JP3199414B2 - Optoelectronic integrated circuit device - Google Patents
Optoelectronic integrated circuit deviceInfo
- Publication number
- JP3199414B2 JP3199414B2 JP28170391A JP28170391A JP3199414B2 JP 3199414 B2 JP3199414 B2 JP 3199414B2 JP 28170391 A JP28170391 A JP 28170391A JP 28170391 A JP28170391 A JP 28170391A JP 3199414 B2 JP3199414 B2 JP 3199414B2
- Authority
- JP
- Japan
- Prior art keywords
- electron
- electrons
- circuit device
- integrated circuit
- active layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光信号を電気信号に変
換する光電子集積回路装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optoelectronic integrated circuit device for converting an optical signal into an electric signal.
【0002】[0002]
【従来の技術】従来、光信号を電気信号に変換する光電
子集積回路装置としては、例えば図2(A),(B)に
示すものが知られている(「光・電子集積回路の物理」
のp.294、裳華房発行、松枝秀明著)。ここで、図
2(A)は斜視図、図2(B)は図2(A)のX−X線
に沿う断面図を示す。2. Description of the Related Art Conventionally, as an opto-electronic integrated circuit device for converting an optical signal into an electric signal, for example, the one shown in FIGS.
P. 294, published by Shokabo, written by Hideaki Matsueda). Here, FIG. 2A is a perspective view, and FIG. 2B is a cross-sectional view taken along line XX of FIG. 2A.
【0003】図中の1は、半絶縁性GaAs基板を示
す。この基板1には、ソ−ス(S),ドレイン(D)及
びゲ−ト(G)からなる電界効果トランジスタ(FE
T)2やピンダイオ−ド3a,3bが形成されている。
前記ピンダイオ−ドは、前記基板1上にn+ 型のGaA
s層3及びi型GaAs層5を介して形成したi型AI
GaAs層6にZnによる拡散層7と、前記GaAs層
4に接続するn電極8と、拡散層7に接続するp電極9
とから構成されている。なお、図中の10は絶縁膜、11は
FET2のゲ−トとp電極9を接続する配線を示す。[0003] Reference numeral 1 in the figure denotes a semi-insulating GaAs substrate. The substrate 1 has a field effect transistor (FE) comprising a source (S), a drain (D), and a gate (G).
T) 2 and pin diodes 3a and 3b are formed.
The pin diode is provided on the substrate 1 with n + GaAs
i-type AI formed via s layer 3 and i-type GaAs layer 5
A diffusion layer 7 made of Zn on the GaAs layer 6, an n-electrode 8 connected to the GaAs layer 4, and a p-electrode 9 connected to the diffusion layer 7
It is composed of In the drawing, reference numeral 10 denotes an insulating film, and 11 denotes a wiring connecting the gate of the FET 2 and the p-electrode 9.
【0004】[0004]
【発明が解決しようとする課題】ところで、従来の光電
子集積回路装置においては、ピンダイオ−ドで光から電
気への信号変換を行なった後、この電気信号を改めてF
ETに供給している。そのため、ピンダイオ−ドの光電
変換効率や暗電流、FETでの抵抗や容量が性能に大き
く効いてしまうという欠点があった。By the way, in the conventional optoelectronic integrated circuit device, after the signal is converted from light to electricity by a pin diode, this electric signal is renewed.
Supplying to ET. Therefore, there is a disadvantage that the photoelectric conversion efficiency and dark current of the pin diode, and the resistance and capacitance of the FET greatly affect the performance.
【0005】本発明は上記事情に鑑みてなされたもの
で、光により直接電気信号を制御することにより、応答
速度が極めて早い光電子集積回路装置を提供することを
目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an optoelectronic integrated circuit device having a very high response speed by directly controlling an electric signal by light.
【0006】[0006]
【課題を解決するための手段】本発明は、半導体基板に
形成され、同一の位相をもつ電子を通過させるための第
1電子経路,前記電子を分割して通過させるための複数
の第2電子経路及びこの第2電子経路を通過した電子を
重畳させ、干渉させるための第3電子経路とを有する量
子干渉素子と、前記半導体基板に形成され、活性層を一
構成要素とした半導体レ−ザとを具備した光電子集積回
路装置において、According to the present invention, there is provided a first electron path formed on a semiconductor substrate for passing electrons having the same phase, and a plurality of second electrons for dividing the electrons to pass therethrough. A quantum interference device having a path and a third electron path for superimposing and interfering electrons passing through the second electron path; and a semiconductor laser formed on the semiconductor substrate and having an active layer as a component. An opto-electronic integrated circuit device comprising:
【0007】複数の前記第2電子経路のうち少なくとも
1つの電子経路を通過する電子の位相が、前記半導体レ
−ザの活性層からもれている光により制御されているこ
とを特徴とする光電子集積回路装置である。The phase of electrons passing through at least one of the plurality of second electron paths is controlled by light leaking from an active layer of the semiconductor laser. An integrated circuit device.
【0008】[0008]
【作用】上記の構成において、量子干渉素子の一構成で
あるソ−ス電極から注入された電子は、前記第1電子経
路が上十分に細く、進行方向と垂直方向には完全に量子
化され、かつ長さが非弾性散乱長さ以下であるので、位
相がそろう。次に、この同一位相の電子が第2電子経路
に分流されるが、このとき両経路中の電位が異なると、
各経路での電子位相に差が生じ、第3電子経路で合流す
る際、干渉効果が生ずる。即ち、両者が同位相であれば
ソ−ス電極からドレイン電極へ電流が流れるが、逆位相
では流れない。In the above structure, the electrons injected from the source electrode, which is one of the structures of the quantum interference device, are such that the first electron path is sufficiently thin above and is completely quantized in the direction perpendicular to the traveling direction. And the length is equal to or less than the inelastic scattering length, so that the phases are aligned. Next, the electrons of the same phase are diverted to the second electron path. At this time, if the potentials in both paths are different,
A difference occurs in the electronic phase in each path, and when merging in the third electronic path, an interference effect occurs. That is, if both are in phase, current flows from the source electrode to the drain electrode, but does not flow in opposite phases.
【0009】ここで、上記電位の異なりは、レ−ザ活性
層中の位相のそろった光の電界によって生ずる。つま
り、レ−ザ発振状態では、光の位相がそろい、そのため
分流された第2電子経路のうちのレ−ザ活性層に近い方
の経路の電位が変わり、これにより両経路中を流れる電
子の位相が変わるので、最終的に合流したときの電流を
変化させうる。この構成では、電子の数ではなく、その
位相を制御するので暗電流は極めて小さく、また光素子
と電子素子を接続する配線が不要のなので、これに起因
する寄生容量や寄生抵抗の問題がない。Here, the difference in potential is caused by an electric field of light having a uniform phase in the laser active layer. In other words, in the laser oscillation state, the phases of the light are uniform, so that the potential of the shunted second electron path closer to the laser active layer changes, whereby the electrons flowing through both paths are changed. Since the phase is changed, the current at the time of the final merging can be changed. In this configuration, not the number of electrons but the phase thereof is controlled, so that the dark current is extremely small. Further, since wiring for connecting the optical element and the electronic element is unnecessary, there is no problem of parasitic capacitance and parasitic resistance due to this. .
【0010】[0010]
【実施例】以下、本発明の一実施例を図1(A),
(B)を参照して説明する。An embodiment of the present invention will now be described with reference to FIG.
This will be described with reference to FIG.
【0011】図中の21は、半導体基板を示す。この基板
21上には、レ−ザ活性層22とこの活性層22に近接した量
子干渉素子23がモノリシックに集積されている。前記量
子干渉素子23は、ソ−ス電極24と、同一の位相をもつ電
子を通過させるための第1電子経路25と、前記電子を分
割して通過させるための複数の第2電子経路26a,26b
と、及びこれらの第2電子経路26a,26bを通過した電
子を重畳させ、干渉させるための第3電子経路27と、ド
レイン電極28とを有している。ここで、前記第1電子経
路25は、十分に細く、進行方向と垂直方向には完全に量
子化され、かつ長さが非弾性散乱長さ以下である。こう
した構成の光電子集積回路装置において、複数の前記第
2電子経路26a,26bのうち少なくとも1つの電子経路
を通過する電子の位相が、前記半導体レ−ザの活性層か
らもれている光により制御されている。次に、こうした
構成の装置の動作について説明する。Reference numeral 21 in the figure denotes a semiconductor substrate. This board
A laser active layer 22 and a quantum interference device 23 adjacent to the active layer 22 are monolithically integrated on the active layer 22. The quantum interference element 23 includes a source electrode 24, a first electron path 25 for passing electrons having the same phase, and a plurality of second electron paths 26a for dividing and passing the electrons. 26b
And a third electron path 27 for superimposing and interfering electrons passing through the second electron paths 26a and 26b, and a drain electrode 28. Here, the first electron path 25 is sufficiently thin, is completely quantized in the direction perpendicular to the traveling direction, and has a length equal to or less than the inelastic scattering length. In the optoelectronic integrated circuit device having such a configuration, the phase of electrons passing through at least one of the plurality of second electron paths 26a and 26b is controlled by light leaking from the active layer of the semiconductor laser. Have been. Next, the operation of the device having such a configuration will be described.
【0012】ソ−ス電極24から注入された電子は、前記
第1電子経路25が上述したような構成になっているの
で、位相がそろう。次に、この同一位相の電子が第2電
子経路26a,26bに分流されるが、このとき両経路中の
電位が異なると、各経路での電子位相に差が生じ、第3
電子経路27で合流する際干渉効果が生ずる。即ち、両者
が同位相であればソ−ス電極24からドレイン電極28へ電
流が流れるが、逆位相では流れない。The electrons injected from the source electrode 24 are in phase because the first electron path 25 has the above-described configuration. Next, the electrons having the same phase are shunted to the second electron paths 26a and 26b. At this time, if the potentials in both paths are different, a difference occurs in the electron phase in each path, and
When merging at the electron path 27, an interference effect occurs. That is, if the two have the same phase, a current flows from the source electrode 24 to the drain electrode 28, but does not flow in the opposite phase.
【0013】上記構成の光電子集積回路装置において、
レ−ザが発振し、レ−ザ活性層22中に光の定在波が立つ
と、光の作る電場も同じく定在波となる。この定在波の
腹の位置に上記量子干渉素子23の第2電子経路26a,26
bを位置させる。この様にすることにより、一方の第2
電子経路26aが他方の第2電子経路26bよりも活性層に
近いため、電場の影響を強く受け、両経路間に電位差を
生ずる。従って、レ−ザの発振,非発振により量子干渉
素子23の干渉の度合を制御できる。また、前記量子干渉
素子23はほとんど容量をもたず、また光により直接電子
位相を制御するため、その応答速度が極めて早い。な
お、この場合、半導体レ−ザとしてDFB(Distribut
ed Feedback Laser)レ−ザを用いれば、定在波が安
定するので、更に制御性が良くなる。次に、図1(B)
を用いて上記構成の光電子集積回路の作り方を説明す
る。[0013] In the optoelectronic integrated circuit device having the above configuration,
When the laser oscillates and a standing wave of light rises in the laser active layer 22, the electric field generated by the light also becomes a standing wave. The second electron paths 26a, 26a of the quantum interference
Position b. By doing so, one of the second
Since the electron path 26a is closer to the active layer than the other second electron path 26b, the electron path 26a is strongly affected by the electric field, and a potential difference occurs between the two paths. Therefore, the degree of interference of the quantum interference device 23 can be controlled by the oscillation and non-oscillation of the laser. In addition, the quantum interference element 23 has almost no capacity, and since the electronic phase is directly controlled by light, the response speed is extremely high. In this case, a DFB (Distribut) is used as a semiconductor laser.
If an ed feedback laser is used, the standing wave is stabilized, so that the controllability is further improved. Next, FIG.
A method of manufacturing the optoelectronic integrated circuit having the above configuration will be described with reference to FIG.
【0014】n型GaAsからなる半導体基板21上に、
エピタキシャル成長によりクラッド層31,活性層22,ク
ラッド層32,電流ブロック層33を順次形成する。電流ブ
ロック層33はpnpn構造とし、選択埋込み成長で作
る。次に、Ti,Pt,Auをこの順に堆積してp電極
34を形成し、ついでAuGe,Ni,Auを同じくこの
順に堆積しn電極35を形成する。これにより、活性層22
を含むレ−ザが完成する。更に、絶縁層36を被着後、そ
の上にNiSi2 をNiとSiの同時蒸着により被着す
る。この後、電子線描画とドライエッチングによりNi
Si2 を加工し、量子干渉素子23を作る。ここで、Ni
Si2 を用いるのは、非弾性散乱長さが大きいためであ
る。以上の手順により図1の装置を得る。On a semiconductor substrate 21 made of n-type GaAs,
A cladding layer 31, an active layer 22, a cladding layer 32, and a current blocking layer 33 are sequentially formed by epitaxial growth. The current block layer 33 has a pnpn structure and is formed by selective burying growth. Next, Ti, Pt, and Au are deposited in this order to form a p-electrode.
Next, AuGe, Ni, and Au are deposited in this order to form an n-electrode 35. Thereby, the active layer 22
Is completed. Further, after depositing the insulating layer 36, NiSi 2 is deposited thereon by simultaneous vapor deposition of Ni and Si. Thereafter, electron beam lithography and dry etching are performed to obtain Ni.
The quantum interference device 23 is manufactured by processing Si 2 . Where Ni
The reason for using Si 2 is that the inelastic scattering length is large. The apparatus shown in FIG. 1 is obtained by the above procedure.
【0015】しかして、上記実施例に係る光電子集積回
路装置によれば、レ−ザ活性層22と量子干渉素子23を近
接して設け、レ−ザ光の電場で直接量子干渉素子23中の
電子の位相を制御するので、その応答速度を極めて早く
できる。According to the optoelectronic integrated circuit device according to the above-described embodiment, the laser active layer 22 and the quantum interference device 23 are provided close to each other, and the laser light is directly applied to the quantum interference device 23 by the electric field of the laser light. Since the phase of the electrons is controlled, the response speed can be extremely increased.
【0016】[0016]
【発明の効果】以上詳述した如く本発明によれば、光に
より直接電気信号を制御することにより、応答速度が極
めて早い光電子集積回路装置を提供できる。As described above in detail, according to the present invention, an optoelectronic integrated circuit device having a very high response speed can be provided by directly controlling an electric signal by light.
【図1】本発明の一実施例に係る光電子集積回路装置を
示し、図1(A)は平面図、図1(B)は図1(A)の
X−X線に沿う断面図。1A and 1B show an optoelectronic integrated circuit device according to an embodiment of the present invention, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line XX of FIG.
【図2】従来の光電子集積回路装置を示し、図2(A)
は斜視図、図2(B)は図2(A)のX−X線に沿う断
面図。FIG. 2 shows a conventional optoelectronic integrated circuit device, and FIG.
FIG. 2B is a perspective view, and FIG. 2B is a cross-sectional view taken along line XX of FIG.
21…半導体基板、22…レ−ザ活性層、23…量子干渉素
子、24…ソ−ス電極、25…第1電子経路、26a,26b…
第2電子経路、27…第3電子経路、28…ドレイン電極、
31,32…クラッド層、33…電流ブロック層、34…p電
極、35…n電極、36…絶縁膜。21: semiconductor substrate, 22: laser active layer, 23: quantum interference device, 24: source electrode, 25: first electron path, 26a, 26b ...
Second electron path, 27 ... third electron path, 28 ... drain electrode,
31, 32: cladding layer, 33: current blocking layer, 34: p electrode, 35: n electrode, 36: insulating film.
Claims (2)
つ電子を通過させるための第1電子経路,前記電子を分
割して通過させるための複数の第2電子経路及びこの第
2電子経路を通過した電子を重畳させ、干渉させるため
の第3電子経路とを有する量子干渉素子と、 前記半導体基板に形成され、活性層を一構成要素とした
半導体レ−ザとを具備した光電子集積回路装置におい
て、 複数の前記第2電子経路のうち少なくとも1つの電子経
路を通過する電子の位相が、前記半導体レ−ザの活性層
からもれている光により制御されていることを特徴とす
る光電子集積回路装置。1. A first electron path formed on a semiconductor substrate for passing electrons having the same phase, a plurality of second electron paths for splitting and passing the electrons, and a second electron path. An opto-electronic integrated circuit device comprising: a quantum interference device having a third electron path for superimposing and interfering the passed electrons; and a semiconductor laser formed on the semiconductor substrate and having an active layer as a component. 2. The optoelectronic integration according to claim 1, wherein the phase of electrons passing through at least one of the plurality of second electron paths is controlled by light leaking from an active layer of the semiconductor laser. Circuit device.
が制御される電子経路が、その他の第2電子経路よりも
半導体レ−ザの活性層に近い請求項1記載の光電子集積
回路装置。2. The optoelectronic integrated circuit device according to claim 1, wherein an electron path of the second electron path, the phase of which passing electrons is controlled, is closer to the active layer of the semiconductor laser than the other second electron paths. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28170391A JP3199414B2 (en) | 1991-10-28 | 1991-10-28 | Optoelectronic integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28170391A JP3199414B2 (en) | 1991-10-28 | 1991-10-28 | Optoelectronic integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05121724A JPH05121724A (en) | 1993-05-18 |
JP3199414B2 true JP3199414B2 (en) | 2001-08-20 |
Family
ID=17642805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28170391A Expired - Fee Related JP3199414B2 (en) | 1991-10-28 | 1991-10-28 | Optoelectronic integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3199414B2 (en) |
-
1991
- 1991-10-28 JP JP28170391A patent/JP3199414B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05121724A (en) | 1993-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4378255A (en) | Method for producing integrated semiconductor light emitter | |
US4625225A (en) | Integrated light detection or generation means and amplifying means | |
JPH0212968A (en) | Integrated multilayer quantum well photon and electron device | |
JP3162424B2 (en) | Waveguide photodetector and method of manufacturing the same | |
JPS62174728A (en) | Optical switch | |
JPH0744315B2 (en) | Manufacturing method of monolithic integrated optoelectronic module | |
US5228048A (en) | Semiconductor laser device | |
JP3199414B2 (en) | Optoelectronic integrated circuit device | |
US5541424A (en) | Permeable base transistor having laminated layers | |
JPH0567769A (en) | Three-dimensional photoelectronic integrated circuit device | |
US5275968A (en) | Method of producing a semiconductor light emitting device disposed in an insulating substrate | |
US5194399A (en) | Method of producing a semiconductor light emitting device disposed in an insulating substrate | |
JPS6334994A (en) | Photoelectric integrated circuit device and manufacture thereof | |
JP2626149B2 (en) | Optoelectronic integrated circuit manufacturing method | |
JPH02199877A (en) | Optical receiver and photoelectric integrated circuit | |
JPH06244502A (en) | Surface-emission laser apparatus and its manufacture | |
JPS6091691A (en) | Semiconductor laser device | |
JPS59202676A (en) | Planar type light-emitting element | |
JPH11112100A (en) | Optical semiconductor element | |
JPH021979A (en) | Manufacture of photoelectric integrated circuit | |
JPH01115156A (en) | Manufacture of optoelectronic integrated circuit | |
JPS5831591A (en) | Buried semiconductor laser | |
JPS604286A (en) | Laser diode | |
JPS62296557A (en) | Optical integrated circuit device | |
JPH01296663A (en) | Optoelectronic integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010529 |
|
LAPS | Cancellation because of no payment of annual fees |