 5. I)-
GaAtAS cladding layer, 6...I)-GaAS cap layer, 7...p-GaAtAs buried layer, 8-n
-Ga AtAS buried layer s 9-sro*insulating film, 1O-Zn diffusion layer, 11...n-electrode, 12...
p-electrode Fig. 6, Fig. 7, Fig. 9 1-n-QaAs substrate, 2...n-Ga@, 7OAto, so As
Cladding layer, 3-nGao, 74Alo,
241 AS optical guide layer, 4... undoped Gao
, ss Ato, +n As active layer, 5 ・9-Gao
, 5sAt0. uAs cladding layer, 6-p-Gao,s
o Ato, iAsAs character, 'y・-p Gao
-5sAto, n5As buried layer, 8"'"G
ao-ss A/! o, 46 A S embedded layer, 9
...Zn diffusion layer, 10...n-electrode, 11...p
- Electrodes. Figure 4 ↑ Figure 1 = il? Distance in the vertical direction χ [[inertia]] 5th
Mouth 0 Figure B η R Figure δ Figure YJ 9 Old

Claims (1)

【特許請求の範囲】 1、活性層に隣接する光ガイド層を有し、メサストライ
プの側部を活性層よシも禁制帯幅が大きく屈折率の小さ
い少なくとも1つの層により埋め込んだ半導体レーザ装
置において、光ガイド層に隣接するり2ラド層の厚さが
1.0μm未満であり、同クラッド層に隣接して活性層
よりも禁制帯幅の小さい半導体層を有することを特徴と
する半導体レーザ装置。 2、特許請求の範囲第1項記載の半導体レーザ装置にお
いてn型クラッド層とp型クラッド層の屈折率差が0.
01ないし0.20の範囲で異なっていることを特徴と
する半導体レーザ装置。 3、特許請求の範囲第1項、第2項の半導体レーザ装置
において、光ガイド層幅が活性層幅よシも1μm以上大
きいことを特徴とする半導体レーザ装置。 4、特許請求の範囲第1項〜第3項のいずれかにおいて
、光ガイド層の導電型がn型であることを特徴とする半
導体レーザ装置。 5、特許請求の範囲第3項記載の半導体レーザ装置にお
いて、光ガイド層の導電型がn型であり、キャップ層の
基板側幅よりも光ガイド層の活性層側幅が広く、かつ上
記光ガイド層の活性層側幅よりも基板側幅が広いことを
特徴とする半導体レーザ装置。 6、特許請求の範囲第1項〜第5項のいずれかに記載の
半導体レーザ装置において、埋込み層が基板まで達して
いることを特徴とする半導体レーザ装置。 7、特許請求の範囲第1項〜第6項のいずれかに記載の
半導体レーザ装置において、活性層が1層以上の厚さ5
人ないし300人の量子井戸層を有することを特徴とす
る半導体レーザ装置。 8、特許請求の範囲第1項〜第7項のいずれかに記載の
半導体レーザ装置において、光ガイド層がレーザ共振器
の反射端面まで存在し、活性層端面は上記反射端面より
も内側にあることを特徴とする半導体レーザ装置。
[Claims] 1. A semiconductor laser device that has an optical guide layer adjacent to an active layer, and in which the sides of the mesa stripe are embedded with at least one layer that has a larger forbidden band width and a lower refractive index than the active layer. In the semiconductor laser, the thickness of the cladding layer adjacent to the optical guide layer is less than 1.0 μm, and the semiconductor laser has a semiconductor layer adjacent to the cladding layer and having a narrower band gap than the active layer. Device. 2. In the semiconductor laser device according to claim 1, the refractive index difference between the n-type cladding layer and the p-type cladding layer is 0.
A semiconductor laser device characterized in that the difference is in the range of 0.01 to 0.20. 3. A semiconductor laser device according to claims 1 and 2, characterized in that the width of the optical guide layer is 1 μm or more larger than the width of the active layer. 4. A semiconductor laser device according to any one of claims 1 to 3, wherein the light guide layer has an n-type conductivity. 5. In the semiconductor laser device according to claim 3, the conductivity type of the light guide layer is n type, the width of the light guide layer on the active layer side is wider than the width of the cap layer on the substrate side, and A semiconductor laser device characterized in that a width of a guide layer on a substrate side is wider than a width on an active layer side. 6. A semiconductor laser device according to any one of claims 1 to 5, characterized in that the buried layer reaches the substrate. 7. In the semiconductor laser device according to any one of claims 1 to 6, the active layer has a thickness of one or more layers.
A semiconductor laser device characterized by having a quantum well layer of 300 to 300 people. 8. In the semiconductor laser device according to any one of claims 1 to 7, the optical guide layer exists up to the reflective end face of the laser resonator, and the active layer end face is located inside the reflective end face. A semiconductor laser device characterized by:
JP10079183A 1983-06-08 1983-06-08 Semiconductor laser Pending JPS59227177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10079183A JPS59227177A (en) 1983-06-08 1983-06-08 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10079183A JPS59227177A (en) 1983-06-08 1983-06-08 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59227177A true JPS59227177A (en) 1984-12-20

Family

ID=14283254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10079183A Pending JPS59227177A (en) 1983-06-08 1983-06-08 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59227177A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777148A (en) * 1985-01-30 1988-10-11 Massachusetts Institute Of Technology Process for making a mesa GaInAsP/InP distributed feedback laser
US5045499A (en) * 1987-09-01 1991-09-03 Research Development Corporation Of Japan Method of manufacturing a distributed brass reflector type semiconductor laser
JPH03250684A (en) * 1990-02-28 1991-11-08 Fujitsu Ltd Manufacture of mesa buried type optical semiconductor device
US5082799A (en) * 1990-09-14 1992-01-21 Gte Laboratories Incorporated Method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
US5222091A (en) * 1990-09-14 1993-06-22 Gte Laboratories Incorporated Structure for indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777148A (en) * 1985-01-30 1988-10-11 Massachusetts Institute Of Technology Process for making a mesa GaInAsP/InP distributed feedback laser
US5045499A (en) * 1987-09-01 1991-09-03 Research Development Corporation Of Japan Method of manufacturing a distributed brass reflector type semiconductor laser
JPH03250684A (en) * 1990-02-28 1991-11-08 Fujitsu Ltd Manufacture of mesa buried type optical semiconductor device
US5082799A (en) * 1990-09-14 1992-01-21 Gte Laboratories Incorporated Method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
WO1992005576A1 (en) * 1990-09-14 1992-04-02 Gte Laboratories Incorporated New structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
US5222091A (en) * 1990-09-14 1993-06-22 Gte Laboratories Incorporated Structure for indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor

Similar Documents

Publication Publication Date Title
US4845724A (en) Semiconductor laser device having optical guilding layers of unequal resistance
EP0579244B1 (en) A semiconductor laser and a method for producing the same
JPS59227177A (en) Semiconductor laser
JPH0416032B2 (en)
JPS61164287A (en) Semiconductor laser
JPS59145590A (en) Semiconductor laser device
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JP2523643B2 (en) Semiconductor laser device
JPS637692A (en) Semiconductor light-emitting device
JPS61134094A (en) Semiconductor laser
JPS61112392A (en) Semiconductor laser and manufacture thereof
JPH03104292A (en) Semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JPS60132381A (en) Semiconductor laser device
JP2806695B2 (en) Semiconductor laser device
JPH0576794B2 (en)
JPH0410688A (en) Light-emitting element of algainp semiconductor
JPH0770779B2 (en) Semiconductor laser manufacturing method
JPH0590706A (en) Semiconductor laser element
JPH07235725A (en) Semiconductor laser element and its manufacture
JP2908125B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0350885A (en) Buried semiconductor optical element
JPS622720B2 (en)
JPH03116991A (en) Semiconductor laser device
JPH07122813A (en) Manufacture of semiconductor laser