JPS62221179A - Embedded semiconductor laser - Google Patents

Embedded semiconductor laser

Info

Publication number
JPS62221179A
JPS62221179A JP6510786A JP6510786A JPS62221179A JP S62221179 A JPS62221179 A JP S62221179A JP 6510786 A JP6510786 A JP 6510786A JP 6510786 A JP6510786 A JP 6510786A JP S62221179 A JPS62221179 A JP S62221179A
Authority
JP
Japan
Prior art keywords
buried layer
buried
substrate
layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6510786A
Other languages
Japanese (ja)
Other versions
JPH0426793B2 (en
Inventor
Shinzo Suzaki
慎三 須崎
Tatsuya Ito
達也 伊藤
Yasuharu Suematsu
末松 安晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Japan Science and Technology Agency
Tokyo Institute of Technology NUC
Original Assignee
Fujikura Ltd
Research Development Corp of Japan
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Research Development Corp of Japan, Tokyo Institute of Technology NUC filed Critical Fujikura Ltd
Priority to JP6510786A priority Critical patent/JPS62221179A/en
Publication of JPS62221179A publication Critical patent/JPS62221179A/en
Publication of JPH0426793B2 publication Critical patent/JPH0426793B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive not to increase the leakage current even at the time of injection of a high current and to attain a high optical output and a high efficiency in the titled semiconductor laser by a method wherein the laser is composed of a semiconductor substrate, a first buried layer which has a conductivity type opposite to that of the semiconductor substrate and a band gap energy smaller than that of a second buried layer, a second buried layer having a conductivity type opposite to that of the semiconductor substrate, and a third buried layer having the same conductivity type as that of the semiconductor substrate. CONSTITUTION:This semiconductor laser is constituted of a p-type InP substrate 1, an InGaAsP active layer 2, an n-type InP clad layer 3, an insulating film 6 and electrodes 7 and 8; and an n-type InGaAsP first buried layer 11, which is a semiconductor layer having the opposite conductivity type to the conductivity type of the substrate 1 and has a band gap energy smaller than that of an n-type InP second buried layer 12, is interposed between the substrate 1 and the second buried layer 12. A hetero transistor of a p-n-n-P structure is composed of the substrate 1, the buried layers 11 and 12 and a p-type InP third buried layer 13 and the gain is very small. Accordingly, the leakage current can be very lessened even at the time of injection of a high current and a large optical output can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、主に光通信の光源として用いられろ埋込型
半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a buried semiconductor laser mainly used as a light source for optical communications.

「従来の技術」 近年、レーザ発振が単−横モードで安定に行なわれる長
所があることから、各種の埋込型半導体レーザが開発さ
れ、実用化されている。第3図はこの種の半導体レーザ
の一例を示す断面図であり、この図において、lはp−
rnP基板、2はInGaAsP活性層、3はn−1n
Pクラッド層、4はn−InP第1埋込層、5はp−r
nP第2埋込層、6は絶縁膜、7,8は電極である。
"Prior Art" In recent years, various buried semiconductor lasers have been developed and put into practical use because they have the advantage of stably performing laser oscillation in a single transverse mode. FIG. 3 is a cross-sectional view showing an example of this type of semiconductor laser, and in this figure, l is p-
rnP substrate, 2 is InGaAsP active layer, 3 is n-1n
P cladding layer, 4 n-InP first buried layer, 5 p-r
The nP second buried layer, 6 is an insulating film, and 7 and 8 are electrodes.

「発明が解決しようとする問題点」 上述した従来の埋込型半導体レーザにおいては、図から
明らかなように、基板1および第1.第2埋込層4.5
がp −n −p トランジスタを構成しており、その
エネルギバンド図は、バイアスなしの場合に第4図(イ
)のようになり、また、電極8,7に各々正、負のバイ
アス電圧を印加した場合は、第4図(ロ)のようになる
。なお、図において、Fはフェルミレベル、Egはエネ
ルギギャップを示す。
"Problems to be Solved by the Invention" In the conventional buried semiconductor laser described above, as is clear from the figure, the substrate 1 and the first . Second buried layer 4.5
constitutes a p-n-p transistor, and its energy band diagram is as shown in Fig. 4 (a) without bias, and when positive and negative bias voltages are applied to electrodes 8 and 7, respectively When the voltage is applied, the result will be as shown in FIG. 4 (b). In the figure, F indicates the Fermi level and Eg indicates the energy gap.

ところで、基板lおよび埋込層4,5がトランジスタ構
造になっている場合、埋込層4,5を通るリーク電流が
トランジスタのベース電流となり、この結果、上記リー
ク電流がある程度以上に増えると、埋込層4,5に大き
な電流が流れてしまう(トランジスタがオン状態−とな
る)。したがって、従来の埋込型半導体レーザにおいて
は、特に高注入電流時において、埋込層4,5を通るリ
ーク電流が増加し、これにより光出力および効率が低下
してし−まう問題があった。第5図における実線L1は
、従来の埋込型半導体レーザの注入電流−光出力特性を
示しており、この図から明らかなように、従来のレーザ
は注入電流が増加すると、特性曲線の傾きが徐々に小さ
くなり、最終的に光出力が飽和してしまう。
By the way, when the substrate l and the buried layers 4 and 5 have a transistor structure, the leakage current passing through the buried layers 4 and 5 becomes the base current of the transistor, and as a result, if the leakage current increases beyond a certain level, A large current flows through the buried layers 4 and 5 (the transistors are turned on). Therefore, in conventional buried semiconductor lasers, there has been a problem in that the leakage current passing through the buried layers 4 and 5 increases, especially when the injection current is high, and this reduces optical output and efficiency. . The solid line L1 in FIG. 5 indicates the injection current vs. optical output characteristic of the conventional buried semiconductor laser. As is clear from this figure, as the injection current increases, the slope of the characteristic curve of the conventional laser increases. It gradually becomes smaller and eventually the light output becomes saturated.

この発明は上述した事情に鑑みてなされたもので、その
目的は、高注入電流時においてら、リーク電流が増加す
ることなく、これにより、高光出力、高効率を達成する
ことができる埋込型半導体レーザを提供することにある
This invention has been made in view of the above-mentioned circumstances, and its purpose is to provide an embedded type that can achieve high optical output and high efficiency without increasing leakage current even when a high injection current is applied. The purpose of the present invention is to provide semiconductor lasers.

「問題点を解決するための手段」 この発明は、半導体基板上に形成されたストライプ状の
活性層の両側部を、半導体基板上に順次積層された複数
の埋込層によって埋め込んでなる埋込型半導体レーザに
おいて、複数の埋込層を、半導体基板と反対導電型の、
かつ第2埋込層よリバンドギャップエネルギの小さい第
1埋込層と、半導体基板と反対導電型の第2埋込層と、
半導体基板と同一導電型の第3埋込層とから構成したこ
とを特徴としている。
``Means for Solving the Problems'' This invention provides a buried method in which both sides of a striped active layer formed on a semiconductor substrate are buried with a plurality of buried layers sequentially stacked on the semiconductor substrate. type semiconductor laser, the multiple buried layers are of the opposite conductivity type to the semiconductor substrate.
and a first buried layer having smaller reband gap energy than the second buried layer, and a second buried layer having a conductivity type opposite to that of the semiconductor substrate.
It is characterized in that it is composed of a semiconductor substrate and a third buried layer of the same conductivity type.

「実施例」 以下、図面を参照してこの発明の一実施例について説明
する。第1図はこの発明の一実施例の構成を示す断面図
である。この図において、lはp−InP基板、2は[
nGaAsP活性層、3はn−1nPクラッド層、6は
絶縁膜、7.8は電極であり、これらの構成は第3図の
ものと同じである。
"Embodiment" Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. In this figure, l is a p-InP substrate, 2 is [
The nGaAsP active layer, 3 an n-1nP cladding layer, 6 an insulating film, and 7.8 electrodes, these structures are the same as those shown in FIG.

また、12はn−InP第2埋込層、13はp−1nP
第3埋込層であり、これらら第3図の埋込層4゜5と同
一である。そして、この実施例による半導体レーザが第
3図の半導体レーザと異なる点は、基板1と第2埋込層
12との間に、基板1と反対導電型で、かつバンドギャ
ップエネルギの小さい半導体層、すなわちこの実施例に
おいてはn−InGaAsP第1埋込層11が介在され
ている点である。
Further, 12 is an n-InP second buried layer, and 13 is a p-1nP layer.
This is the third buried layer, and is the same as the buried layer 4.5 in FIG. The semiconductor laser according to this embodiment is different from the semiconductor laser shown in FIG. That is, in this embodiment, an n-InGaAsP first buried layer 11 is interposed.

この実施例において、基板!および埋込層If〜13は
、p−n−n−pi造のへテロトランジスタを構成して
おり、そのエネルギバンド図は、バイアスなしの場合に
第2図(イ)のようになり、また、電極8.7に各々正
、負バイアス電圧を印加した時は、第2図(ロ)のよう
になる。ところで、バイアス時において、埋込層11〜
13を通るリーク電流は、第2図(ロ)に示すように、
正孔りとして基板lから第1埋込層11へ注入される。
In this example, the substrate! and the buried layer If~13 constitute a p-n-n-pi heterotransistor, and its energy band diagram is as shown in FIG. 2 (a) in the case of no bias, and , when positive and negative bias voltages are applied to the electrodes 8 and 7, respectively, as shown in FIG. 2 (b). By the way, at the time of bias, the buried layers 11 to
The leakage current passing through 13 is as shown in Figure 2 (b).
The holes are injected from the substrate l into the first buried layer 11.

しかし、この実施例においては、第1埋込層11のバン
ドギャップエネルギが第2埋込12のバンドギャップエ
ネルギより小さく、この結果、図に示すエネルギ障壁(
ヘテロ障壁)■ができ、このエネルギ障壁によって、正
孔りの第2埋込層12への拡散がせき止められる。すな
わち、この実施例によれば、基板1および埋込層11−
13によって形成されるトランジスタの利得が極めて小
さく、したがつて、高注入電流時においてら、リーク電
流を極めて小さくすることができ、これにより、大きな
光出力を得ることができる。この実施例の光出力特性を
、第5図に破線L2によって示す。
However, in this embodiment, the bandgap energy of the first buried layer 11 is smaller than the bandgap energy of the second buried layer 12, resulting in an energy barrier (
A heterobarrier (2) is formed, and this energy barrier prevents holes from diffusing into the second buried layer 12. That is, according to this embodiment, the substrate 1 and the buried layer 11-
The gain of the transistor formed by the transistor 13 is extremely small, so even when a high current is injected, the leakage current can be made extremely small, thereby making it possible to obtain a large optical output. The optical output characteristics of this example are shown in FIG. 5 by a broken line L2.

なお、第1埋込層11のバンドギャップ波長λ9は、活
性層2のλ9が1.3μmの場合に1.0〜1.25μ
m程度、活性層2のλ9が1.5〜1゜6μmの場合に
1.1〜1.35μm程度が適切である。また、第3埋
込層I3の上に、熱ダメージを避けるため、および平坦
性を増すために、p(またはn) −I nGaAsP
層を積層してもよい。
Note that the bandgap wavelength λ9 of the first buried layer 11 is 1.0 to 1.25 μm when λ9 of the active layer 2 is 1.3 μm.
When λ9 of the active layer 2 is 1.5 to 1.6 μm, a suitable value is about 1.1 to 1.35 μm. Moreover, p (or n) -I nGaAsP is added on the third buried layer I3 to avoid thermal damage and to increase flatness.
The layers may be laminated.

また、上記実施例はp型基板lを用いているが、この発
明はn型基板を用いた半導体レーザにも適用可能である
。この場合、埋込層11−13の導電型が逆になる。ま
た、この発明は、GaAs系の半導体レーザにら適用可
能である。更にこの発明は、ファブリペロ−型レーザ、
分布帰還型レーザ、分布反射型レーザ等各種の半導体レ
ーザに適用可能である。
Further, although the above embodiment uses a p-type substrate l, the present invention is also applicable to a semiconductor laser using an n-type substrate. In this case, the conductivity types of the buried layers 11-13 are reversed. Further, the present invention is applicable to GaAs-based semiconductor lasers. Further, the present invention provides a Fabry-Perot type laser,
It is applicable to various semiconductor lasers such as distributed feedback lasers and distributed reflection lasers.

「発明の効果」 以上説明したように、この発明によれば、高注入電流時
においても、リーク電流を極めて小さくすることができ
る。これにより、高光出力、高効率の半導体レーザを得
ることができ、長距離通信用の光源として極めて有用で
ある。また、この発明による半導体レーザは、高出力が
得られることから、光ファイバとの結合効率が悪くても
、光フアイバ端出力を大きくでき、この結果、光ファイ
バとの結合が容易になり、また、中継器間のスパン長ら
長くとることができる。また、一定光出力でエージング
にかける場合も、効率が高い分だけ低電流で駆動するこ
とができ、温度特性、信頼性も向上する。
"Effects of the Invention" As explained above, according to the present invention, leakage current can be made extremely small even when a high injection current is applied. This makes it possible to obtain a semiconductor laser with high optical output and high efficiency, which is extremely useful as a light source for long-distance communications. Furthermore, since the semiconductor laser according to the present invention can obtain high output, even if the coupling efficiency with the optical fiber is poor, the output at the end of the optical fiber can be increased, and as a result, coupling with the optical fiber becomes easy. , the span length between repeaters can be made longer. Furthermore, when aging is performed with a constant light output, the higher efficiency allows driving with lower current, improving temperature characteristics and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成を示す断面図、第2
図(イ)、(ロ)は各々同実施例の非バイアス時および
バイアス時のエネルギバンド図、第3図は従来の埋込型
半導体レーザの構成例を示す断面図、第4図(イ)、(
ロ)は各々、同半導体レーザの非バイアス時およびバイ
アス時のエネルギバンド図、第5図は、第1図および第
3図の半導体レーザの各先出カー注入電流特性を示す図
である。 l・・・・・・半導体基板、2・・・・・・活性層、1
1 山・・・第1埋込層、12・・・・・・第2埋込層
、13・・・・・・第3埋込層
FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, and FIG.
Figures (A) and (B) are energy band diagrams of the same embodiment in non-biased and biased states, respectively. Figure 3 is a cross-sectional view showing an example of the configuration of a conventional buried semiconductor laser. Figure 4 (A). ,(
b) are energy band diagrams of the same semiconductor laser in non-biased and biased states, and FIG. 5 is a diagram showing the Kerr injection current characteristics of the semiconductor lasers shown in FIGS. 1 and 3. l... Semiconductor substrate, 2... Active layer, 1
1 Mountain: first buried layer, 12: second buried layer, 13: third buried layer

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成されたストライプ状の活性層の両側
部を、前記半導体基板上に順次積層された複数の埋込層
によって埋め込んでなる埋込型半導体レーザにおいて、
前記複数の埋込層を、前記半導体基板と反対導電型の、
かつ第2埋込層よリバンドギャップエネルギの小さい第
1埋込層と、前記半導体基板と反対導電型の第2埋込層
と、前記半導体基板と同一導電型の第3埋込層とから構
成してなる埋込型半導体レーザ。
A buried semiconductor laser in which both sides of a striped active layer formed on a semiconductor substrate are buried by a plurality of buried layers sequentially stacked on the semiconductor substrate,
The plurality of buried layers are of a conductivity type opposite to that of the semiconductor substrate.
and a first buried layer having smaller reband gap energy than the second buried layer, a second buried layer having a conductivity type opposite to that of the semiconductor substrate, and a third buried layer having the same conductivity type as the semiconductor substrate. An embedded semiconductor laser.
JP6510786A 1986-03-24 1986-03-24 Embedded semiconductor laser Granted JPS62221179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6510786A JPS62221179A (en) 1986-03-24 1986-03-24 Embedded semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6510786A JPS62221179A (en) 1986-03-24 1986-03-24 Embedded semiconductor laser

Publications (2)

Publication Number Publication Date
JPS62221179A true JPS62221179A (en) 1987-09-29
JPH0426793B2 JPH0426793B2 (en) 1992-05-08

Family

ID=13277341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6510786A Granted JPS62221179A (en) 1986-03-24 1986-03-24 Embedded semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62221179A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884485A (en) * 1981-11-13 1983-05-20 Nec Corp Buried hetero-structure semiconductor laser
JPS59112671A (en) * 1982-12-20 1984-06-29 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884485A (en) * 1981-11-13 1983-05-20 Nec Corp Buried hetero-structure semiconductor laser
JPS59112671A (en) * 1982-12-20 1984-06-29 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor laser

Also Published As

Publication number Publication date
JPH0426793B2 (en) 1992-05-08

Similar Documents

Publication Publication Date Title
JP2863773B2 (en) Surface-emitting type semiconductor laser device
US4811352A (en) Semiconductor integrated light emitting device
US4280108A (en) Transverse junction array laser
US10305251B2 (en) Laser diodes with layer of graphene
JPH0194689A (en) Optoelectronic semiconductor element
US4716570A (en) Distributed feedback semiconductor laser device
JPS62221179A (en) Embedded semiconductor laser
US4833510A (en) Semiconductor laser array with independently usable laser light emission regions formed in a single active layer
JPS61210689A (en) Structure of semiconductor laser and manufacture of said laser
JPS62291987A (en) Optical integrated device
JPS58207690A (en) Buried type semiconductor laser
JP2508332B2 (en) Integrated optical modulator
JPS6018988A (en) Semiconductor laser
JP2740165B2 (en) Semiconductor laser
JPS6320398B2 (en)
JPS6355878B2 (en)
JPH07202321A (en) Light semiconductor device
JPS61150294A (en) Semiconductor light emitting device
JPS6123382A (en) Multi-wavelength semiconductor laser
JPH0614573B2 (en) Semiconductor laser
JPH0666523B2 (en) Semiconductor optical memory
JPS6355984A (en) End face light emitting diode
JPS62130583A (en) Semiconductor laser and manufacture thereof
JPH05226780A (en) Semiconductor light emitting device
JPH07142697A (en) Optical semiconductor device