JPS60154587A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS60154587A
JPS60154587A JP1119184A JP1119184A JPS60154587A JP S60154587 A JPS60154587 A JP S60154587A JP 1119184 A JP1119184 A JP 1119184A JP 1119184 A JP1119184 A JP 1119184A JP S60154587 A JPS60154587 A JP S60154587A
Authority
JP
Japan
Prior art keywords
type
layer
impurity
cladding layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119184A
Other languages
Japanese (ja)
Inventor
Kenji Endo
健司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1119184A priority Critical patent/JPS60154587A/en
Publication of JPS60154587A publication Critical patent/JPS60154587A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an AlGaAs laser having long life by forming a P type second clad layer, the size of forbbiden band width thereof lies between an active layer and a P type first clad layer and which uses Ge as an impurity, between both layers. CONSTITUTION:An N type AlyGa1-yAs clad layer 2, a P type or N type AlxGa1-xAs active layer 3, a P type AlzGa1-zAs second clad layer 4, a P type AlvGa1-vAs first clad layer 5 and an N type GaAs cap layer 6 are grown on an N type GaAs substrate 1 in succession, and a current constriction constitution is formed by a striped selective diffusion region 7 consisting of Zn. The Al mixed crystal ratios of each AlGaAs layer have the relationship of y, v>z>x. Ge is used as an impurity in the layer 4 and Mg or Zn as an impurity in the layer 5. The diffusion coefficient of Ge is remarkably smaller than that of Mg or Zn, and Ge does not diffuse even during a high-temperature process on crystal growth. Accordingly, the movement of a P-N junction and the deterioration of the crystallizability of the active layer can be prevented, and long life can be realized.

Description

【発明の詳細な説明】 〔発明の属する技術分野の説明〕 本発明れ寿命の長いklG(JtBレーザに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Description of the technical field to which the invention pertains] The present invention relates to a long-life KlG (JtB) laser.

〔従来技術の説明〕[Description of prior art]

従来使用されてきたN!I;aA6レーザの多くは、p
型クラッド層不純物に4あるいは4を用いたものである
。これは、G#と比較してM混晶比の大きな)JG5A
sクラッド層に対してもキャリア密度を高くでき、素子
の電気抵抗を小さくできる利点があるためである。とこ
ろが、これらの不純物は結晶成長時の高温プロセスを経
る間に活性層−や餡型クラッド層などの周囲の層へ容易
に拡散し、素子特性と寿命を損なう原因、になっていた
0例えば、拡散した殉あるいは4によって外型クラッド
層の一部がp臘に変換され、PN接合が活性層から離れ
た位置に形成される場合がある。このような素子では、
活性層へのキャリア注入効率が悪いため閾値電流値が高
く、効率も低い、s型クラッド層のキャリア密度を高め
てこれを防止すると、n型クラッド層へドープした多量
の%屋不純物が原因牛なってn型クラッド層表面にテラ
スが生じ、この上に形成される活性層の厚さが不均一に
なったり、結晶性が損われるといった新たな問題が生じ
る。
The conventionally used N! I; Many of the aA6 lasers are p
4 or 4 is used as the type cladding layer impurity. This is JG5A (which has a large M mixed crystal ratio compared to G#).
This is because there is an advantage that the carrier density can be increased even in the s-cladding layer, and the electrical resistance of the element can be reduced. However, these impurities easily diffuse into surrounding layers such as the active layer and bean-type cladding layer during the high-temperature process during crystal growth, causing deterioration of device characteristics and life. A part of the outer cladding layer may be converted into a p-type layer due to the diffused metal oxide, and a p-n junction may be formed at a position away from the active layer. In such an element,
The threshold current value is high and the efficiency is low due to poor carrier injection efficiency into the active layer.If this is prevented by increasing the carrier density in the S-type cladding layer, a large amount of impurities doped into the N-type cladding layer will cause the problem. As a result, terraces are formed on the surface of the n-type cladding layer, causing new problems such as uneven thickness of the active layer formed thereon and loss of crystallinity.

また、いずれの場合においても、p凰不純物原子−□の
移動に伴なって活性層中に空孔や格子間原子が形成され
ることは避けられず、これらの結晶欠陥が素子劣化原因
になって寿命は短かかったのである。
Furthermore, in any case, it is inevitable that vacancies and interstitial atoms are formed in the active layer due to the movement of p-impurity atoms, and these crystal defects cause device deterioration. Therefore, its lifespan was short.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の目的性上記従来の欠点を改善し、長寿命なA7
!GaAsレーザを提供することにある。
Purpose of the present invention Improves the above-mentioned conventional drawbacks and provides a long-life A7.
! The purpose of the present invention is to provide a GaAs laser.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明はAlzGal−zAs活性層(0<z<1>と
、第1のp型Mρa1−υAsクラッド層との間に、禁
制帯幅が両層の中間の大きさで不純物K G、を用いた
pmMG(IA8第2クラッド層(、<g<v)を設け
たことを特徴とするM痴al−asレーザである。
The present invention uses an impurity KG between the AlzGal-zAs active layer (0<z<1>) and the first p-type Mρa1-υAs cladding layer, with a forbidden band width between the two layers. This is an M-al-as laser characterized by providing a pmMG (IA8 second cladding layer (,<g<v)).

〔実施例の説明〕[Explanation of Examples]

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例の概略図を示す。FIG. 1 shows a schematic diagram of a first embodiment of the invention.

第1図において、ル型G、A、基板1上にn型楠^ト。In FIG. 1, there are L-types G and A, and an n-type camphor on the substrate 1.

んクラッド層2、p屋あるいはn型1’JJat−込8
活性層3、’I) mAAtzc(Ll−gAB第2ク
ラッド層4、p型Mραl−τA8第1クラッド層5、
n % G必8キャップ層6を順次成長した後、4のス
トライプ状選択拡散(領域7)によって電流狭窄構造を
形成し、その表面にp側電極8、裏面にn側電極9を設
けてプレーナストライプ型レーザとしたものである。
cladding layer 2, p-type or n-type 1'JJat-included 8
Active layer 3, 'I) mAAtzc (Ll-gAB second cladding layer 4, p-type Mραl-τA8 first cladding layer 5,
After sequentially growing the n%G cap layer 6, a current confinement structure is formed by stripe-like selective diffusion (region 7), and a p-side electrode 8 is provided on the front surface and an n-side electrode 9 is provided on the back surface to form a planar structure. This is a striped laser.

各A7!GaAs層のM混晶比はy、v>z>πの関係
にある。
Each A7! The M mixed crystal ratio of the GaAs layer has a relationship of y, v>z>π.

p型筒2クラッド層4の不純物にはG、を、p型第1ク
ラッド層5の不純物には鞠あるいは4を用いる。G#は
均や4に比較して拡散係数が著しく小さいという性質が
あり、結晶成長時の750〜800℃の高温プロセス中
であっても拡散しない。このだめ活性層3に接する第2
クラッド層4のp型不純物にG、を用いることにより、
PN接合の移動、活性層の結晶性の劣化を防止でき、長
寿命を実現できる。一方G、を)JGaAs層にドープ
して実現できるキャリア密度は、杓やムを用いた場合に
比較して小さく、しかもM混晶比が大きい程その値が低
くなる性質があるものの、第2クラッド層4のM混晶比
2を低く抑え、かつ層厚を薄くするとともに、第1クラ
ッド層5の不純物には殉あるいは7/nt用いてキャリ
ア密度を充分高くすれば、素子の電気抵抗を実用的に充
分小さな値にすることができる。
G is used as an impurity in the cladding layer 4 of the p-type cylinder 2, and G or 4 is used as an impurity in the p-type first cladding layer 5. G# has a property that it has a significantly smaller diffusion coefficient than G#4, and does not diffuse even during the high temperature process of 750 to 800° C. during crystal growth. The second layer in contact with this active layer 3
By using G as the p-type impurity of the cladding layer 4,
Movement of the PN junction and deterioration of the crystallinity of the active layer can be prevented, and a long life can be achieved. On the other hand, the carrier density that can be achieved by doping (G) into the JGaAs layer is smaller than that achieved by using a scoop or a cup, and the value decreases as the M mixed crystal ratio increases. If the M mixed crystal ratio 2 of the cladding layer 4 is kept low, the layer thickness is made thin, and the carrier density is made sufficiently high by using impurities of 1/nt or 7/nt for the first cladding layer 5, the electrical resistance of the element can be reduced. The value can be made small enough for practical use.

たとえば、光情報処理用光源として最も広く用いられて
いる発振波長が0.78μmの編込、レーザの場合には
M混晶比(Q<z<1)、層厚、電気抵抗は以下のよう
になる。活性層30M混晶比2は0.15となる。注入
キャリアを活性層にとじ込めるのに充分なヘテ四障壁を
設けるにはクラッド層のM混晶比を活性層より0.3以
上大きくする必要があるとされていることから、p型温
1クラッド層50M混晶比嘗を0.45とする。このと
き、不純物Kh!igを用いると4 XIO”am−”
のキャリア密度が実現でき、比抵抗は約2X10”Ω・
鑞と小さい。一方、p型筒2クラッド層4のキャリア・
密度は、M混晶比2が0.45では1 x1o17以下
と低く制限されてしまうのに対し、2を0.35にする
と、2〜3X101″cIL−”が実現できる。
For example, in the case of a braided laser with an oscillation wavelength of 0.78 μm, which is most widely used as a light source for optical information processing, the M mixed crystal ratio (Q<z<1), layer thickness, and electrical resistance are as follows. become. The active layer 30M mixed crystal ratio 2 is 0.15. It is said that in order to provide a sufficient heterobarrier to trap injected carriers in the active layer, it is necessary to make the M mixed crystal ratio of the cladding layer 0.3 or more higher than that of the active layer. The cladding layer 50M mixed crystal ratio is set to 0.45. At this time, impurity Kh! If you use ig, 4 XIO”am-”
A carrier density of approximately 2×10”Ω can be achieved, and a specific resistance of approximately 2×10”
Tiny and small. On the other hand, the carrier of the p-type cylinder 2 cladding layer 4
When the M mixed crystal ratio 2 is 0.45, the density is limited to 1×1017 or less, whereas when 2 is set to 0.35, 2 to 3×101″cIL−” can be achieved.

このときの比抵抗は約0.2Ω・儂である。第1クラッ
ド層の厚さは1.5踊と厚く、第2クラッド層5は0.
5μmと薄くする。素子の電気抵抗はキャリアの移動度
の小さいp型AiG(A8層の抵抗の大きさで決まって
しまうから、上述の層厚、比抵抗から共振器長300紬
、電流侠客ストライプ7の幅が12μ常のレーザ素子の
電気抵抗を見積もると約0.49と実用的に充分な小さ
な値を得ることができる。第1クラッド層5中の梅は従
来の素子と同様に結晶成長時の高温プロセス中に拡散す
るが、その距離ハ0.2〜0.34!である。厚さが0
.5μmの第2クラッド層4が活性層3と第1クラッド
層5とを隔てているため、殉原子は活性層4に達せず、
、活り層4の結晶性を損うことはない。一方n型クラッ
ド層は、峰の拡散によって導電型が反転することがない
から、テラスを生じるなどの問題が起こらない一値、た
とえば5 XIO”am−3のキャリア密度に設定する
ことができる。M混晶比Vけ0.45とする。このとき
比抵抗はlXl0”−”Ω・儂と小さく、素子抵抗への
寄与は無視できる。
The specific resistance at this time is approximately 0.2Ω·me. The thickness of the first cladding layer is as thick as 1.5 degrees, and the thickness of the second cladding layer 5 is as thick as 0.5 degrees.
Make it as thin as 5 μm. The electrical resistance of the element is determined by the resistance of the p-type AiG layer (A8), which has low carrier mobility, so from the layer thickness and specific resistance mentioned above, the resonator length is 300 mm, and the width of the current band stripe 7 is 12 μm. If we estimate the electrical resistance of a conventional laser element, we can obtain a value as small as approximately 0.49, which is sufficiently small for practical use.As with conventional elements, the plumes in the first cladding layer 5 are formed during the high-temperature process during crystal growth. However, the distance is 0.2~0.34!.Thickness is 0.
.. Since the second cladding layer 4 with a thickness of 5 μm separates the active layer 3 and the first cladding layer 5, martyred atoms do not reach the active layer 4.
, the crystallinity of the active layer 4 is not impaired. On the other hand, since the conductivity type of the n-type cladding layer is not reversed due to peak diffusion, the carrier density can be set to a single value, for example, 5 XIO" am-3, which does not cause problems such as formation of terraces. It is assumed that the M mixed crystal ratio V is 0.45.At this time, the specific resistance is as small as lXl0''-''Ω·儂, and its contribution to the element resistance can be ignored.

第2図は本発明第2の実施例の平凸導波路mMG必8レ
ーザの概略図である。この実施例は活性層3とn型クラ
ッド層2との間に断面を平凸型の形状とした縞^1−v
As導波路層10 (g<区y)を設けることKよって
安定な基本横モード発振を可能にしたM−〜レーザであ
る。平凸型の導波路層lOを形成するためICあらかじ
め溝を形成したn型G、zA8基板11を用い、その上
に溝部に窪みを残してn型クラッド層2を形成する。他
の点は第1の実施例と同様の方決で作成する。同一構成
部分には同一番号を付して説明を省略する。不純物にG
εを用いた第2クラッド層の効果によって、電気抵抗な
どの素子特性を損うことなく横モード制御された長寿命
なM−〜レーザを実現することができる。
FIG. 2 is a schematic diagram of a plano-convex waveguide mmG laser according to a second embodiment of the present invention. In this embodiment, stripes ^1-v with a plano-convex cross section are formed between the active layer 3 and the n-type cladding layer 2.
This is an M laser that enables stable fundamental transverse mode oscillation by providing the As waveguide layer 10 (g<y). In order to form a plano-convex waveguide layer IO, an n-type G, zA8 substrate 11 on which an IC groove has been formed in advance is used, and an n-type cladding layer 2 is formed thereon, leaving a depression in the groove. The other points are made in the same manner as in the first embodiment. Identical components are given the same numbers and their explanations will be omitted. G for impurities
Due to the effect of the second cladding layer using ε, it is possible to realize a long-life M-~ laser in which the transverse mode is controlled without impairing device characteristics such as electrical resistance.

第3図は、本発明第3の実施例の埋め込み型MG緯、レ
ーザの概略図である。この実施例では第1の実施例と同
様の方法で1〔i8基板1上にエピタキシャル成長した
I’JGaA−a多層薄膜2〜7を、n型GaA、基板
に達する深さに選択的にエツチングした後、p m、A
Al18Gct−aA第1埋込み層211s型AJtG
、l−4Aa第2埋込み層22を成長してメサ部を埋め
込み、さらにメサ部へ4を拡散し、絶縁用Sin、膜2
3、表裏にp側およびn側電極8,9を形成して作成す
る。この実施例によれば閾値電流値が低く、効率が高い
素子特性を維持しつつ不純物KG、を用いた第2クラッ
ド層4の効果によって寿命の長い埋め込み型M!GaA
、レーザを実現できる。
FIG. 3 is a schematic diagram of an embedded type MG laser according to a third embodiment of the present invention. In this example, the I'JGaA-a multilayer thin films 2 to 7 epitaxially grown on the i8 substrate 1 were selectively etched to a depth reaching the n-type GaA substrate in the same manner as in the first example. After, p m, A
Al18Gct-aA first buried layer 211s type AJtG
, l-4Aa second buried layer 22 is grown to bury the mesa part, and 4 is further diffused into the mesa part to form an insulating Sin film 2.
3. Create by forming p-side and n-side electrodes 8 and 9 on the front and back sides. According to this embodiment, the buried type M! has a low threshold current value, maintains the device characteristics of high efficiency, and has a long life due to the effect of the second cladding layer 4 using the impurity KG! GaA
, a laser can be realized.

〔発明の詳細な説明〕[Detailed description of the invention]

以上のように本発明によるときKは素子の電気抵抗を実
用上充分に小さな値に維持しつつ、従来の素子に与られ
たPN接合の移動、活性層の結晶劣化を阻止して寿命の
長い)JGaAsレーザ素子を得ることかできる効果を
有するものである。
As described above, according to the present invention, K maintains the electric resistance of the device at a sufficiently small value for practical use, and prevents the movement of the PN junction and the crystal deterioration of the active layer, which occur in conventional devices, resulting in a long life. ) This has the effect of making it possible to obtain a JGaAs laser device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のプレーナストライブ型
膿赫8レーザの積層構造を示す図、第2図は本発明の第
2の実施例の平凸導波路型AllGaAsレーザの積層
構造を示す図、第3図は本発明の第3の実施例の埋め込
み型A□aAsレーザの積層構造を示す図である。 1・・・n型G、A、基板、2・・・n型1’−1f;
ax−ykgクラッド層、3・・・p型あるいはn型M
痴αl−髪8活性層、4・・・p fjl IJ痴αl
−祷8第2クラッド層、5・・・p型AJ。 GCLz−1Ag第1クラッド層、6− n型GaA3
キャップ層、7・・・p型不純物拡散領域、lO・・・
n型A4cQ。、−ウん平凸型光導波層、11・・・溝
付n型G訪8基板、21・・・p型A11sGa*−a
As第1jMめ込み層、22・=s型AltGax−t
 lん第2埋め込み層、23・・・SjO,薄膜第1図 第2図
FIG. 1 is a diagram showing the laminated structure of a planar strip type 8 laser according to the first embodiment of the present invention, and FIG. 2 is a diagram showing the laminated structure of a plano-convex waveguide type AllGaAs laser according to the second embodiment of the present invention. FIG. 3 is a diagram showing a stacked structure of a buried type A□aAs laser according to a third embodiment of the present invention. 1...n-type G, A, substrate, 2...n-type 1'-1f;
ax-ykg cladding layer, 3...p type or n type M
Slut αl-Hair 8 active layer, 4...p fjl IJ Slut αl
- 8 second cladding layer, 5... p-type AJ. GCLz-1Ag first cladding layer, 6-n-type GaA3
Cap layer, 7... p-type impurity diffusion region, lO...
n-type A4cQ. , - plano-convex optical waveguide layer, 11...grooved n-type G-8 substrate, 21...p-type A11sGa*-a
As 1st jM embedded layer, 22.=s type AltGax-t
l Second buried layer, 23...SjO, thin film Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)AJ+ρa1−IA垢性柱層0<Z<1)と第1
の’I)fJiMvGGI−嘗A8クラッド層との間K
、禁制帯幅が両層の中間の大きさで不純物KG、を用い
たp型M^l−^第2クラッド層(g<g<w)を設け
たことを特徴とするAJG−8半導体レーザ素子、 −
(1) AJ + ρa1 - IA sclerotic columnar layer 0 < Z < 1) and the first
'I) K between fJiMvGGI-嘗A8 cladding layer
, an AJG-8 semiconductor laser characterized by providing a p-type M^l-^ second cladding layer (g<g<w) using an impurity KG and having a forbidden band width intermediate between both layers. Element, −
JP1119184A 1984-01-24 1984-01-24 Semiconductor laser element Pending JPS60154587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119184A JPS60154587A (en) 1984-01-24 1984-01-24 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119184A JPS60154587A (en) 1984-01-24 1984-01-24 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS60154587A true JPS60154587A (en) 1985-08-14

Family

ID=11771167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119184A Pending JPS60154587A (en) 1984-01-24 1984-01-24 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS60154587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271486A (en) * 1985-12-23 1987-11-25 Nec Corp Semiconductor laser device
US5345464A (en) * 1992-12-21 1994-09-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271486A (en) * 1985-12-23 1987-11-25 Nec Corp Semiconductor laser device
US5345464A (en) * 1992-12-21 1994-09-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser

Similar Documents

Publication Publication Date Title
CN114006268B (en) Multi-active-region semiconductor structure and preparation method thereof
JPH0669112B2 (en) Laser diode manufacturing method
JPS60154587A (en) Semiconductor laser element
US4577322A (en) Lead-ytterbium-tin telluride heterojunction semiconductor laser
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPS59124183A (en) Light emitting semiconductor device
JPH10256647A (en) Semiconductor laser element and fabrication thereof
KR930010127B1 (en) Semiconductor light emitting element
JP2740165B2 (en) Semiconductor laser
JPS61228684A (en) Semiconductor light emitting element
JPS60102790A (en) Manufacture of semiconductor light-emitting device
JPS58106885A (en) Semiconductor laser
KR940011271B1 (en) Manufacturing method of laser diode array
JPH03203282A (en) Semiconductor laser diode
KR920006392B1 (en) Manufacturing method of semiconductor
JPS6035591A (en) High performance semiconductor laser device and manufacture thereof
KR940011275B1 (en) Laser diode and manufacturing method the same
JPH0239483A (en) Semiconductor laser diode and manufacture thereof
JPS6148277B2 (en)
JPS60137087A (en) Semiconductor laser device
JPH0233993A (en) Semiconductor laser
JPH04303983A (en) Manufacture of ridge waveguide type semiconductor laser
JPH02181491A (en) Semiconductor light-emitting device
JPS59112671A (en) Semiconductor laser
JPS6041280A (en) Semiconductor laser